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Abstract—In this paper we consider the problem of designing
coding and decoding schemes to estimate the state of a scalar
stable stochastic linear system subject to noisy measurements and
in the presence of a wireless communication channel between
the sensor and the estimator. In particular, we consider a
communication channel which is prone to packet loss and includes
quantization noise due to its limited capacity. We study two
scenarios: the first with channel feedback and the second with
no channel feedback. More specifically, in the first scenario the
transmitter is aware of the quantization noise and the packet loss
history of the channel, while in the second scenario the transmitter
is aware of the quantization noise only. We show that in the first
scenario, the optimal strategy among all possible linear encoders
corresponds to the transmission of the Kalman filter innovation
similarly to the differential pulse-code modulation (DPCM). In
the second scenario, we show that there is a critical packet loss
probability above which it is better to transmit the state rather
than the innovation. We also propose a heuristic strategy based
on the transmission of a convex combination of the state and the
Kalman filter innovation which is shown to provide a performance
close to the one obtained with channel feedback.

Index Terms—Kalman filtering, packet loss, quantization noise,
channel feedback, differential encoding

I. INTRODUCTION

Wireless communication has become ubiquitous and wired

communication systems are increasingly being replaced with

wireless systems thanks to their many advantages such as

smaller installation costs, easier maintenance and fewer cum-

bersome cables. However, wireless communication comes at

the price of lower channel capacity which results in higher

quantization noise, packet losses and delay. This concern

is particularly apparent in industrial applications such as

remote sensing and real-time automation, since a very high

level of reliability is needed in control systems and safety-

critical scenarios. As a consequence, it becomes of paramount

importance to understand the impact of realistic channel mod-

els in the context of estimation and control. So far most of the

works available in the literature have concentrated on stability

and control subject to only one specific limitation of wireless

communication. For example, in [1], [2] the authors addressed

the problem of stabilization of an unstable plant through a

rate-limited erasure channel where no performance index is

considered besides stability. Other researchers have tried to

This work is supported by by the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement n. 257462
HYCON2 Network of excellence, by the FIRB project Learning meets
time (RBFR12M3AC) and by the Australian Research Council grant n.
DP120101122.

S. Dey is with the Division of Signals & Systems, Uppsala
University, P. O. Box 534, Uppsala SE-75121, Sweden, email:
Subhra.Dey@signal.uu.se, while A. Chiuso and L.
Schenato are in the Department of Information Engineering,
University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy, email:
{chiuso|schenato}@dei.unipd.it

tackle the channel limitations by using analog models in order

to avoid the difficulties associated with explicit design of digital

channel encoder/decoder and to optimize some performance

metrics among all possible stabilizing controllers subject to

packet loss [3], [4] or subject to a maximum signal-to-noise

ratio (SNR) [5], [6]. Finally, another well explored approach

is the analysis, under an LQG framework, of control systems

subject to random packet loss, quantization [7], [8], [9], [10]

and possibly delays [11]. All these works have been concerned

with stability in control systems. However, there are many

applications, such as remote sensing and estimation, where

the dynamical system to be controlled is already stable, but

the existing communication and feedback performance can

be substantially improved. In this work we are interested in

exploring the problem of remotely estimating the state of a

stable stochastic scalar linear system over a wireless channel.

In particular, we want to design coding and decoding strategies

that allow good estimation performance in the presence of

packet loss, quantization noise and measurement noise. So far,

mainly packet loss has been considered in the context of remote

estimation [12], [13], although there are recent attempts to

consider both limitations [14], [15], [16], [17]. Note that the

focus in [16], [17] are on deriving minimum data rates for

stabilizability over lossy channels, whereas we focus on the

actual estimation error performance in the presence of quan-

tization (data rate constraints) and packet loss. In particular

we explore two scenarios. In the first scenario the transmitter

has perfect channel feedback, i.e. it is aware of possible packet

losses and therefore it is able to replicate the receiver filter. As

a result, we show that the optimal transmission strategy is to

send the innovation between the best estimate of the state at the

filter and the predicted estimate of the state at the receiver. This

is reminiscent of differential pulse-code modulation (DPCM)

[18] in which a differential signal is sent over a channel with

no packet loss. Differently, in the second scenario, we consider

the case when the transmitter is not aware of the packet

loss history. We propose three strategies: the first named state

forwarding (SF) in which the estimated state is transmitted

over the channel, the second named innovation forwarding (IF),

in which the difference between the state and the estimate that

a receiver would have if no packet loss had occurred is sent; the

third one, named soft innovation forwarding (SIF), transmits a

convex combination of the signals mentioned above and thus

includes SF and IF as special cases. For these three strategies

we compute their performance and observe that in the low

packet loss regime it is better to use strategies that are similar

to the IF, while for high packet loss regime it better to use

strategies that are similar to the SF. Some preliminary results,

which considered the simplified scenario with no measurement
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noise, can be found in [19].

II. CHANNEL MODELING AND PROBLEM FORMULATION

We consider the problem of remotely estimating the state of

a scalar linear stochastic dynamical system:

xt+1 = axt + wt (1)

yt = cxt + vt (2)

where wt ∼ N (0, σ2
w), vt ∼ N (0, σ2

v) are white, uncorrelated

and uncorrelated with the initial condition x0 ∼ N (x̄0, σ
2
0).

More specifically, as graphically depicted in Figure 1, the

analogue measurement yt at the sensor can be pre-processed by

the filter g(·) into the analog signal st before transmission. The

signal is then quantized into a word s
q
t from a finite alphabet,

which is then coded and transmitted over a digital noisy

channel. At the receiver, the channel decoder either perfectly

decodes the word s
q
t or detect an erasure which is modeled

by the binary variable γt ∈ {0, 1} ≡ {erased, decoded}. If

correctly decoded, the word s
q
t is converted into the analog

signal zt, which is then processed by the receiver via the filter

h(·) to provide the state estimate x̂t. The transmission protocol

might be provided with an ACK-based system that notifies the

transmitter whether the packet has been successfully decoded

at the receiver. We refer to this scenario as perfect channel

feedback; if the ACK signal is not available we shall sat that

there is no channel feedback. We now proceed to mathemati-

cally model such system.

In the following we will consider the simplified assumption

c = 1, |a| < 1 (3)

where the first assumption can be used w.l.o.g. since the case

c 6= 1 can be easily obtained via a rescaling of the process

noise variance σ2
w, while the second assumption is necessary

to guarantee that the stochastic signal yt is asymptotically

stationary with bounded variance. The transmitter can send

a signal through a digital noisy erasure channel modeled as

follows

zt = γts
q
t = γt(st + nt)

where γt ∈ {0, 1} represents the erasure event, s
q
t ∈ R

is the quantized transmitted signal, st ∈ R is the signal

before quantization, and nt is the uncorrelated additive noise

which models the quantization error under a fine quantization

assumption.

Remark 1: The validity of the additive quantization noise

model for high rate uniform scalar quantization has been

rigorously shown in [20] for continuous input densities, and see

also [21] for similar studies. It has been however shown in these

papers as well as many other recent literature such as in [22]

that although in principle only high rate quantization theory

justifies such an additive white quantization noise model, in

practice this model holds as a very good approximation for

moderate rate quantization. If fact, as shown later in via

numerical simulations Section VI, a uniform scalar quantizer

with only 3-4 bits of quantization per sample used to quantize

the signal st provides results that are sufficiently close to the

theoretical values based on additive noise model proposed in

this work. Note that in a wireless local area network (WLAN)

with orders of megabits per second data rates (even when

shared amongst various links), it is not unreasonable to expect

3-4 bits per sample with a sampling rate of say 0.1 MHz

which is likely to be sufficient for most physical dynamical

systems. Thus, this additive white quantization noise model is

also suitable for use in practical implementation of estimation

over lossy wireless links.

The variables satisfy the following assumptions:

P[γt = 0] = ǫ, nt ∼ N
(
0,

1

Λ
E[s2t ]

)

where Λ is the signal-to-quantization noise ratio (SQNR) of

the quantizer; {γt} and {nt} are assumed to be independent.

This model for the SQNR noise assumes that the quantizer

is matched to the stationary distribution of the incoming

signal st so as to maintain a constant SQNR value Λ. The

transmitter sends a signal according to its available information

set, i.e. st = gt(Tt) where gt is a measurable function of the

information set Tt which can take the following two forms:

T CF
t = {yt, .., y0, st−1, .., s0, nt−1, .., n0, γt−1, .., γ0}

= {yt, .., y0, st−1, .., s0, zt−1, .., z0, γt−1, .., γ0}
T NCF
t = {yt, .., y0, st−1, .., s0, nt−1, .., n0}

The first set T CF corresponds to a scenario with perfect

channel feedback where the transmitter knows the sequence

{γt−1, .., γ0}, i.e. whether a packet has been received success-

fully or not, while the second set T NCF has no such informa-

tion. The first scenario is realistic in wireless communication

where the receiver can transmit back a signal with higher power

and therefore very small packet loss probability. Moreover, the

information to be sent back reliably is just an ACK packet. For

convenience of notation and future use we define the symbol

Eγ which denotes expectation taken conditionally on the entire

loss sequence γ. Moreover we define

Zt := {zt, .., z0} Rt := {zt, . . . , z0, γt, . . . γ0}
which correspond to the past history of the received signals.

Then the state estimator at the receiver side based on the

information Rs is given by

x̂rx
t|s := E[xt|Rs] = Eγ [xt|Zs] (4)

Under our Gaussian assumption on the initial condition and

noises, hγ(Zt) := x̂rx
t|t is a linear function of Zt which depends

on the loss sequence γt, .., γ0. We are interested in analyzing

the performance of the overall system based on the estimation

prediction error variance at the receiver, i.e.

prxt+1|t = E[(xt+1 − x̂rx
t+1|t)

2]

where the expectation has to be taken also with respect to the

packet drop process γt besides the noises wt, nt. As a result,

we will assume that the delay necessary to deliver a message

from the transmitter to the receiver is smaller or equal that the

sampling period, i.e. one time-step.

For future use let us also define the measurement history

Yt := {yt, .., y0}, the state estimator at the transmitter side

x̂tx
t|t := E[xt|Yt] = ax̂tx

t−1|t−1 + k̂t(yt − ax̂tx
t−1|t−1) (5)

where k̂t is the optimal filter gain, and the estimator error

x̃tx
t|t := xt − x̂tx

t|t (6)
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Fig. 1. Equivalent communication model for remote estimation.

Since the system is asymptotically stable1 the variance

ptxt|t = E[(x̃tx
t|t)

2] has the property that limt→∞ ptxt|t =

ptx∞, limt→∞ k̂t = k̂ where ptx∞ is the unique non-negative

solution of the following filter Riccati equation and k̂ its

corresponding steady state gain:

ptx∞ = a2ptx∞+σ2
w−

(a2ptx∞+σ2
w)

2

a2ptx∞+σ2
w+σ2

v

= σ2
v

a2ptx∞+σ2
w

a2ptx∞+σ2
w+σ2

v

(7)

k̂ =
a2ptx∞+σ2

w

a2ptx∞+σ2
w+σ2

v

(8)

which shows that for σ2
v = 0, then also ptx∞ = 0. In fact, in

this scenario x̂t|t = xt.

III. OPTIMAL ESTIMATION WITH PERFECT CHANNEL

FEEDBACK

We now consider the state estimation problem with perfect

channel feedback, i.e. also the transmitter is aware of the packet

loss sequence incurred across the digital channel. We show that

if we restrict our attention to functions g(T CF
t ) and h(Rt)

which are linear in the information sets T CF
t and Rt, then the

optimal strategy is to send the state estimate innovation, i.e.

the difference between the current best state estimate at the

transmitter and the current best prediction of the state at the

receiver.

A. Optimal strategy derivation

Our purpose is to find the “optimal” message st to be sent

through a lossy and SQNR limited channel in order to minimize

the state estimation error variance at the receiver, under the

assumption that perfect channel feedback is available. We shall

look for conditionally linear encoders2

st := Lγ (Yt,Zt−1) (9)

where Lγ (Yt,Zt−1) is, conditionally on the packet loss

sequence γt−1, ..., γ0, a linear operator of its arguments

yt, yt−1, .., y0 (the samples to be encoded) and zt−1, .., z0 (the

past received signals). The result of this section is summarized

in the next theorem. The remaining part of the section proves

the result.

Theorem 1: Under the assumption that perfect channel

feedback is available (i.e. that γt−1, ..., γ0 are known also at the

1Note that this is not necessary and milder stabilizability and detectability
conditions are sufficient for the state estimation error variance to be the unique
positive semidefinite and bounded solution of the algebraic Riccati equation
(7).

2We restrict to linear functionals because the stochastic system is condi-
tionally Gaussian given the loss sequence {γt} and, therefore, the optimal
estimator conditionally on {γt} is a linear functional of the observed data.

transmitter side), the optimal linear encoder (9) for the linear

system (1)-(2) is given by:

st := x̂tx
t|t − x̂rx

t|t−1 = E[xt|Yt]− Eγ [xt|Zt−1] (10)

Proof: The encoder has to find a linear function of all

available measurements which retains as much information as

possible regarding the state to be estimated. We can define

es := ys − Eγ [ys|Zt−1] (11)

which represents the innovation (i.e. the “new” informa-

tion) in ys which is not already contained in Rt−1 =
{γt−1, .., γ0,Zt−1}. Then we define Et := {et, ..., e0}.

Note that, however, only part of this information is necessary

to estimate xt. As a matter of fact Et can be reduced so as to

retain all and only the relevant information on xt; this reduction

has sometimes been called Sufficient Dimensionality Reduction

(SDR) [23]. Since xt is scalar, the (linear) sufficient statistic

in Et for xt has dimension 1 (which is equal to the dimension

of the projection of xt onto the space spanned by the elements

of Et).
Hence we seek for a signal st =

∑t
i=0 αiet−i, αi ∈ R, so

that the optimal estimation

x̂rx
t|t := Eγ [xt|Zt]

has as small (conditional) variance as possible.

Note that the “noise” nt is known at the transmitter side

since the transmitter generates s
q
t starting from st. Since st =∑t

i=0 αiet−i, and using the fact that both the noise nt and

es are uncorrelated from zs, s < t (see also (11)), also zt is

uncorrelated from zs, s < t. Therefore the estimator x̂rx
t|t :=

Eγ [xt|Zt], satisfies:

x̂rx
t|t = Eγ [xt|Zt−1] + Eγ [xt|zt] = x̂rx

t|t−1 + Eγ [xt|zt]
= x̂rx

t|t−1 +
Eγ [xtst]

Eγ [s2t ](1+ 1
Λ )

zt = x̂rx
t|t−1 +

1
1+ 1

Λ

zt

(12)

Note now that, defining x̃rx
t|t := xt − x̂rx

t|t we have

V arγ{x̃rx
t|t} = V arγ{x̃rx

t|t−1} − V arγ{E[xt|zt]}

where the symbol V arγ denotes the variance conditionally on

the sequence {γt}. Since the choice of st does not affect the

first term on the right hand side, minimizing V ar{x̃rx
t|t} is

equivalent to maximizing

V arγ{Eγ [xt|zt]} = γt
(Eγ [xtst])

2

Eγ [s2t ](1+ 1
Λ )

= γt
(Eγ [xts̄t])

2

(1+ 1
Λ )

where s̄t := st√
Eγ [s2t ]

. Hence we are left with maximizing

Eγ [xts̄t], which is obtained choosing αi, i = 0, .., t so that
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st =
∑t

i=0 αiet−i has maximal correlation with xt. This

is achieved when3 st := Eγ [xt|Et] = Eγ [xt|Et,Zt−1] −
Eγ [xt|Zt−1] = Eγ [xt|Yt,Zt−1]−Eγ [xt|Zt−1] = x̂tx

t|t− x̂rx
t|t−1.

Hence, the optimal signal to be sent through the SQNR-

limited channel is

st := x̂tx
t|t − x̂rx

t|t−1 = E[xt|Yt]− Eγ [xt|Zt−1]

which concludes the proof.

The Kalman filter estimation error x̃tx
t|t in (6) has some

interesting uncorrelation properties, which will be useful in

the forthcoming analysis, that are summarized in the following

Lemma:

Lemma 1: In the perfect channel feedback scenario, the

Kalman filter estimation error x̃tx
t|t is conditionally uncorrelated

with respect to both the transmitter and the receiver estimation

error, i.e.

Eγ [x̃
tx
t|tx̂

tx
t|t] = 0, Eγ [x̃

tx
t|tx̂

rx
t|t] = 0

Proof: A well known property of the optimal estimation

error x̃tx
t|t is that it is uncorrelated to any linear function

of the same data based on which it is constructed, i.e.

E[x̃tx
t|tL({yh}th=0)] = 0, from which it directly follows that

E[x̃tx
t|tx̂

tx
t|t] = 0. Conditioned an a specific realization of the

packet loss sequence {γt}, the estimator at the receiver is a

linear function of the received data, i.e. x̂rx
t|t = Lγ({zh}th=0).

Since zt = γt(x̂
tx
t|t− x̂rx

t|t−1+nt), by linearity we can certainly

write the estimator at the receiver as

x̂rx
t|t = L′

γ({yh}th=0) + L′′
γ({nh}th=0)

where L′
γ and L′′

γ are linear functions conditionally on the loss

sequence. Since x̃tx
t|t is uncorrelated with the noise sequence

{nt}, the statement of the first part of the lemma easily follows.

B. Performance analysis

Based on the analysis in the previous subsection, the optimal

linear strategy for remote estimation in the presence of channel

feedback, which is graphically represented as in Fig.2, is

the following: at the transmitter the measurements are first

Fig. 2. Remote estimation scheme with perfect channel feedback

preprocessed by a standard Kalman filter to obtain the best

estimate of the state at the transmitter x̂tx
t|t (see (5)) as well as

to reconstruct the best prediction at the receiver side x̂rx
t|t−1,

see (4).

Once again, based on the previous section, the optimal strat-

egy at the transmitter is to send the innovation st = x̂tx
t|t−x̂rx

t|t−1

3The chain of equalities can be obtained recalling that, conditionally on
the loss sequence {γt}, all random variables are jointly Gaussian and, as
such, conditional expectations are linear projections. In addition recall that
conditionally on γ, Et is uncorrelated with Zt given γ and the linear span of
Et,Zt−1 equals that of Yt,Zt−1.

from which it follows that the signal received at the remote

estimator is

zt = γt(x̂
tx
t|t − x̂rx

t|t−1 + nt) = γt(xt − x̃tx
t|t − x̂rx

t|t−1 + nt).

According to the standard MMSE theory for linear systems,

the optimal filter equation must be of the form:

x̂rx
t|t−1 = ax̂rx

t−1|t−1 (13)

x̂rx
t|t = x̂rx

t|t−1+kt(zt − ẑt|t−1) (14)

where we used the result from Eqn. (12). The expression of

the optimal Kalman gain kt is given by4:

kt = covγ{xt, zt− ẑt|t−1}V ar−1
γ {zt− ẑt|t−1} =

Λ

Λ+ 1
(15)

which is independent of time and of the packet loss sequence.

If we define the estimation error as x̃rx
t|h = xt − x̂rx

t|h and its

corresponding variance as prxt|h = E[(x̃rx
t|h)

2] we get

x̃rx
t+1|t = a(1− γtkt)x̃

rx
t|t−1 + wt + γtakt(x̃

tx
t|t − nt)

Note now that, using also Lemma 1, E[n2
t ] =

1
ΛE[(x̃

rx
t|t−1 −

x̃tx
t|t)

2] = 1
ΛE[(x̃

rx
t|t−1)

2−2x̃tx
t|tx̃

rx
t|t−1+(x̃tx

t|t)
2)2] = 1

Λ (p
rx
t|t−1−

2ptxt|t−ptxt|t) =
1
Λ (p

rx
t|t−1−ptxt|t) and E[x̃rx

t|t−1x̃
tx
t|t] = E[(x̃tx

t|t)
2] =

ptxt|t. Using also that kt = Λ
Λ+1 , then the receiver error

(unconditional) variance is given by:

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ǫ)

a2Λ

1 + Λ
(prxt|t−1 − ptxt|t)

Since |a| < 1 the previous linear equation has a steady state

solution given by:

pCF (ǫ) = lim
t→∞

prxt+1|t =
σ2
w + (1− ǫ) a2Λ

Λ+1p
tx
∞

1− a2 1+ǫΛ
1+Λ

(16)

which represents the steady state predictor error variance.

IV. STATE FORWARDING VS INNOVATION FORWARDING

WITH NO CHANNEL FEEDBACK

In this section we consider the challenging scenario where

no channel feedback is present. In this case the information

set at the transmitter T NCF
t does not include the information

set at the receiver Rt, i.e. Rt 6⊂ T NCF
t . As consequence, the

transmitter cannot produce a copy of the transmitter estimate

x̂rx
t|t−1. The optimal strategy in this case is not obvious and

it is likely to be a non-linear function of the information

sets T NCF
t ,Rt. This situation is reminiscent of the loss of

separation principle in control systems where the estimator is

not aware if the control input has been successfully received

by the actuator or not [9].

As a consequence, we explore suboptimal linear strategies

for which is it possible to compute the performance. In

particular, there are two suboptimal naive strategies that can be

proposed. The first strategy, that we refer to as state forwarding

(SF) is to simply transmit the current transmitter best estimate

of the state xt, i.e. st = x̂tx
t|t.

4The subscript γ reminds that covariances are taken conditionally on {γt}.
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To introduce the second strategy, let us now define the state

predictor at the transmitter side using the quantized signals as

information set, i.e.

x̄tx
t|t−1 := E[xt|sqt−1, s

q
t−2, ..., s

q
0] (17)

Inspired by the optimal filtering scheme with channel feed-

back, which requires sending the difference between the state

estimator at the transmitter side and the state prediction at the

receiver side, we now define the innovation forwarding (IF)

strategy in which the transmitted signal st is given by the

difference between the state estimator at the transmitter side

and the state predictor computed at the transmitter side as-

suming (incorrectly) that the all the past quantized transmitted

signals s
q
t = st + nt have reached the receiver, i.e. assuming

γt = 1, ∀t. More specifically st = x̂tx
t|t − xtx

t|t−1. The rationale

behind this strategy is that in a lossless channel, i.e. if ǫ = 0,

it provides the optimal strategy as discussed in Section III.

For both transmitter strategies, the receiver will compute the

MMSE estimator, i.e x̂rx
t|t = E[xt |Rt]. As just mentioned, in

general x̂rx
t|t 6= x̂tx

t|t and x̂rx
t|t 6= xtx

t|t These two strategies can

be graphically represented as in Fig 3, where the SF strategy

corresponds to ν = 1 and the IF strategy to ν = 0.

Fig. 3. Remote estimation scheme with no channel feedback

We now state an instrumental lemma which will be useful

later on:

Lemma 2: In the scenario with no channel feedback the

transmitter state estimation errors x̃tx
t|t is conditionally uncor-

related with x̂tx
t|t, x

tx
t|t−1 and x̂rx

t|t−1, i.e.

Eγ [x̃
tx
t|tx̂

tx
t|t] = 0, Eγ [x̃

tx
t|tx

tx
t|t−1] = 0, Eγ [x̃

tx
t|tx̂

rx
t|t] = 0, ∀ν

and x̃
tx

t|t−1 := xt − xtx
t|t−1 is conditionally uncorrelated with,

xtx
t|t−1 and x̂rx

t|t−1, i.e.

Eγ [x̃
tx

t|t−1x
tx
t|t−1] = 0, Eγ [x̃

tx

t|t−1x̂
rx
t|t] = 0, ∀ν

Proof: Since the estimator x̃tx
t|t is not influenced by chan-

nel feedback, the first statement has been proven in Lemma

1.

The other two statements follow easily using the same

arguments as in Lemma 1 since xtx
t|t−1 and x̂rx

t|t−1 are linear

functions of {yk, k < t} and of {nk, k < t}, which are all

uncorrelated with x̃tx
t|t and x̃

tx

t|t−1.

A. State forwarding strategy (ν = 1)

In this section, as seen before, we assume that the transmitted

message is a noisy version of the estimated state, i.e. has the

form

s
q
t = x̂tx

t|t + nt = xt − x̃tx
t|t + nt

where

Eγ [n
2
t ] = 1

ΛEγ [(x̂
tx
t|t)

2] = 1
Λ (E[x

2
t ]− Eγ [(x̃

tx
t|t)

2])

= 1
Λ

(
σ2
w

1−a2 − Eγ [(x̃
tx
t|t)

2])
)

and we assume that xt has reached its steady state distribution.

In fact limt→∞ E[x2
t ] =

σ2
w

1−a2 =: pOL holds for |a| < 1; this

in particular shows that the state forwarding strategy cannot

be used for |a| ≥ 1 since the signal variance and hence

the quantization noise variance would diverge. The message

received at the remote estimator is then

zt = γt(x̂
tx
t|t + nt) = γt(xt − x̃tx

t|t + nt)

which can be interpreted as a noisy measurement of the filtered

state, where nt is the measurement noise, subject to intermittent

observation. This problem has already been solved in [12] and

the solution is given by the following time-varying Kalman

filter:

x̂rx
t|t−1 = ax̂rx

t−1|t−1 (18)

x̂rx
t|t = x̂rx

t|t−1+γtkt(zt − x̂rx
t|t−1) (19)

The state estimation error then satisfies the equation

x̃rx
t+1|t = a(1− γtkt)x̃

rx
t|t−1 + wt + γtakt(x̃

tx
t|t − nt)

from which the conditional error covariance

p̂rxt+1|t = a2(1− γtkt)
2p̂rxt|t−1 + γ2

t a
2k2t (E[(x̃

tx
t|t)

2 + Eγ [n
2
t ])

+2a2γtkt(1− γtkt)Eγ [x̃
tx
t|tx̃

rx
t|t−1] + σ2

w

where p̂rxt+1|t = Eγ [(x̃
rx
t+1|t)

2].

Since by Lemma 2 Eγ [x̃
tx
t|tx̃

rx
t|t−1] = ptxt|t and Eγ [n

2
t ] =

1
ΛE[(x̂

tx
t|t)

2] = 1
Λ (E[x

2
t ] − Eγ [(x̃

tx
t|t)

2]), then the optimal gain

obtained by minimizing the right hand side is given by:

kt =
p̂rxt|t−1 − ptxt|t

p̂rx
t|t−1 − Λ+1

Λ ptx
t|t +

σ2
w

Λ(1−a2)

.

From which it follows:

p̂rxt+1|t = a2p̂rxt|t−1 + σ2
w − γt

(p̂rx
t|t−1−ptx

t|t)
2

p̂rx
t|t−1

−Λ+1
Λ ptx

t|t
+ 1

ΛpOL

The optimal estimator could be computationally expensive

since it needs to keep track of the conditional estimation error

covariance p̂rxt|t−1 which is a function of the packet loss history

{γh}t−1
h=0. As done in [24], the previous filter can be replaced

with the following constant gain filter:

xrx
t|t−1 = axrx

t−1|t−1 (20)

xrx
t|t = xrx

t|t−1+γtk(zt − xrx
t|t−1) (21)

k =
pSF (ǫ)− ptx∞

(pSF (ǫ)− ptx∞) + 1
Λ (p

OL − ptx∞)
, pSF (ǫ)>0 (22)

pSF (ǫ) = a2pSF (ǫ)+σ2
w−(1−ǫ)

a2(pSF (ǫ)−ptx∞)2

(pSF (ǫ)−ptx∞)+ 1
Λ (p

OL−ptx∞)
(23)

which has the property that asymptotical its error covariance

is also an upper bound for the steady state error covariance

prxt|t−1 := E[p̂rxt|t−1] of the optimal estimator x̂rx
t|t−1, i.e.

lim sup
t→∞

prxt|t−1 ≤ lim
t→∞

E[(xt − xrx
t|t−1)

2] = pSF (ǫ)

It has been shown in [24] that the previous inequality is quite

tight, i.e. the performance degradation incurred using a constant

gain rather then the optimal time-varying gain, is small.
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B. Innovation forwarding strategy (ν = 0)

In this section we consider the innovation forwarding scheme

st = x̂tx
t|t − xtx

t|t−1

where xtx
t|t−1 = E[xt | sqt−1, . . . , s

q
0] and s

q
t = st + nt. The

MMSE estimator at the receiver x̂rx
t+1|t = Eγ [xt+1 | Zt] is,

conditionally on {γt} a linear and finite memory functional of

the past received data and must have the following form:

x̂rx
t+1|t = ax̂rx

t|t−1 + akt(zt − ẑt) = ax̂rx
t|t−1 + aktzt

zt = γt (st + nt) = γt

(
x̂tx
t|t − xtx

t|t−1 + nt

)

(24)

where ẑt := Eγ [zt|Zt−1] = 0 since x̂tx
t|t − xtx

t|t−1 and nt are

uncorrelated and white. The optimal gain kt is to be selected, at

each step, to minimize the conditional receiver state prediction

error covariance p̂rxt+1|t := Eγ [(xt+1 − x̂rx
t+1|t)

2].
This is easily achieved writing the equation for the prediction

error and differentiating w.r.t kt. Let us first derive the dynam-

ical equation for x̃rx
t|t−1 = xt − x̂rx

t|t−1, which is obtained by

subtracting the state prediction update Eqn. (24) from the state

equation Eqn. (1), obtaining

x̃rx
t+1|t = a(1−γtkt)x̃

rx
t|t−1−γtakt(∆̂xt− x̃tx

t|t +nt)+wt

where ∆x̂t := x̂rx
t|t−1−xtx

t|t−1 = x̃
tx

t|t−1 − x̃rx
t|t−1 and x̃

tx

t|t−1 :=

xt − xtx
t|t−1. This implies that x̃rx

t|t−1 = x̃
tx

t|t−1 − ∆x̂t. Using

Lemma 2 we obtain:

Eγ [x̃
rx
t|t−1x̃

tx

t|t−1] = Eγ(x̃
tx

t|t−1 −∆x̂t)x̃
tx

t|t−1]

= Eγ [x̃
tx

t|t−1x̃
tx

t|t−1] =: p̂0t

Eγ [x̃
rx
t|t−1∆x̂t] = Eγ [x̃

rx
t|t−1(x̃

tx

t|t−1 − x̃rx
t|t−1)]

= −(p̂rxt|t−1 − p̂0t )

Eγ [∆x̂t∆x̂t] = Eγ [(x̃
tx

t|t−1 − x̃rx
t|t−1)∆x̂t]

= −Eγ [x̃
rx
t|t−1∆x̂t] = p̂rxt|t−1 − p̂0t

where p̂0t = Eγ [(xt − xtx
t|t−1)

2] = E[(x̃
tx

t|t−1)
2]. Recalling

that Eγ [n
2
t ] = 1

ΛEγ [(x̂
tx
t|t − xtx

t|t−1)
2] = 1

Λ (p
tx
t|t − p̂0t ), and

Eγ [x̃
tx
t|tx̃

rx
t|t−1] = ptxt|t, then it follows that the receiver con-

ditional variance is given by:

p̂rxt+1|t=(a−γtakt)
2p̂rxt|t−1+σ2

w+

+a2γ2
t k

2
t

(
p̂rxt|t−1−(p̂0t− ptxt|t) +

p̂0
t−ptx

t|t

Λ

)
+

+2a2γtkt(1− γtkt)
(
p̂rxt|t−1 − (p̂0t− ptxt|t)

)
(25)

The optimal gain kt which minimizes the right had side is

found by taking the derivative w.r.t. kt

∂p̂rx
t+1|t

∂kt
=−2γta2(1−γtkt)p̂

rx
t|t−1+

+2a2γ2
t kt

(
p̂rxt|t−1−(p̂0t− ptxt|t)+

(p̂0
t−ptx

t|t)

Λ

)
+

+2a2γt(1− 2kt)(p̂
rx
t|t−1 − (p̂0t− ptxt|t))

which, equated to zero has the unique solution

kt =
Λ

Λ+ 1
. (26)

Inserting kt back into (25) we obtain:

p̂rxt+1|t = a2p̂rxt|t−1 + σ2
w − γta

2(p̂0t − ptxt|t)
Λ

1 + Λ

Taking now expectation w.r.t the loss sequence γt it follows

that the expected error covariance prxt+1|t = E

[
(x̃rx

t+1|t)
2
]

is

given by

prxt+1|t = a2prxt|t−1+σ2
w−(1−ǫ)a2(p0t−ptxt|t)

Λ

1+Λ
(27)

where p0t := E
[
p̂0t
]
.

It is interesting to observe that the gain kt in (26) is time

invariant and does not depend on the packet loss probability.

In fact kt is also the Kalman optimal gain for ǫ = 0. Finally,

recall that p0t is the prediction error covariance with no packet

loss, which is given by Eqn. (16) by setting ǫ = 0; then

lim
t→∞

p0t =: p0∞ =
σ2
w + a2 Λ

1+Λp
tx
∞

1− a2

1+Λ

= pCF (0)

Note also that the limiting value ptx∞ of ptxt|t is given in equation

(7). Thus it follows that the steady state prediction error

covariance is given by:

pIF (ǫ) = limt→∞ prxt+1|t

=
σ2
w

1−a2 − a2(1−ǫ)
1−a2+Λ

(
σ2
w

1−a2 − ptx∞

)

= (1− ǫ)pCF (0) + ǫ pOL

(28)

which, remarkably, is a simple linear function of the packet

loss probability ǫ.

C. Performance comparison

We now want to compare the performance of the two strate-

gies in terms of the steady state prediction error covariance,

which are given by Eqn. (23) for the state forwarding and

by Eqn. (28) for the innovation forwarding, as a function of

the systems parameters a,Λ, ǫ, σ2
w, σ

2
v . In particular, we are

interested in finding the set Φ := {(a,Λ, ǫ) | pSF (ǫ) ≤ pIF },

i.e. the set of parameters where the SF strategy has a better

performance than the IF strategy.

Theorem 2: Consider the set Φ := {(a,Λ, ǫ) | pSF (ǫ) ≤
pIF (ǫ)}. Then for Λ > 0, 0 < |a| < 1, and ǫ < 1 we have:

Φ := {(a,Λ, ǫ) | ǫ > ǫc(a,Λ)}
where 0 ≤ ǫc < 1 which is the smallest solution of a quadratic

equation of the form

ǫ2 + β1(σv,Λ, a)ǫ+ β2(σv,Λ, a) = 0

and is monotonically decreasing in Λ and |a|, and

lim
Λ→+∞

ǫc(Λ, a) = lim
|a|→1−

ǫc(Λ, a) = 0

The critical probability ǫc takes the form

ǫc(Λ, a) =
(1−a2)(Λ+2)

2a2Λ

(√
1+

4a2Λ

(Λ + 2)2(1−a2)
−1

)
(29)

Proof: See Appendix A.

The previous theorem implies that the IF strategy performs

better then the SF strategy only for small packet loss prob-

abilities, and more specifically for ǫ < ǫc. Remarkably, the

critical probability is independent of the noise process and

measurement variances σ2
w, σ

2
v . Moreover, the critical proba-

bility decreases to zero as the system dynamics becomes less

stable, i.e. |a| increases, and as the quantization becomes finer,
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i.e. Λ increases. In particular, the previous theorem shows that

it is always better to use the SF strategy, independently of the

systems parameters, if the packet loss probability is greater

than one half, i.e. under a high packet loss probability regime.
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Fig. 4. Critical probability ǫc as a function of |a| for different values of the
SQNR Λ.

Figure 4 pictures the critical probability ǫc as a function of

|a| for different values of the SQNR Λ, which shows that such

probability is almost equal to Λ
Λ+1 up to |a| ≈ 0.8 and then

rapidly decays to zero.

V. SOFT INNOVATION FORWARDING WITH NO CHANNEL

FEEDBACK

In this section, we propose an alternative strategy under the

no channel feedback scenario, that includes the IF strategy and

the SF strategy as special cases. More precisely, we propose a

hybrid strategy, where the transmitter sends a convex combi-

nation of its best estimate of the state x̂tx
t|t = E[xt | T NCF

t ] and

the innovation between its best estimate and the best estimate

of the state given the past quantized transmitted signals, i.e.

∆x̂t = x̂tx
t|t − xtx

t|t−1 where xtx
t|t−1 = E[xt | sqt−1, . . . , s

q
0] . We

call this scheme the soft innovation forwarding (SIF) scheme.

In this case, the transmitted signal is thus given by

st = νx̂tx
t|t + (1− ν)∆x̂t = x̂tx

t|t − (1− ν)xtx
t|t−1 (30)

where 0 ≤ ν ≤ 1 is fixed at the transmitter. This scheme is

graphically illustrated in Fig. 3.

A. Transmitter filter design: g(T NCF
t )

In this section, we explicitly compute the transmitter filter

function g(T NCF
t ) based on the SIF strategy. Basically, it re-

duces to the problem of computing the equation for the internal

estimator xtx
t|t−1. Since the dynamical systems is linear with

additive gaussian noise, then the optimal MMSE estimator is

linear in the quantized transmitted signals s
q
t and it is given by

the Kalman Filter. However, the equations are somewhat non-

standard since the variance of the quantization noise nt is not

constant but depends on the variance of the transmitted signal.

We start by defining the internal estimator error covariance

as pt|h = E[(x̃
tx

t|h)
2], where x̃

tx

t|h = xt − xtx
t|h. Based on this

definition, we can compute the power of the transmitted signal

st as follows:

E[s2t ] = E[(νx̂tx
t|t + (1− ν)∆x̂t)

2] =
(
ν2E[(x̂tx

t|t)
2] +

+(1− ν)2E[∆x̂2
t ] + 2ν(1− ν)E[x̂tx

t|t∆x̂t]
)

= ν2
(
pOL − ptxt|t

)
+ (1− ν)2(p̄t|t−1 − ptxt|t) +

+2ν(1− ν)E[(xtx
t|t−1 +∆x̂t)∆x̂t]

= ν2
(
pOL − ptxt|t

)
+ (1− ν)2(pt|t−1 − ptxt|t) +

+2ν(1− ν)(pt|t−1 − ptxt|t)

= ν2(pOL − pt|t−1) + (pt|t−1 − ptxt|t)

Here we used the fact that xt−xtx
t|t−1 = (xt−x̂tx

t|t)+∆x̂t where

(xt − x̂tx
t|t) and ∆x̂t are uncorrelated and that xt is assumed

to be in its steady state distribution. The equations of the filter

are given by:

xtx
t+1|t = axtx

t|t−1 + ktxt (sqt − ŝ
q

t|t−1)

ŝ
q

t|t−1 = E[sqt | sqt−1, . . . , s
q
0] = νxtx

t|t−1

ktxt = cov(xt, s
q
t − ŝ

q

t|t−1)V ar−1{sqt − ŝ
q

t|t−1}

=
a(pt|t−1 − ptxt|t)

pt|t−1 − ptx
t|t + E[n2

t ]

where

E[n2
t ] =

1

Λ
E[s2t ] =

1

Λ
[ν2(pOL − pt|t−1) + (pt|t−1 − ptxt|t)]

For large t such filter will reach a steady state and, therefore,

it is possible to consider its steady state implementation which

will reach the same steady state performance. The steady state

filter is given by:

xtx
t+1|t = (a− νk)xtx

t|t−1 + ks
q
t

k =
a(p− ptx∞)

(1 + 1
Λ )(p− ptx∞) + ν2

Λ (pOL − p)
, p > 0 (31)

p = a2p+σ2
w−

a2(p− ptx∞)2

(1+ 1
Λ )(p− ptx∞) + ν2

Λ (pOL − p)
(32)

where the last equation is a Riccati-like equation which has a

unique stabilizing positive solution p.

B. Receiver filter design: h(Rt)

In this section we explicitly compute the optimal state

estimator at the receiver, i.e. x̂rx
t+1|t = E[xt+1 |Rt]. We assume

that the transmitter filter architecture, and in particular the value

of ν, is known at the receiver, therefore it is possible to write

the received message zt := γts
q
t = γt(x̂

tx
t|t−(1−ν)xtx

t|t−1+nt)
as the output of the following dynamical system:


xt+1

x̂tx
t+1|t+1

xtx
t+1|t




︸ ︷︷ ︸
ξt+1

=



a 0 0

ak̂ a(1− k̂) 0

0 k a− k̄




︸ ︷︷ ︸
A




xt

x̂tx
t|t

xtx
t|t−1




︸ ︷︷ ︸
ξt

+

+




wt

k̂(wt + vt+1)

knt




︸ ︷︷ ︸
ηt

(33)

zt = γt
[
0 1 −(1−ν)

]
︸ ︷︷ ︸

C




xt

x̂tx
t|t

xtx
t|t−1


+γtnt (34)
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where k̂ is the steady state Kalman filtering gain for the

transmitter state estimator x̂tx
t|t defined in Eqn. (8).

As a consequence the estimator x̂rx
t+1|t = E[xt+1 |Rt]

corresponds of the first component of the optimal estimator

ξ̂t+1|t = E[ξt+1 |Rt] which turns out to be the optimal Kalman

filter with intermittent observations studied in [12]. Such a filter

is time-varying since the Kalman gain depends on the packet

loss sequence, however, as discussed in Section IV-A, it can be

replaced with a constant gain filter with limited performance

degradation [24]. The (suboptimal) receiver filter design is then

given by:

ξt+1|t = (A− γtKC)ξt|t−1 + γtKzt (35)

xrx
t|t−1= h(Rt−1) =

[
1 0 0

]
︸ ︷︷ ︸

H

ξt|t−1 (36)

K = (APCT +S)(CPCT +R)−1 (37)

P =APAT+Q−(1−ǫ)K(CPCT +R)KT = Ψ(P ) (38)

R = lim
t→∞

E[n2
t ] =

1

Λ
[ν2(pOL − p) + (p− ptx∞)]

Q = lim
t→∞

E[ηtη
T
t ] =



σ2
w k̂σ2

w 0

k̂σ2
w k̂2(σ2

w + σ2
v) 0

0 0 k
2
R




S = lim
t→∞

E[ηtnt] =




0
0

kR




The steady state Kalman gain K can therefore be obtained by

finding the unique positive definite solution P > 0 that solves

the modified algebraic Riccati equation (38) and the steady

state prediction error has the following upper bound:

lim sup
t→∞

E[(xt − x̂rx
t|t−1)

2] ≤ pSIF = HPHT (39)

C. Optimal soft innovation forward strategy

The transmitter and receiver filter design proposed in the

previous two sections still leave a certain degree of freedom

for optimizing the performance pSIF = p11(ǫ) = pSIF (ν, ǫ),
where p11(ǫ) is the (1, 1)-th element of the receiver estimation

error covariance matrix P , and where we explicitly indicate

its dependence on the parameters ν, ǫ. If the packet loss

probability ǫ is known, then one might optimize for the mixing

coefficient ν.

More specifically we define:

ν∗(ǫ) := arg min
ν∈[0,1]

pSIF (ν, ǫ) (40)

pOSIF (ǫ) := pSIF (ν∗, ǫ) (41)

where pOSIF (ǫ) is the optimal soft innovation forward (OSIF)

strategy for a given packet loss probability ǫ. It is seen via

numerical computations that pSIF (ν, ǫ) has a unique minimum

in the interval ν ∈ (0, 1), It is also seen that this optimal value

of ν, ν∗(ǫ) computed by an exhaustive search, appears to be a

monotonically increasing function of ǫ, which implies that as

the packet loss probability increases, it is better to place more

weight on the state and less on the innovation. Moreover, it is

seen that the SF strategy is the optimal strategy when the packet

loss probability is very close to 1. Analytically proving these

results appears to be difficult in the general noisy measurement

case. However, we are able to prove some meaningful results in

the noise-free case when σ2
v = 0, that is the sensor has access

to full-state observation. In this case, the system description

presented in (34) reduces to a 2nd-order system (since in this

case x̂tx
t|t = xt). The corresponding descriptions for all the

relevant parameters can be found in [19], or also by substituting

σ2
v = 0, ptx∞ = 0 in the appropriate equations. With a slight

abuse of notation, we use the same notations for this special

case to maintain readability. In this special case, we can prove

the following two theorems in this noise-free situation at the

sensor. The first of these theorems states that for a fixed ǫ there

is ν ∈ (0, 1) that performs better than the SF strategy (ν = 1)

and the IF strategy (ν = 0).

Theorem 3: Under the assumption σ2
v = 0, for any arbitrary

ǫ ∈ (0, 1), then pSIF (ν, ǫ) is a decreasing function of ν at

ν = 0 and an increasing function of ν at ν = 1. This implies

that pSIF (ν, ǫ) has at least one minimum at some 0 < ν∗ < 1.

Proof: See Appendix B.

Remark 2: It is possible to check numerically via suitable

examples that pSIF (ν, ǫ) may not be a convex function of ν

for a fixed ǫ. Therefore we do not, at this stage, attempt to

prove that pSIF (ν, ǫ) has a unique minimum with respect to

ν ∈ (0, 1). Instead, the above theorem simply states that there

is at least one minimum for pSIF (ν, ǫ) at some 0 < ν∗ < 1.

This is not to say that the minimum is not unique (in fact the

extensive numerical results indeed suggest uniqueness), but a

proof of uniqueness has proved to be elusive so far.

The second theorem states that as the packet loss probability

approaches one, then the optimal ν∗ approaches one as well,

i.e. the SF strategy becomes optimal for large packet loss

probabilities, as stated in the following theorem:

Theorem 4: Under the assumption σ2
v = 0, the optimal

mixing parameter ν∗(ǫ) has the following properties:

ν∗(0) = 0, lim
ǫ→1−

ν∗(ǫ) = 1

Proof: See Appendix C.

VI. NUMERICAL RESULTS

We first illustrate the accuracy of our additive white noise

model for the quantization noise. We use a uniform quantizer

to quantize st given by (30) with a suitable number of

quantization levels and saturation thresholds so as to guarantee

a SNR equal to Λ. The quantization step ∆Q is chosen so

that the equivalent additive noise variance is σ2
n =

∆2
Q

12 , where

σ2
n = V ar{st}

Λ . These latter two expressions combined yield

∆Q =
√

12V ar{st}
Λ . By setting the saturation thresholds ±TQ

according to TQ = 4
√
V ar{st}, the number of quantization

levels is given by N =
⌈
2TQ

∆Q

⌉
=

⌈
8
√

V ar{st}√
12V ar{st}

Λ

⌉
=
⌈
4
√

Λ
3

⌉
,

which corresponds to Nb =
⌈
log2

(⌈
4
√

Λ
3

⌉)⌉
bits/sample.

We consider now Nb = 3 which corresponds to Λ = 12. We

use a = 0.95 and the set the packet loss probability equal to

ǫ = 0.3. The sample estimation error variance (at the receiver

using the soft innovation strategy) and the theoretical variance

using the additive white Gaussian noise (AWGN) model are

depicted in Figure 5. It can be seen easily that the AWGN
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Fig. 5. Sample estimation error variance with uniform quantizer vs. theoretical
error variance with AWGN model (3 bits/sample)

model provides a highly accurate approximation, in fact a very

good one for Nb ≥ 2.

For the rest of the numerical results we use the parameter

values a = 0.95, Λ = 3 (2 bits per sample), σ2
w = 0.1, σ2

v =
0.05. Figure 6 depicts the estimation error performance (nor-

malized by the maximum value pOL at ǫ = 1) of the

filters derived so far and the critical probability ǫc defined in

Eqn. (29). As expected, the performance degrades as the packet

loss probability increases for all estimators, but the estimator

with channel feedback outperforms all estimators with no

channel feedback. The figure also shows that by optimizing

ν, the OSIF performs considerably better than the SF and IF

strategies, which are just two special cases in the class of the

SIF strategies.
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Fig. 6. Prediction error covariance of proposed strategies against packet loss
probability ǫ for a = 0.95,Λ = 3, σ2

w
= 0.1, σ2

v
= 0.05.

In Figure 7 below, we plot the optimal mixing coefficient

ν = ν∗ which has been obtained numerically via an exhaustive

search. The curve appears to be monotonically increasing from

zero to unity, thus confirming that as the packet loss increases,

the optimal soft innovation forwarding strategy transits from

the IF to the SF strategy.

VII. DISCUSSIONS AND FUTURE WORK

In this section we briefly indicate the limitations of the

current work and how these results can be generalized in

various directions.

Unstable Systems: Suppose one considers an unstable sys-

tem. Then it is not possible to consider an uncontrolled
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Fig. 7. Optimal mixing coefficient ν∗ as a function of the packet loss prob-
ability ǫ for the OSIF strategy for a = 0.95,Λ = 3, σ2

w
= 0.1, σ2

v
= 0.05.

unstable system at the transmitter since regardless of the

coder/decoder scheme employed, the power of the signal to

be transmitted will grow unbounded. If we were to consider

a controlled unstable system, where the control action is

determined by the receiver, then the very same model of the

system will be different from the one used in this manuscript

and it is not obvious how the results obtained here can be

extended. Recently some of the authors of this paper have

looked at the case of controlled unstable systems when no pre-

processing is done at the sensor [10], [11]. These two works

are complementary and future work will focus on combining

these ideas with the current work.

Higher-order and MIMO systems: As for the case of multi-

variable systems, the problem is even harder. Suppose in fact

that in the scenario with channel feedback we still want to

use the same idea of sending the innovation. Even if the

dynamical system has a vector state but a scalar output, as soon

as two consecutive packets are lost followed by a successful

transmission, the innovation that the transmitter has to send is

two-dimensional, i.e. two real valued numbers are required to

be transmitted across the same scalar channel for the receiver to

recover the current estimate when the packet is received. This

gives rise to the problem of properly modeling the quantization

error when the same number of bits per second are to be sent

across the channel, yet two real numbers are to be encoded.

Another alternative is to use lattice vector quantization with

the same additive white noise quantization model, as used

in [22]. This will require the use of a vector channel, and

perhaps the use of a vector parameter ν for the soft innovation

forwarding with no channel feedback case. Needless to say,

the corresponding analysis for the no feedback case will be

considerably more difficult if not intractable.

Imperfect feedback channels: In this paper we study the

cases of perfect packet acknowledgement feedback or no

feedback. A more practical scenario in between these two

extreme cases is where the transmitter receives packet ac-

knowledgement but over an imperfect channel, such that the

ACK/NACK packets can be also lost with a certain probability.

Note that this particular issue has been investigated in a slightly

different problem setting in [25]. In this paper, the problem of
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whether to send a state estimate or the innovation is formulated

as a Markov decision problem (MDP) where a long term

average estimation error (at the receiver) is minimized. In the

case of imperfect ACK/NACK, the problem becomes a par-

tially observed Markov decision problem (POMDP) problem

which can be solved using information state techniques that

convert the problem to a fully observed MDP problem. This is

computationally expensive but suboptimal solutions based on

an estimate of the receiver estimation error covariance at the

transmitter can be designed in the case of imperfect channel

feedback.

Delays: In this work we considered a scenario with a

channel delay smaller or equal to the time step. If the delay

is larger than unity, the strategies suggested in this work with

no channel feedback are still valid since the only difference

is that the estimator has to provide the open loop d-time

step ahead prediction to reconstruct x̂rx
t|t−d := E[xt|Rs] =

Eγ [xt|Zt−d] = adx̂rx
t−d|t−d. However, the results presented

in the channel feedback scenario cannot be directly extended

since the transmitter requires to know the packet loss sequence

with a delay smaller or equal to unity in order to make a perfect

copy of the receiver estimator. Therefore alternative strategies

are not obvious for d > 1.

VIII. CONCLUSIONS

In this work we studied the problem of remotely estimating

the state of a dynamical stable system based on noisy measure-

ments over a communication channel subject to packet loss and

quantization. We showed that with perfect channel feedback it

is possible to derive the optimal linear transmitter and receiver

filters to minimize the estimation error variance using a strategy

that it is reminiscent of DPCM. We also studied the scenario

with no channel feedback and we proposed a few heuristic

strategies for which we were able to characterize performance

and trade-offs.
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APPENDIX

A. Proof of Theorem 2

Without loss of generality we can set σ2
w = 1, since it simply

scales the error covariance and therefore it does not affect the

set Φ. Let us define ∆p(a,Λ, ǫ) = pSF (ǫ) − pIF (ǫ), where

we also make explicit the dependence of the performance

in terms of the parameters. It is straightforward to observe

that ∆p(a,Λ, 1) = 0 and ∆p(a,Λ, 0) > 0. Therefore, if we

can show that there exists a unique ǫc ∈ (0, 1) such that

∆p(a,Λ, ǫc) = 0, then this implies that pSF (ǫ) ≤ pIF (ǫ) for

ǫ ≥ ǫc. We now show that this is the case. If ∆p(a,Λ, ǫc) = 0,

then pSF (ǫ)(ǫc) = pIF (ǫc) = p∗. The points p that satisfy this

equality must also satisfy Eqn. (23) and Eqn. (28), therefore,

if we take the difference and recalling that a 6= 0 and ǫ 6= 1
we have:

(p∗ − ptx∞)2

(p∗ − ptx∞) + 1
Λ (p

OL − ptx∞)
=

Λ(1− a2)

1− a2 + Λ
(pOL − ptx∞)

From Eqn. (28) it follows that

p∗ − ptx∞ =

(
1− a2Λ(1− ǫ)

1− a2 + Λ

)
(pOL − ptx∞)

If we substitute this equation into the previous expression and

after some manipulations, which are valid for a 6= 0 and Λ 6= 0,

we get:

a2Λǫ2 + (1− a2)(Λ + 2)ǫ− (1− a2) = 0

from which it follows that the only positive feasible solution

for ǫc is given by Eqn. (29).

We can now study the dependence of ǫc in terms of the

parameters Λ and a. By rearranging the different terms, we

have

(a2ǫ+ 1− a2)ǫ+
1

Λ
(1− a2)(2ǫ− 1) = 0
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from which it follows via root-locus analysis that for fixed a,

ǫc(Λ, a) is a monotonically decreasing function of Λ where

lim
Λ→0+

ǫc(Λ, a) =
1

2
, lim

Λ→+∞
ǫc(Λ, a) = 0

Similarly, by defining η = a2

1−a2 which is a strictly monoton-

ically increasing function of a2 where η ∈ (0,+∞), and by

rearranging terms we get:

Λǫ2 +
1

η
((Λ + 2)ǫ− 1) = 0

from which it follows via root-locus analysis that, for fixed Λ,

ǫc(Λ, a) is a monotonically decreasing function of a2 where

lim
|a|→0+

ǫc(Λ, a) =
1

2 + Λ
, lim

|a|→1−
ǫc(Λ, a) = 0

From this analysis, it follows that

ǫc(Λ, a) <
1

2
, ∀|a| ∈ (0, 1),Λ ∈ (0,+∞)

which concludes the proof.

B. Proof of Theorem 3

In the noise-free case, where the state is fully observed at

the sensor, we have a two-dimensional state vector as discussed

before. In this case, the expression for the covariance matrix

P can be computed from three paired nonlinear equations as

shown below (42). Let us denote P =

[
p11(ǫ) p12(ǫ)
p12(ǫ) p22(ǫ)

]
,

where we have explicitly indicated that P is symmetric and

its elements depend on ǫ. Although we will be primarily

interested in the behaviour of p11(ǫ) = pSIF with respect

to ν, the properties of p12(ǫ), p22(ǫ) will also be useful. In

the case when ǫ = 0 (i.e, there is no packet loss), it is easy to

check that p11(0) satisfies the same equation as the steady-state

transmitter Kalman predictor error covariance given by p, and

is clearly minimum when ν = 0. Also, p12(0) = p22(0) = 0.

It can be shown after some algebraic manipulation that the

elements of P satisfy the following equations:

p11(ǫ) =
σ2
w

1−a2
− a2

1−a2
(1−ǫ)

M∞(ν)
(p11(ǫ)−(1−ν)p12(ǫ))

2

p12(ǫ) =
ak

1− a2 + ak
p11(ǫ)−

a(1− ǫ)

1− a2 + ak
(p11(ǫ)− (1− ν)p12(ǫ))

L∞(ν)

M∞(ν)

p22(ǫ) =
k
2

1−(a−k)2
p11(ǫ)+

2k(a−k)

1−(a−k)2
p12(ǫ)

+
k
2

1− (a− k)2
R− (1− ǫ)

1− (a− k)2
L2
∞(ν)

M∞(ν)
(42)

where

M∞(ν) = p11(ǫ)− 2p12(ǫ)(1− ν) + p22(ǫ)(1− ν)2 +R,

L∞(ν) = kp11(ǫ) +
(
a− k(2− ν)

)
p12(ǫ)−

−(a− k)(1− ν)p22(ǫ) + kR

Recall that p11(ǫ) = pSIF (ν, ǫ). Hence we will use p11(ǫ)
to indicate pSIF (ν, ǫ) in the following proof. The proof is

divided into two parts: (i) showing that
∂p11(ǫ)

∂ν |ν=1
> 0 and

(ii)
∂p11(ǫ)

∂ν |ν=0
< 0.

(i) For simplicity, we will drop the dependence on the

argument ǫ in this part, and make the observation that all values

of p11, p12 etc. are evaluated at ν = 1 in the expression of the

partial derivative
∂p11(ǫ)

∂ν |ν=1
. Recall also that pOL =

σ2
w

1−a2 .

Using the equation for p11 from (42), and taking partial

derivatives, we have (after some algebra):

∂p11(ǫ)

∂ν |ν=1

[
1+

a2(1−ǫ)p11

(1−a2)(p11+
pOL

Λ )

(
2− p11

(p11+
pOL

Λ )

)]

=
2a2

1−a2
(1− ǫ)

p11p
OL

Λ(p11+
pOL

Λ )2

[
p11(1−

p

pOL
)−p12

]

It is easy to check that the expression in the square brackets

on the left had side of the previous equation is positive. All

that remains to show therefore is that p12 < p11(1 − p
pOL ).

To this end, note that from the equation for p12 from (42),

it follows that (recall that all values are evaluated at ν = 1),

p12 < ak

1−a2+ak
p11. It can be shown that for all 0 ≤ ν < 1

(see Proof of Theorem 4 below)

ak

1− a(a− k)
=

a2P̄∞

P̄∞ + J(ν)(1− a2)
= (1− P̄∞),

where P̄∞ = p
pOL . Hence it follows that p12 < p11(1− P̄∞) =

p11(1− p
pOL ). This implies that

∂p11(ǫ)
∂ν |ν=1

> 0.

(ii) The proof of this part relies on using a state trans-

formation technique. Denote a new state vector

[
xa
t+1

xb
t+1

]
=

T

[
xt+1

x̂tx
t+1|t

]
, where T =

[
1 0
1 −(1− ν)

]
. It can be easily

checked that xa
t = xt and xb

t = st. Using this transformation,

we can write a new state space system as
[
xt+1

st+1

]
=Ā1

[
xt

st

]
+T

[
wt

knt

]
, zt=γtC̄1

[
xt

st

]
+γtnt (43)

where

Ā1 = TAT−1 =

[
a 0

νk (a− k)

]
C̄1 = C̄T−1 = [0 1] .

It is straightforward to show that for this transformed state

space system, one can derive a similar suboptimal constant

gain Kalman filter which has a steady state stabilizing solution

P̃ (ǫ) whose elements pij(ǫ), i = 1, 2, j = 1, 2 satisfy the

following equations:

p̃11(ǫ)=
σ2
w

1− a2
− a2(1− ǫ)

1− a2
p̃212(ǫ)

p̃22(ǫ) +R

p̃12(ǫ)=
1

1−a(a−k)

[
aνkp̃11(ǫ)+σ2

w−
(1− ǫ)ap̃12(ǫ)

p̃22(ǫ)+R
V̄ (ν)

]

p̃22(ǫ)=
1

1− (a− k)2

[
ν2k

2
p̃11(ǫ) + 2νk(a− k)p̃12(ǫ) + σ2

w

+(1− ν)2k
2
R− (1− ǫ)

F 2
∞(ν)

p̃22(ǫ) +R

]
(44)

where V̄ (ν) := νkp̃12(ǫ) + (a − k)p̃22(ǫ) − (1 − ν)kR for

notational simplicity.
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First, it is useful to observe a few facts regarding the steady

state stabilizing solution P̃ and its relationship with P . One

can easily verify that p̃11(ǫ) = p11(ǫ), p̃12(ǫ) = p11(ǫ)− (1−
ν)p12(ǫ) and p̃22(ǫ) = p11(ǫ)−2(1−ν)p12(ǫ)+(1−ν)2p22(ǫ).
Also, when ν = 0, the state space description (43) implies that

the receiver only receives the transmitter innovation sequence

in the presence of white Gaussian noise nt when a packet is

received. However, since the transmitter innovation sequence

is also a zero mean i.i.d. Gaussian sequence, whether a packet

is received or not, the minimum mean square estimate of the

state st is simply its mean, which is zero. Therefore, the corre-

sponding estimation error p̃22(ǫ)|ν=0 = p∞(0), where p∞(0)
is the variance of the transmitter innovation sequence when

ν = 0, which can be obtained from (32) by substituting ν = 0,

as
σ2
w

1− a2

Λ+1

. Indeed, this can be also verified by solving the

corresponding quadratic equation for p̃22(ǫ) after substituting

ν = 0. Similarly, it can be checked that p̃12(ǫ)|ν=0 = p∞(0)
as well.

In what follows, we will be dropping the dependence on

ǫ of the relevant quantities to keep things simple. Also, all

values of the relevant quantities are computed at ν = 0 unless

otherwise specifically indicated. Using the equations in (44),

one can show the following facts:

∂p̃11

∂ν

∣∣∣∣
ν=0

= −a2(1−ǫ)

1−a2
1

(1+ 1
Λ )

2

(
2(1+

1

Λ
)
∂p̃12

∂ν
− ∂p̃22

∂ν

)∣∣∣∣
ν=0

One can also easily show the following rather simple but useful

result which states that ∂p̃22

∂ν |ν=0
= 0 regardless of the value of

ǫ. Therefore, we only need to show that ∂p̃12

∂ν |ν=0
> 0 ∀ǫ > 0.

Note that at ǫ = 0, we have p̃11(0) = p11(0) = p∞(0) and

therefore ∂p11

∂ν |ν=0
= 0 and hence ∂p̃12

∂ν |ν=0
= 0 also at ǫ = 0.

Using the above facts, from (44), one can evaluate (after some

algebra) that for ǫ > 0,

[
1 +

a2(1− ǫ)Λ

(1− a2

Λ+1 )(Λ + 1)2

]
∂p̃12

∂ν |ν=0

=
a2ǫ p∞(0)

1 + 1
Λ

(45)

which is clearly positive for ǫ > 0. Hence we have ∂p̃11

∂ν |ν=0
<

0 for ǫ > 0. Therefore p̃11(ǫ) = p11(ǫ) = pSIF (ν, ǫ) is a

decreasing function of ν at ν = 0 for ǫ > 0.

C. Proof of Theorem 4

The proof of the first part of the theorem that ν∗(0) = 0
is obvious. In order to prove the second part, we first obtain

an O(δ) approximation of p11(1 − δ), where δ = 1 − ǫ ≈ 0
and then show that this approximation is minimized at ν∗ =
1. Using the expression for p11(ǫ) from (42), one can (after

some elementary analysis) show that an O(δ) approximation

for p11(1− δ) can be obtained as

p11(1− δ) ≈ σ2
w

1−a2
−δ

a2

1−a2
(p11(1)−(1−ν)p12(1))

2 ×

× 1

p11(1)−2p12(1)(1−ν)+p22(1)(1−ν)2+R
(46)

One can easily obtain the values of p11(ǫ), p12(ǫ) and p22(ǫ)

at ǫ = 1 or δ = 0 as p11(1) =
σ2
w

1−a2 = pOL, p12(1) =

pOL ak

1−a2+ak
and

p22(1)=pOL

[
k
2

1−(a−k)2
(1+J(ν))+

2k
2
a(a−k)

(1−(a−k)2)(1−a2+ak)

]

where J(ν) = R
pOL = 1

Λ (ν
2 + (1− ν2) p

pOL ).
Substituting these expressions into (46), one can then show

that the task of minimizing the O(δ) approximation of p11(ǫ)
is equivalent to maximizing a function Ū(ν) of ν given by

Ū(ν) = F 2(ν)
G(ν) , where F (ν) = 1− (1−ν)ak

(1−a2+ak)
and

G(ν) = 1− 2ak

(1−a2+ak)
(1−ν)+

(1−ν)2k
2

1−(a−k)2
(1+J(ν))+

+
(1− ν)22k

2
a(a− k)(

1− (a− k)2
) (

1− a2 + ak
) + J(ν)

Numerical examples seem to indicate that Ū(ν) is an increasing

function of ν for 0 ≤ ν < 1. However, it seems to be rather

tedious to prove this. We use a different technique by bounding

Ū(ν) from above and showing that this upper bound is an

increasing function for 0 ≤ ν < 1, and finally show that the

upper bound is tight at ν = 1. Note the expressions for F (ν)

and G(ν) and that Ū(ν) = F 2(ν)
G(ν) . By completing a square in

G(ν), it can be easily shown that Ū(ν) ≤ 1

1+
R̄(ν)

F2(ν)

, where

R̄(ν)=
(1−a2)(1−ν)2k

2

(
1−(a−k)2

) (
1−a(a−k)

)+
(
1+

(1−ν)2k
2

1−(a−k)2

)
J(ν)

Denoting P̄∞ = p
pOL and noting that p < pOL =

σ2
w

(1−a2) for

0 ≤ ν < 1 for all 0 ≤ ǫ < 1, we have P̄∞ < 1. After a little

algebra, it can be also shown that P̄∞ satisfies P̄∞+J(ν)(1−
a2) = a2P̄∞

(1−P̄∞)
. Finally, using k = aP̄∞

P̄∞+J(ν)
, one can derive

that

ak

1− a(a− k)
=

a2P̄∞

P̄∞ + J(ν)(1− a2)
= (1− P̄∞).

Substituting the above equality in the expression for R̄(ν),

one can immediately derive that
R(ν)
F 2(ν) ≥ J(ν)

F 2(ν) and

Ū(ν) ≤ 1

1+
J(ν)

F2(ν)

. We will now show that this upper bound

is an increasing function of ν by showing that
J(ν)
F 2(ν) is a

decreasing function of ν. Here we will omit the details, but will

provide the key ingredients. We will need to use the fact that
dP̄∞

dν

[
2P̄∞(1 + 1−ν2

Λ (1− a2)) + (1− a2)
(

2ν2

Λ − (1 + 1
Λ

)]
=

2ν
Λ (1 − a2)(1 − P̄∞)2. Using this one can show that

J(ν)
F 2(ν)

is a decreasing function of ν by dividing the range of P̄∞

into two intervals: 0 < P̄∞ < ν
1+ν

and ν
1+ν

≤ P̄∞ < 1 and

proving the derivative of
J(ν)
F 2(ν) with respect to ν is negative

separately for both intervals.

The next step is to verify that S(1) = 1

1+
J(1)

F2(1)

= 1
1+ 1

Λ

, that

is the bound is tight for ν = 1. Therefore we have Ū(ν) ≤
1

1+
J(ν)

F2(ν)

≤ 1
1+ 1

Λ

= Ū(1) for 0 ≤ ν ≤ 1. This implies that an

O(1 − ǫ) approximation of p11(ǫ) = pSIF (ν, ǫ) is minimized

at ν∗ = 1 when ǫ → 1 from below. Since pSIF (ν, ǫ) is a

continuous function of ǫ, we can say that for ǫ sufficiently

close to but less than 1, pSIF (ν, ǫ) is minimized at ν∗ = 1.

Hence the proof of Theorem 4 follows.


