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Abstract

Heart rate is an important indicator of people’s physio-

logical state. Recently, several papers reported methods to

measure heart rate remotely from face videos. Those meth-

ods work well on stationary subjects under well controlled

conditions, but their performance significantly degrades if

the videos are recorded under more challenging conditions,

specifically when subjects’ motions and illumination varia-

tions are involved. We propose a framework which utilizes

face tracking and Normalized Least Mean Square adap-

tive filtering methods to counter their influences. We test

our framework on a large difficult and public database

MAHNOB-HCI and demonstrate that our method substan-

tially outperforms all previous methods. We also use our

method for long term heart rate monitoring in a game eval-

uation scenario and achieve promising results.

1. Introduction

Heart rate (HR) is an important indicator of people’s

physiological state. Traditional HR measurement methods

rely on special electronic or optical sensors, and most of the

instruments require skin-contact which makes them incon-

venient and uncomfortable. On the other side, commercial

cameras can be found everywhere nowadays such as web-

cams, surveillance cameras, and cellphone cameras. The

technique of remote HR monitoring using ordinary cameras

would have many potential applications. It has been re-

ported that skin color change caused by cardiac pulse can be

captured by ordinary cameras for HR measurement [12, 20],

but it is still a challenging task since the change caused by

the cardiac pulse is very small compared to other numerous

factors that can also cause fluctuation of the gray value of

local skin. Among all these factors, illumination variations

and subjects’ motions are two important ones. In this paper,

we propose a novel HR measurement framework, which can

reduce the noises caused by illumination variations and sub-

jects’ motions. Our results show that the framework can

achieve promising results under realistic human computer

interaction (HCI) situations.

HR measurement research is a conventional topic in the

field of biomedical study, but it is seldom concerned in the

Figure 1. Proposed framework for HR measurement from facial

videos in realistic HCI situations.

video (of visible light) processing domain. The latter is

known to be good at recognizing and analyzing explicit

characteristics like shapes, textures or movements; while

implicit bio-signals like the HR are considered ‘out of the

range’ without the help of special optical equipment. In this

paper we demonstrate that computer vision methods can

help to solve the problem of remote HR measurement.

Remote HR monitoring has many potential applications.

With the ability to ‘see’ inner changes like the heartbeat,

video processing research can be broadened in many ways.

For example: 1) For remote health care: web-cam can be

used for real-time remote medical examinations and sup-

port long-term HR monitoring. 2) For affective computing:

the focus of the past study is mainly about facial expres-

sions and speech, which are only the out tip of the emo-

tion iceberg; physiological states like the change of HR is

inextricably linked with people’s emotions, thus should be

also integrated to build a comprehensive emotion recogni-

tion system. 3) For human behavior analysis: aside from the

analysis of explicit behaviors like poses and gestures, in-

ner physiological changes provide additional knowledge for

better understanding of people’s behavior. 4) For biomet-

rics: the heartbeat could also work as an indicator of vital

sign for the anti-spoofing system.

Recently, some investigations [2, 10, 12, 13] have shown

that HR can be measured from face videos under well con-

trolled laboratory conditions. But in realistic situations the
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task is more difficult because many factors could contami-

nate the pulse signal measured from face area. For exam-

ple, in a HCI scenario of video watching or game play-

ing, both environmental illumination variations and sub-

jects’ motions can be expected to affect the gray value of

the face region. Illumination variations include all forms of

noise caused by the change of environment, like the blink

of indoor lights, the flash of reflected light from a computer

screen and the inner noise of the digital camera. Subject’s

motion include both rigid movements like head tilt and non-

rigid movements like eye blinking and smiling. To our best

knowledge, no method has been demonstrated to be able to

measure HR successfully under such realistic conditions.

We propose a framework (Figure 1) to reduce the im-

pact of afore-mentioned interferences for remote HR mea-

surement. We use face tracking to solve the problem of rigid

head movements; and use the green value of background as

a reference to reduce the interference of illumination varia-

tions; then segment and shear the signal to reduce the noise

caused by sudden non-rigid movements. We demonstrate

that our method can significantly reduce the impact of afore-

mentioned interferences and increase the accuracy of HR

measurement under realistic HCI situations.

2. Related works

Remote non-intrusive HR measurement is an attractive

topic for both commercial and academic purposes. Many

past works that attempt for remote heart rate monitoring in-

clude the use of photoplethysmography (PPG) [5, 9]. The

blood volume of micro-vascular all over the body changes

together with cardiac pulse, so the blood volume pulse

(BVP) measured at peripheral body tissues (like palm or

fingertip) is usually used as an indicator of cardiac cycle

measurement. The principle of PPG method is to illuminate

the skin with a light-emitting diode (LED) and then mea-

sure the amount of light reflected or transmitted to a photo-

diode. Since the amount of light absorption is a function of

the blood volume, PPG can measure the local blood volume

pulse. Although it is possible to use PPG based settings to

measure HR without any contact, this method still requires

special lighting sources and sensors.

In the past few years several papers proposed color-based

methods for remote HR measurement using ordinary com-

mercial cameras [10, 12, 13]. Poh et al. [12] explored

the possibility to measure HR from face videos recorded

by a web-cam. They detected the region of interest (ROI,

i.e. the face area) using Viola-Jones face detector and com-

puted the mean pixel values of the ROI of each frame from

three color channels. Then Independent Component Analy-

sis (ICA) was applied to separate the PPG signal from the

three color traces, and the PPG signal was transferred into

frequency domain to find the frequency with the max power

within the range of [0.7, 4] Hz as the HR frequency. Ac-

cording to previous findings [20], the green channel trace

contains the strongest plethysmographic signal among the

three color channels. Poh’s results showed that comparing

to the raw green trace, ICA separated sources can achieve

higher accuracy for measuring HR.

The results in [12] were challenged by Kwon et al. [10].

Kwon et al. recorded face videos with the built-in cam-

era of a smart-phone, and extracted HR using both the raw

green trace and the ICA separated sources. They found that

ICA slightly dropped the performance which is contrary to

Poh’s result. Later Poh et al. [13] improved their method

by adding several temporal filters both before and after ap-

plying ICA. The improved method achieved very high ac-

curacy for measuring HR on their self-collected data.

A motion-based method was proposed by Balakrishnan

et al. recently [2]. Balakrishnan et al. tracked subtle head

oscillations caused by cardiovascular circulation, and used

PCA to extract the pulse signal from the trajectories of mul-

tiple tracked feature points. The method achieved promis-

ing performance on their self-collected videos. Since the

method relies on motion tracking, subjects must avoid vol-

untary movement in their experiment. Balakrishnan et al.

indicated that measuring HR on moving subjects would be

a valuable future direction.

All these mentioned methods [2, 10, 12, 13] have the

following limitations while considering the adaptability and

robustness in general application scenarios:

1) In their testing data, neither illumination variations

nor subjects’ motions were involved since no task was as-

signed and subjects were asked to keep still during video

recording. Controlled settings lead to simple and almost

noiseless data, so all the reported results achieved high

accuracy (error rate less than 3%). But in realistic HCI

scenarios such as people watching movies from a screen,

the reflected light from the screen can change dramatically

from time to time; rigid head movements and non-rigid mo-

tions like facial expressions are also inevitable. It was not

known how these methods would perform on challenging

data when illumination variations and subjects’ motions are

both involved.

Poh et al. [12] did report an experimental result of HR

measurement during motion, but in their experiment mo-

tion only meant performed slow and uniform head swings,

which is different from spontaneous movements.

2) None of their data [2, 10, 12, 13] is publicly avail-

able, and new methods have to come out with new datasets.

Repetitive data collection is a waste of time and most im-

portantly the cross-database difference makes it difficult to

make fair comparisons of different methods.

In this paper, we propose a new framework for remote

HR measurement which can work under challenging real-

istic HCI situations, and we evaluate it on a multi-modal

database MAHNOB-HCI [17]. MAHNOB-HCI is selected

for three reasons: 1) it includes large samples of facial
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videos and corresponding ground truth HR signals recorded

by Electrocardiography (ECG); 2) the videos were recorded

in realistic HCI scenarios that both illumination varia-

tions and subjects’ motions were involved; 3) it is a pub-

lic database that can be easily accessed by all researchers

which makes fair comparison possible.

We describe our framework in Section 3, and then report

the results of three experiments in Section 4. In Experiment

1, we compare our method with others on a simple self-

collected database; in Experiment 2 we compare them again

on MAHNOB-HCI database to demonstrate the robustness

of our framework under realistic situations; in Experiment

3 we show that our method can be used in applications like

long-term HR monitoring in game evaluation scenario.

3. Framework

Our framework is composed of four steps as shown in

Figure 1. In the first step, we need to get the ROI which

includes the raw pulse signal from the face video, and deal

with the problem of rigid head movement. We use Discrim-

inative Response Map Fitting (DRMF) method [1] to de-

tect facial landmarks and generate a mask of ROI in the

first frame, and then employ Kanade-Lucas-Tomasi (KLT)

algorithm [19] to track the location of the ROI. The aver-

age green value of the ROI in each frame is computed as

the raw pulse signal. The purpose of the second step is to

reduce interferences caused by illumination variations. We

segment the background region using the Distance Regular-

ized Level Set Evolution (DRLSE) method [11], and use its

average green value as a reference to model the illumina-

tion variations at the ROI. Normalized Least Mean Squares

(NLMS) filter [16] is employed to find the optimized coef-

ficient of the model. The aim of the third step is to reduce

interferences caused by sudden non-rigid motions. We di-

vide the pulse signal into segments and discard segments

contaminated by sudden non-rigid movements. In the fourth

step, several temporal filters are applied for excluding pow-

ers of frequencies that are out of HR range, and Welch’s

power spectral density estimation method [22] is employed

to estimate the HR frequency. Details of each step are ex-

plained in the following subsections.

3.1. ROI Detection and Tracking

Previous HR measurement methods use the Viola-Jones

face detector [21] of OpenCV [4] to detect faces. It only

finds coarse face locations as rectangles, which is not pre-

cise enough for HR measurement task since non-face pixels

at corners of rectangles are always included. The case be-

comes even worse when the face rotates. To this end, we

first apply Viola-Jones face detector to detect the face rect-

angle on the first frame of the input video, then use Dis-

criminative Response Map Fitting (DRMF) method [1] to

find the coordinates of 66 facial landmarks inside the face

rectangle. DRMF is a discriminative regression based ap-

proach for the Constrained Local Models (CLMs) frame-

work, which can find precise facial landmarks in generic

face fitting scenario. We use l = 9 points out of 66 land-

marks to define our region of interest (ROI), and generate a

mask of the ROI as the blue region showed in Figure 2.

Figure 2. ROI detection and tracking. The yellow line shows

the face rectangle, inside which feature points are detected and

tracked. The red points indicate 66 landmarks and the light-blue

region is the defined ROI.

Two rules are followed for defining the ROI: the first one

is to exclude the eye region since blinking may interfere

with the estimated HR frequency; the second one is to in-

dent the ROI boundary from the face boundary, otherwise

non-face pixels from background might be included during

the tracking process.

Then we use tracking to counter the problem of rigid

head movement. Poh et al. [12] proposed to use face detec-

tion on every frame for HR measurement on moving sub-

ject, but it is not precise enough as the detected rectangle

slightly moves even when the face does not move at all.

For our tracking process, feature points are detected inside

the face rectangle using the standard ‘good feature to track’

proposed by Shi et al. [15], and are tracked through the fol-

lowing frames using the Kanade-Lucas-Tomasi (KLT) al-

gorithm [19]. For the ith frame, we get the locations of the

tracked feature points P i as [p1(i), p2(i), . . . , pk(i)], where

k is the number of feature points; and the locations of the

ROI boundary points Qi as [q1(i), q2(i), . . . , ql(i)]. We can

estimate the 2D geometric transformation of the face be-

tween the current and the next frame as: P i+1 = AP i,

where A is the transformation matrix. We apply transforma-

tion A to the current ROI coordinates to get the coordinates

of the ROI in the next frame: Qi+1 = AQi.

The tracked ROI contains pixels of facial skin whose

color values change with the cardiac pulse. Previous work

found that although red, green and blue channels all con-

tains some level of plethysmographic signals, the green

channel contains the strongest one among all three [20].

This finding is consistent with the fact that green light is

better absorbed by (oxy-) hemoglobin than red light [14],

and penetrates deeper into the skin to probe the vasculature

as compared to blue light. In our preliminary test we also

found the green channel works the best, so we use the green
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value in our framework. The raw pulse signal is calculated

as the mean green value of pixels inside the ROI of each

frame gface = [g1, g2, . . . , gn], where n is the frame num-

ber.

3.2. Illumination Rectification

In Section 3.1, we tackle the interference caused by rigid

head movements. In this section we focus on how to reduce

the illumination interference. Let’s assume the face video is

recorded from a motionless subject, the mean green value

of ROI is a function of time. One example of gface is shown

in Figure 3 (the top curve). Two factors affect the values of

gface: the first one is the blood volume variations caused by

cardiac pulse; the second one is the (temporal) environmen-

tal illumination variations during the video recording. We

assume the variations of gface caused by these two factors

are additive:

gface = s+ y, (1)

where s denotes the green value variations caused by car-

diac pulse, and y denotes the green value variations caused

by illumination changes.

Our goal is to achieve the target signal s and eliminate

noise signal y. The problem is that y can not be measured

directly. However, in an ordinary HCI environment (e.g.

subject watches movies from a screen) the lighting sources

for the ROI and other objects in the scene are the same,

which are mainly composed of indoor lights and the com-

puter screen. In our framework we use the background re-

gion as a reference, and denote the background mean green

values of each frame as gbg = [g′1, g′

2, . . . , g′
n
] (Figure

3, middle curve). According to the idea of [3], we assume

both the face ROI and the background are Lambertian mod-

els and share the same light sources. We can use a linear

function to estimate the correlation of y and gbg:

y ≈ hgbg. (2)

Instead of eliminating y directly from gface, we can utilize

(2) and define the illumination rectified pulse signal as

gIR = gface − hgbg, (3)

which according to (1) becomes

gIR = s+ (y − hgbg). (4)

Now our goal is to find the optimal h to minimize the error,

which is the part of (y − hgbg) in (4).

The optimal h can be found iteratively by using Normal-

ized Least Mean Square (NLMS) adaptive filter [16], which

is a variant of the Least Mean Square (LMS) adaptive fil-

ter [8]. It is shown that the LMS filter can efficiently reduce

motion artifacts in PPG researches [5, 6].

Let’s assume at each time point j, h(j) is the currently

estimated filter weight. The LMS filter starts from an initial

h(0) and updates it after each step with a stepsize µ as

h(j + 1) = h(j) + µgIR(j)gbg(j), (5)

until h(j) converges to the optimum weight that minimize

(y − hgbg) (or the input signal reaches the end).

A problem with the LMS filter is that it is sensitive to the

scaling of input signals, which can be solved by normalizing

the power of the input signals [16]:

h(j + 1) = h(j) +
µgIR(j)gbg(j)

gH

bg(j)gbg(j)
, (6)

where gH

bg(j) is the Hermitian transpose of gbg(j), and the

normalizing quantity gH

bg(j)gbg(j) is the input energy.

We use the Distance Regularized Level Set Evolution

(DRLSE) method [11] to segment the background region

of the video, and achieve gbg by computing the background

mean green value of each frame. With gface and gbg as

known variables, we can use (6) to obtain the optimal h,

which can be put in equation (3) to obtain the illumination

rectified signal gIR. One example of gIR is shown in Fig-

ure 3 (bottom curve), in which the illumination variations

are reduced and the pulse becomes more visible. The values

of the optimal h vary for different input videos, since the

distances from the lighting source to the face and the back-

ground may vary and the reflectivity of subjects’ skin are

also different.

Figure 3. Use NLMS filter to reduce noise caused by illumination

variation. The green curve is a raw pulse signal of ROI, the black

curve is the corresponding mean green values of background; the

blue curve is the filtered signal, of which the noise caused by illu-

mination variations is reduced and the pulse becomes more visible.

3.3. Nonrigid Motion Elimination

One problem remaining unsolved is the non-rigid move-

ments inside the ROI. For example, facial expressions could

contaminate the pulse signal and the previous two processes

cannot remove it. Figure 4 (top curve) shows one signal

which presents the onset of a smiling. The face is neutral

in phase 1; and the subject starts to smile in phase 2 which

leads to quick and dramatic fluctuations of the signal; then

the face reaches to a comparatively stable state in phase 3.

If noisy segments like in phase 2 are not excluded, they will

end up as big sharp peaks after all the temporal filtering

process in the next step. When transfered to the frequency

domain, these big sharp peaks will significantly affect the

power spectral density (PSD) distribution as they contain
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the major part of the power of the whole signal, thus impede

the detection of true pulse frequency. It is the remaining part

of the signal with smoother changes that contributes to the

HR related power spectrum.

Figure 4. Motion elimination of a pulse signal contaminated by

sudden non-rigid motions. The top curve shows the contaminated

signal, where a smile was onset in phase 2; the middle bar chart

shows the standard deviation (SD) of each segment of the top curve

divided by vertical lines; the bottom curve shows the sheared (dis-

card three segments of phase 2) and re-concatenated signal.

Since we are measuring the average HR over a time span

(e.g. 30 seconds), such noisy segments can be excluded to

achieve more stable results. We divide the gIR into m seg-

ments of the same length gIR = [s1, s2, . . . , sm], each seg-

ment s is a signal of length n

m
. The standard deviation (SD)

of each segment (Figure 4, middle) is calculated, and 5%

(of all testing samples) of segments with the largest SD

are discarded. The remaining segments are re-concatenated

(Figure 4, bottom curve). The process aims for exclud-

ing the noisiest segments contaminated by sudden non-rigid

movements, so not all pulse signals need to be cut.

3.4. Temporal Filtering

In this step we apply several temporal filters to exclude

frequencies outside the range of interest. We set the fre-

quency range of interest to [0.7, 4] Hz to cover the normal

range of HR from 42 beat-per-minute (bpm) to 240 bpm.

Several temporal filters have been demonstrated to be help-

ful for HR measurement in previous research [13]. Here we

use three filters: the first one is a detrending filter based on

a smoothness priors approach [18], which is used for reduc-

ing slow and non-stationary trend of the signal. The second

one is a moving-average filter, which removes random noise

using temporal average of adjacent frames. The third one is

a Hamming window based finite impulse response bandpass

filter with cutoff frequency of [0.7, 4] Hz.

After filtering, the pulse signal is converted to the fre-

quency domain and its power spectral density (PSD) distri-

bution is estimated using Welch’s method [22]. The PSD

estimates the signal’s power distribution as a function of

frequency. We use the frequency with the maximal power

response as the HR frequency fHR (Figure 1 top-right), and

the average HR measured from the input video is computed

as HRvideo = 60fHR bpm.

4. Experiments

We evaluate our framework using three experiments. All

approaches are implemented using MATLAB of version

2013a under Windows 7 operating system.

4.1. Experiment 1: VideoHR Database

We re-implement previously proposed methods and test

them on a simple database ‘VideoHR’ collected by our-

selves, since none of the datasets used in the previously

published papers is public. The purpose of Experiment 1

is to demonstrate that we have correctly re-implemented the

methods. We refer VideoHR as a ‘simple database’, because

neither ambient illumination variations nor body movement

was involved during the video recording.

We use the built-in frontal iSight camera of an IPAD to

record videos in a lab with two fluorescent lamps as the il-

lumination sources. All videos are recorded in 24-bit RGB

color format at 30 frames per second (fps) with resolution

of 640 × 480 and saved in MOV format. A Polar S810 HR

monitor system [7] is used to record the ground truth HR.

Ten subjects (two females and eight males) aged from 24

to 38 years were enrolled. During the recording, subjects

were asked to sit still on a chair and try to avoid any move-

ment. The IPAD was fixed on a tripod at about 35 cm from

the subject’s face. Each subject was recorded for about 40

seconds, and 30 seconds (frame 301 to 1200) video of each

subject is used for the testing.

We re-implement four previous methods: three color-

based methods (Poh2010 [12], Kwon2012 [10], Poh2011

[13]) and one motion-based method (Balakrishnan2013

[2]). In Poh2011 and Balakrishnan2013, they also used cus-

tomized peak detection functions to find the location of

each heart beat for further HR variation analysis. We did

not replicate the peak detection process here since we only

aim to compare the accuracy of the methods on estimat-

ing the average HR. Fourier transformation is applied at the

last stage for each method to find the average pulse fre-

quency. The results of all methods on VideoHR database

are shown in Table 1. The measure error is computed as

HRerror = HRvideo−HRgt, where HRvideo denotes HR mea-

sured from video, and HRgt is the ground truth HR obtained

from Polar system.

Different kinds of statistics were used in previous papers

for evaluating the accuracies of HR measurement methods.

To comprehensively compare the methods in multiple as-

pects, we include all five kinds of statistics used in former

research works. The first one is the mean of HRerror denoted

as Me; the second one is the standard deviation of HRerror

denoted as SDe; the third one is the root mean squared error

denoted as RMSE; the fourth one is the mean of error-rate

percentage MeRate =
1

N

∑
N

v=1
|HRerror(v)|/HRgt(v), where
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N is the number of videos of the database, and the fifth

one is the linear correlation between HRvideo and HRgt ac-

cessed using Pearson’s correlation coefficients r and its p
value. Pearson’s r varies between -1 and 1, where r = 1
indicates total positive correlation and r = −1 indicates to-

tal negative correlation. The p value is the probability of the

statistical significance test about if the calculated r were in

fact zero (null hypothesis). Usually the result is accepted as

statistically significant when p < 0.01.

Method Me(SDe) RMSE MeRate r
(bpm) (bpm)

Poh2010 0.37(1.03) 1.05 1.07% 0.99*

Kwon2012 -0.16(1.59) 1.52 1.54% 0.98*

Poh2011 0.37(1.50) 1.47 1.65% 0.98*

Balakrishnan2013 -0.14(1.41) 1.35 1.51% 0.99*

Ours 0.72(1.10) 1.27 1.53% 0.99*

Table 1. Performance on VideoHR database. The marker * indi-

cates the correlation is statistically significant at p = 0.01 level.

From Table 1 we can see that all four methods per-

formed perfectly with MeRate lower than 2% and correla-

tion r larger than 0.98 on VideoHR database. It shows that

all these methods got almost perfect results on this dataset

as these methods performed over their own datasets. How-

ever, VideoHR dataset is prone to be ideal without illumina-

tion variations and subjects’ motions. In realistic situations,

these challenges always happen. To test the robustness of

these methods over these challenges, we carry out an exper-

iment over a difficult database in Experiment 2.

4.2. Experiment 2: MAHNOBHCI Database

In this experiment we test the four previous methods

again on MAHNOB-HCI database. We demonstrate that

our proposed method can reduce noises caused by illumi-

nation variations and subjects’ motions, and substantially

outperform previous methods. MAHNOB-HCI is referred

as a difficult database here since the videos were recorded

in realistic HCI scenarios, both illumination variations and

subjects’ movements were involved.

MAHNOB-HCI is a public multi-modal database

recorded by Soleymani et al. [17]. MAHNOB-HCI includes

data from two experiments: one is ‘emotion elicitation ex-

periment’ and the other is ‘implicit tagging experiment’. We

use the color videos recorded in their ‘emotion elicitation

experiment’ for our testing.

27 subjects (15 females and 12 males) were involved,

their ages varied from 19 to 40 years. 20 frontal face videos

were recorded for each subject with resolution of 780×580
pixels at 61 fps, while they were watching movie clips from

a computer screen. ECG signals were recorded using three

sensors attached on participants body, and we used the sec-

ond channel (EXG2) to obtain the HRgt. Altogether 527 (13

cases lost) intact video clips and their corresponding ECG

signals are used in our test. Original videos are of differ-

ent lengths. We exerted 30 seconds (frame 306 to 2135)

from each video and measured the average HR. More de-

tails about MAHNOB-HCI database are given in [17].

Method Me(SDe) RMSE MeRate r
(bpm) (bpm)

Poh2010 -8.95(24.3) 25.9 25.0% 0.08

Kwon2012 -7.96(23.8) 25.1 23.6% 0.09

Poh2011 2.04(13.5) 13.6 13.2% 0.36*

Balakrishnan2013 -14.4(15.2) 21.0 20.7% 0.11

Ours

Step 1+4 -3.53(8.62) 9.31 8.03% 0.69*

Step 1+2+4 -3.46(7.36) 8.13 7.02% 0.79*

All steps -3.30(6.88) 7.62 6.87% 0.81*

Table 2. Performance on MAHNOB-HCI database. The marker *

indicates the correlation is statistically significant at p = 0.01 level.

The results on MAHNOB-HCI are shown in Table 2. The

statistics of errors are computed in the same way as we did

in Experiment 1. Comparing to the results of Experiment

1, the performance of all four previous methods drops sig-

nificantly. Poh2011 method performs better than the other

three, because it employs several temporal filters (we adopt

these filters in step 4 of our framework) to purify the signal.

But a correlation of r(527) = 0.359 and a MeRate of 13.2%

indicate that Poh2011 method is not robust enough to make

reliable estimations about the true HRs.

We test our method on MAHNOB-HCI step-by-step and

the performance is shown in Table 2. Step 4 is always in-

cluded as it is a must for achieving the average fHR. For

the Step 1 of ROI detection and tracking, the face detector

made false detections on 14 of 527 cases. To avoid the false

alarms, we discard detected rectangles whose edge lengths

are less than 100 (the average face size in MAHNOB-HCI

is about 200 × 200). Then the DRFM method is applied to

detect face contours and eye positions according to the cor-

rect face rectangles. In some cases the detected landmarks

may not be precise, but generally they are good enough for

the purpose of defining ROI. The defined ROI covers an

area of about 20000 pixels. Compared to the performance

of Poh2011, the better selected ROI and tracking process

help to achieve a much lower MeRate of 8.03 % and increase

the correlation r from 0.36 to 0.69.

For the Step 2 of illumination rectification, we use

the background as the reference. Since the videos of

MAHNOB-HCI were recorded in a relatively dark environ-

ment, the illumination variations caused by the computer

screen can be captured by the background. By using NLMS

filter we further increased the correlation r to 0.79 and low-

ered the MeRate by 1.01%. The value of the stepsize µ can

affect the performance of NLMS filter, which was also no-
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ticed in previous papers [6]. The response curve of the cor-

relation coefficient r versus stepsize µ is shown in Figure

5 (a). When the stepsize is small, the input signal might

not be long enough for the filter to reach convergence. Here

the best r was achieved when µ is bigger than 0.003. The

weight of the NLMS filter was initialized as zero.

Figure 5. (a). Correlation coefficient r computed at different step-

sizes µ. The filter reaches convergence when µ is bigger than

0.003. (b). The cumulative distribution function of SDs of all sam-

ple segments from MAHNOB-HCI. Threshold of SD = 0.215 is

used for shearing the top 5% segments with the largest SD values.

For the Step 3 of non-rigid motion elimination, we divide

signals into segments of one second, and the cumulative dis-

tribution function (CDF) of SDs of all sample segments are

shown in Figure 5 (b). A cutoff threshold of SD = 0.215
is used for the shearing, and 228 out of 527 signals are

sheared. The improvement made by Step 4 is not as big as

two former steps since not all cases are affected.

Figure 6. The scatter plot comparing the HRvideo measured by our

method with the ground truth HRgt from ECG.

The HRvideo measured with all four steps of our frame-

work are plotted against the HRgt in Figure 6. It can be

seen from this figure that overall our predicted HR is well

correlated with the ground truth. On a wide range of HR

from 46 bpm to 103 bpm, good HR estimations are made

in most cases. There are some out-lier points falling far

from the correlation line which indicate poor estimations.

We check these poorly estimated cases and find that in some

of these videos head rotations of more than 60 degrees were

involved, which caused errors in the tracking of the face

ROI. For application scenarios like detecting the vital signs

of an emergency situation, HR measurement with error less

than 5 bpm is likely to be acceptable [12]. In order to check

how many cases were well estimated, we further compared

the distributions of HRerror of our method with Poh2011

method, which got the best performance among four pre-

vious methods. As shown in Figure 7, we estimate the HR

of 403 cases (76.5%) with errors less than 5 bpm, while for

Poh2011 method the number is only 296 (56.2%).

Figure 7. Comparing the distributions of HRerror of our method

with Poh2011 method.

4.3. Experiment 3: HR monitor for game evaluation

Without the restriction of motion and illumination

changes, our method can be applied for long-term HR mon-

itoring when subjects are performing some tasks. Here we

test it on one subject in a game playing scenario. In game re-

search, user tests are usually carried out for analyzing users’

experiences of game playing. Results of user tests will help

game developers in their future designing work.

We record the face video of one subject for 10 minutes

while the subject is playing a video game. The same setting

is used for data recording as in Experiment 1. The distance

between subject’s face and the camera is about 50 cm. The

average HR of every 10 seconds is computed from both the

face video and the ground truth, and the results of HRvideo

and HRgt are plotted in Figure 8. It can be seen that the

subject’s HR changes as the content of the game progresses,

which can be used for later analysis about the player’s expe-

rience. HRs measured by using our framework has a mean

error rate of 1.89%.

Figure 8. HR monitoring of one subject while playing a video

game. The black curve is the ground truth HR measured by Po-

lar system; the green curve is HR measured from video by using

our framework.
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5. Conclusions

Previous methods of remote HR measurement from or-

dinary face videos can achieve high accuracies under well

controlled situations, but their performance degrades when

environmental illumination variations and subjects’ mo-

tions are involved. Our proposed framework contains three

major processes to reduce these interferences: first, we em-

ploy DRMF to find the precise face ROI and use tracking to

address the problem caused by rigid head movement; sec-

ond, NLMS adaptive filter is employed to rectify the inter-

ferences of illumination variations; third, signal segments

with big SD values are discarded in order to reduce the noise

caused by sudden non-rigid movements. We have demon-

strated that all three processes help to improve the accuracy

of HR measurement under realistic HCI situations.

MAHNOB-HCI database is used for the testing since all

afore-mentioned interferences are involved in the videos.

For the ROI detection, we include the mouth region to cover

more skin pixels in the ROI since talking is seldom involved

in MAHNOB-HCI videos. But in conversation scenarios the

mouth region could be excluded to avoid motion noise. For

the step of illumination rectification, we use the background

as the reference, because the videos of MAHNOB-HCI are

dark and no other object is present in the scene. In scenarios

when the background is not suitable as the reference, other

static objects can be used as the reference; for example a

gray board can be placed aside the subject’s head.

Our proposed method substantially outperformed the

four previous methods and achieved an average error rate

of 6.87% on all 527 samples of MAHNOB-HCI. One factor

that impacts our results is head rotations of an large angle,

especially in the yaw direction. In such situations feature

points on half of the face are lost and the tracked ROI lo-

cation may be erroneous thus degrade the accuracy of HR

measurement. In the future work, the ROI tracking could be

improved to tolerate more extreme head movements.

In the current study averaged HR is estimated for one

input video as the first trial to make the system work un-

der realistic situations. HR monitoring during game playing

is shown as an example of applications of this system. In

future, more efforts will be devoted to detecting the peak of

each heartbeat, so that sophisticated analysis about the heart

rate variation (HRV) can be made which will help us to get

more information about the subject’s physiological status.
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