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Abstract

As high-speed networks make it easier to use distributed

common that applications and their data are not colocated.
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resources, it becomes increasingly

Users have traditionally addressed
this problem by manually staging data to and from remote computers. We argue iristead for a

new remote 1/0 paradigm in which programs use familiar parallel 1/0 interfaces to access remote

filesystems. In addition to simplifying remote execution, remote 1/0 can improve performance

relative to staging by overlapping computation and data transfer or by reducing communication

requirements. However, remote 1/0 also introduces new technical challenges in the areas of porta-

bility, performance, and integration with distributed computing systems. We propose techniques

designed to address these challenges and describe a remote 1/0 library called RIO that we have

developed to evahate the effectiveness of these techniques. RIO addressesissues of portability by

adopting the quasi-standard MPI-10 interface and by defining a RIO device and RIO server within

the ADIO abstract 1/0 device architecture. It addressesperformance issues by providing tradi-
tional 1/0 optirnizations such as asynchronous operations and through implementation techniques

such as buffering and message forwarding to oflload communication overheads. RIO uses the Nexus

communication library to obtain access to configuration and security mechanismsprovided by the

Globus wide area computing toolkit. Microbenchmarks and application experiments demonstrate
that our techniques achieve acceptable performance in most situations and can improve turnaround

time relative to staging.

1 Introduction

Improvements in networking and software infrastructure are making it easier for programmers to

execute programs at remote sites and to write programs that use resources at multiple locations.

One consequence of remote execution is that a program may be geographically separated from the

files that it accesses. This separation can significantly increise conceptual and temporal overheads

in program development and execution. Ideally, we would like to enable programs to access data

in a manner independent of data and program location. In our experience, the key challenges that

must be addressed before we can provide this capability are portability (across different networks and

filesystems), performance (in potentially high-latency, low-bandwidth, heterogeneous networks), and

integration into distributed computing environments.

Historically, the high-performance computing community has achieved remote data access by man-

ually staging input data from its home filesystem to the computer where a program is to execute; this

process is then reversed for output data. However, this approach is clumsy, prevents overlapping

of communication and computation, + can result in excessive data transfer in situations where a

program accesses only part of a file. Distributed filesystems [15] also support remote data access,

but performance and administrative problems often render them inappropriate for high-performance

computing.
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We propose a new approach to remote data access in which programs use remote 1/0 libmries

to access files located on remote filesystems in a manner that is independent of physical location.

In contrast to distributed filesystems, remote 1/0 libraries use parallel 1/0 interfaces and focus on

high-performance transfer. We believe that this narrow focus can allow remote 1/0 libraries to meet

requirements for performance, flexibilityy, and convenience without intreducing undue complexity in

their implementation.

As part of an investigation of the remote 1/0 concept, we have designed and implemented a remote

1/0 library called RIO. RIO achieves portability by adopting the 1/0 interface defined by MPI-10 [6]

and by exploiting features oft he ADIO abstract 1/0 device [21], providing a RIO device that translates

ADIO calls into communications to remote RIO servers. Performance issues are addressed by the use

of dedicated forwarder nodes, buffering, and support for asynchronous and collective operations. RIO

uses the Nexus communication library [10] for client/server communication, hence providing access to

configuration and security mechanisms provided by the Globus wide area computing toolkit.

We have performed experiments in a controlled multicomputer environment to evaluate the ef-

fectiveness of our techniques. Microbenchmarks demonstrate that RIO can drive networks at close

to their peak performance; these experiments also allow us to quantify the benefits of optimization

such as buffering. Application experiments illustrate the feasibilityy of remote 1/0 in a representative

application. In particular, we demonstrate enhanced performance relative to staging.

The principaJ contributions of this article are fourfold. SpecificaUy, we

*

●

●

●

intreduce the concept of remote 1/0, explain why it is important, and motivate its requirements;

discuss networking issues that make remote 1/0 challenging, and propose library facilities that

address these challenges;

present experimental results that demonstrate the efficacy of our design techniques, and indicate

where more -work is needed; and

show how to integrate a remote 1/0 library with mechanisms that support operation in a dis-

tributed environment.

2 The Remote 1/0 Problem

We first expand upon why remote 1/0 is important, discuss various networking issues that remote

1/0 libraries must address, and review other approaches to the remote 1/0 problem.

2.1 Motivation

Remote computational or data resources may be used because they provide a unique capability (e.g.,

a supercomputer or database) or simply because they are available (e.g., in a computational grid that

uses a load-sharing system such as Condor [14] or LSF to map tasks to idle resources). In either case,

filesystems may be geographically separated from computers. This need to access “remote” filesystems

arises frequently even within a single site, as it is rare that all dkks are crossmounted.

Programmers have traditionally resorted to staging techniques when a program and its data are

not colocated. However, there can be significant performance, flexibilityy, and convenience advantages

to having a uniform interface to local and nonlocal filesystems.
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Performance. Remote 1/0 can reduce total wall-clock time by allowing overlapping of data transfer

and computation. In a best-case situation, overlapping can reduce execution time by a factor of two.

For example, a climate model may require 8 hours to perform a 10-year simulation and produce 29 GB

of output data, which at 10 Mb/see takes 6.4 hours to transfer. If, on the other hand, computation

and communication can be overlapped, total turnaround time is reduced from 14.4 to 8 hours.

Flexibility. Remote 1/0 provides a higher-level specification of 1/0 operations than does staging

and hence permits greater flexibilityy in terms of how 1/0 is performed. For example, a program may

need to access just selected components of remote data sets. If the identity of those data elements is

computed during program execution, a staging approach often transfers more data than is necessary,

wasting both disk and network resources. In contrast, a remote 1/0 library can choose to stage

(i.e., prefetch) the entire dataset or transfer only required elements directly to memory, depending

on available resources. Hibbard et al. [11] prototype the latter strategy in the I-WAY networking

experiment, fetthing data from a remote IBM SP data server only when a user zoomed in on a

particular area within a virtual reality browser.

Convenience. Remote 1/0 allows programs to execute at remote sites without programmer manage-

ment of data transfer. In contrast, staging can require that the user learn details of remote filesystems,

transfer data among potentially complex directory hierarchies, translate data formats, and manage

multiple copies of their datasets. N’orman et al. [17] report that such issues were a major source of

complexity in their distributed simulations of galactic collisions. In a different area, conversations with

users reveal that some are uncomfortable leaving sensitive data in local file systems, but are happy

to transfer such data over networks to an application, perhaps over a secure network. Remote 1/0

makes this transfer possible without requiring that data be encrypted prior to writing it to files at a

remote site.

2.2 Wide-Area Computing Issues

Remote 1/0 libraries, like parallel 1/0 libraries, must orchestrate efficiently the transfer of data from a

user application running on multiple processors to a fllesystem. Remote 1/0 is complicated, however,

by several issues not encountered in typical parallel computing environments.

Performance Characteristics. A remote 1/0 library running over a continental network can see

a combined roundtrip communication and 1/0 latency of 100 msec. This is three to four orders of

magnitude more than the roundtrip communication time found in a typical parallel computer (tens or

hundreds of microseconds) and one order of magnitude more than the typical time for an 1/0 node to

perform a disk access on behalf of a compute node (-10 msec). In addition, the bandwidth offered by

the network over which a remote 1/0 library operates may be (but is not always) significantly lower

‘than the internal communication network of a parallel computer and/or the remote filesystem. The

connectivity of the remote 1/0 network is also often low (e.g., a single fiber). In contrast, parallel

computers typically offer many pat hs from processors to disks.

Heterogeneity y and Configuration. The computer, network, and storage systems used by a remote

1/0 system often include a heterogeneous mixture of hardware, software, and protocols. In such

environments, selecting optimal 1/0 strategies is more difficult than in the relatively homogeneous

environments in which parallel 1/O libraries typically operate. A related issue is that the quality

of service (QoS: e.g., average bit rate, or reliabilityy) offered by the remote 1/0 network may be

extremely variable, in which case we may require specialized techniques to shield an application from
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this variability, for example, buffering, or creating local copies to avoid loss of data over unreliable

links. Alternatively, QoS may be controllable by a remote 1/0 library or user application, in which

case accurate estimates of QoS requirements can improve both overall application performance and

resource utilization.

Naming and Security. Remote 1/0 systems often connect computers and fdesystems located in

different administrative domains. This causes difficulties for both naming and security. We require a

global name space for files, but different sites will use different filesystem structures. While distributed

filesystems such as AFS create a global structure, we may not have that luxury. Resource Locators

(URLS) represent an alternative approach. In addition, authentication, authorization, and privacy all

become problematic issues in a dkitributed environment.

2.3 Approaches to Remote Data Access

Past approaches to the remote data access problem fzdl into three general categories: distributed

filesystems, parallel filesystems, and remote execution systems.

Traditional distributed filesystems (NFS [18] to some extent, and AFS [15] and DFS to a greater

extent ) provide a convenient interface for remote 1/O: a uniform file name space is provided, and files

are accessed with conventional read and write statements. However, these systems typically do not

achieve good performance for high-performance computing workloads: they were designed primarily

for a difierent class of users (e.g., software developers). For example, NFS bandwidth over an Ethernet

LAN may be 1-3 Mb/see, but an optimized communication library can achieve close to 10 Mb/sec. The

lack of explicit interfaces for collective 1/0 also hinders performance optimization. In addition, they

intreduce significant implementation complexit y and administrative overhead, which tend to hinder

their widespread deployment. Web-based distributed file systems [1, 24] reduce implement ation and

administration costs but do not improve performance. Data servers such as DPSS [22] and MARS [4]

use networked disk servers to provide high-speed streaming access to distributed data, but do not

support access from parallel programs.

Parallel filesystems (e.g., [16, 7]) and 1/0 libraries (e.g., [3, 6, 19]) address performance issues

by defining 1/0 interfaces that allow identification and optimization of collective 1/0 operations,

by incorporating specialized buffering techniques, by supporting asynchronous operations, and by

incorporateing techniques (e.g., disk-directed [13], server-directed [19], and two-phase [20] 1/0) for

transferring data efficiently from compute nodes to disks. However, these systems are not designed to

address the complex configurations, unique performance tradeoffs ~and security problems that arise in

wide area environments.

Remote execution systems (Condor [14] is one example) redirect Unix filesystem calls to a home

filesystem, hence enabling location-independent execution of tasks scheduled to remote computers.

However, these systems do not support parallel 1/0 interfaces or access to parallel filesystems.

In summary, what is lacking is an approach that provides the high-performance characteristics of

parallel 1/0 libraries while addressing the unique requirements of networked environments. This is

the goal of our remote 1/0 work.

3 The RIO Remote 1/0 Library

To support our investigations of remote 1/0, we have developed a remote 1/0 library called RIO. In

this section, we describe how RIO addresses issues of portability, performance, and integration with

wide area computing environments.
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Figure 1: RIO architecture, showing how RIO layers below ADIO in the client and above ADIO in

the server

3.1 Portability

An 1/0 library is most useful if it supports both a wide range of application 1/0 patterns and multiple

filesystems. It is not our goal to innovate in the area of 1/0 interfaces, and so we adopt the quasi-

standard MPI-10 [6]. This interface incorporates support for collective operations, asynchronous

operations, and other 1/0 abstractions that have been found useful for high-performance parallel 1/0.

Whether the requirements of remote 1/0 can motivate modifications or extensions to the MPI-10

interface remains to be seen, but our initial approach is to use MPI-10 unchanged.

Portability is a challenging problem in a remote 1/0 library because there maybe no commonality

in architecture between the computer on which an application runs and the potentially many remote

filesystems that the program accesses. We address the portability problem by exploiting features of

the .ADIO implementation of MPI-10 [21]. ADIO adopts a modular design in an attempt to maximize

code reuse across filesysterns. High-level 1/0 libraries (in our case, MPI-10) invoke services provided

by a set of .4DI0 “devices,” each providing low-level support for a particular 1/O system (e.g., Unix,

Intel PFS, IBM PIOFS).

As illustrated in Figure 1, RIO exploits the ADIO framework in two ways. On the client side, we

provide a RIO device that implements ADIO calls as interactions with remote RIO servers. The servers

themselves also use ADIO calls, in this case to access the remote filesystem in a system-independent

fashion. This approach of simultaneously layering below ADIO (on the client side) and above ADIO

(on the server side) greatly reduces implementation costs. On the client side, we need not implement

all of MPI-10 nor be concerned with remote filesystem details. Instead, we can focus our attention

on a small number of portable low-level functions. On the server side, we can operate on any system

supported by ADIO.

3.2 Performance

A remote 1/0 library can use various strategies to transfer data between client and server. Research

in parallel 1/0 has identified collective operations, non-blocking operations, and buffering as impor-

tant techniques for maximizing performance on parallel filesystems. However, the characteristics of

networked systems listed in Section 2.2 lead to different tradeoffs.

Our RIO prototype uses the Nexus communication library [10] for client-server communications;

Nexus, MP1, or potentially other communication mechanisms may be used within an application.
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When opening a file, a designated client process first attempts to connect to a server gateway process.

The client and server then exchange information about file type and file access patterns, and the

server issues an ADIO open call to open the relevant file(s). The client and server then establish the

communication structure to be used for subsequent read and write operations. Finally, both client and

server establish local data structures representing the open file; on the client side, a “file descriptor”

is returned, encoding a reference to the client-side data structure.

Let I’c denote the number of processes executing at the client and l’s the number at the server.

Following an open call, each client process can read and write at a distinct location in the file, either

independently or as part of a collective operation involving multiple client processes. In a simple RIO

implementation, each client process keeps track of its own location within the file, and implements

a read or write operation as a remote procedure call (i.e., a round-trip communication) to a server

process. A round trip is required even for write calls, in order to provide a return code.

An analysis of the various inefficiencies inherent in this simple approach allows us to introduce

some of the optimization used in RIO.

Forwarder Nodes. Client and server processes communicate directly. A disadvantage of this strat-

egy is that a single process may have to use two communication methods: e.g., on the IBM SP, a

vendor-supplied MPI library and TCP/IP. This simultaneous use can intreduce significant overheads

due to the need to manage two communication interfaces [8] or may be disallowed entirely if network

interfaces can be accessed only from dedicated service nodes. Hence, we introduce forwarder nodes

(analogous to the dedicated 1/0 nodes used in some 1/0 systems), to which each client process for-

wards communications destined for the server, and which handles communications from the server to

client processes. These forwarder nodes must use both MPI and TCP, but are dedicated and hence can

be optimized for this purpose. The forwarder nodes can also be used to throttle traffic to avoid net-

work saturation [23]. In our current work, the client and server each use a single forwarder. However,

multiple forwarders can be advantageous if there are multiple network interfaces or if compression,

message digest, or encryption techniques are to be applied to data.

Exploitation of Collective Operations. Each client process communicates independently with

the server, even when engaged in a collective operation. Hence, a single client-side collective call

requires F’C messages and results in Pc independent 1/O operations at the server. Both the multiple

communications and multiple 1/0 operations can be inefficient in some situations. Multiple commu-

nications can be avoided by collecting the communications performed by the Pc clients (e.g., at the

forwarder) and transferring them to the client in a single message. Multiple server 1/0 operations can

be avoided by tagging client messages to indicate when they refer to collective calls, and then invoking

a collective 1/0 operation at the server. The latter strategy is straightforward if l’s = Pc, since the

server can issue open, read, and write operations identical to those performed by the client. The

situation remains straightforward if Pc is an integer multiple of l’s, or vice versa, as the calls issued

by the client are e=ily mapped to server processes. In other situations, it can be hard to translate a

client-side collective operation into an efficient collective operation at the server. Our RIO prototype

assumes that PS = Pc.

Reduction of Round-’Trip Messages. The round trip performed for each read and write operation

can take 100 msec or more in a wide area environment, significantly more than an 1/0 operation. RIO

seeks to reduce these costs by incorporating support for asynchronous 1/0 operations. Asynchronous

operations allow several 1/0 operations to be outstanding at once, hence enabling pipelining of 1/0

operations in the network and 1/0 system, and overlapping of computation and 1/0 in the application.

Another approach that we have yet to evaluate is to reduce the number of communication operations
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Figure 2: RIO’s optimized 1/0 strategy, showing the client (C), forwarder (F), and server (S) processes,

and the communications performed following a collective read operation.

by client-side buffering, either independently by each client process, collectively by multiple client

processes, or by the forwarder.

Figure 2 outlines the structure that results when these various optimization are introduced. The

figure shows the client-side buffers (here associated with client processes), the forwarder processes,

and the translation of a client-side collective 1/0 call MPIREAD_ALL)into a collective 1/0 call at the

server.

3.3 Integration

Because RIO is designed to execute in a wide area environment, its implementation must address

issues of naming, configuration, and security. In the following, we explain how these issues can be

addressed by using mechanisms provided by the Globus distributed computing toolkit [9].

Naming. RIO uses a URL-like notation to provide a uniform name space for files. A file is opened

with a call of the form

MPI.Open(. . . . “x-rio: Ilhost-name: port-numipathname”, . . . )

where the host-name and port-rmm identify a RIO server and pathname identifies a file managed by

that server. In the future, we may substitute Uniform Resource Names (URNS) for URLS, to permit

location-independent naming of cachable or replicated resources such as databases.

Configuration. RIO permits the use of Globus configuration mechanisms. For example, when

establishing a Nexus connection between client and server, RIO can use the Globus Metacomputing

Directory Service (MDS) to determine which networks are available, their current load, and access

mechanisms. RIO also can interact with Globus schedulers to reserve capacity on networks that

support quality of service negotiation.

Security. A remote 1/0 system may be required to verify a user’s identity (authentication), to

determine whether and how a user is able to access a file (authorization), and to ensure the integrity

7



. .

and privacy of data transferred over public networks. We design RIO to incorporate the solutions to

these problems provided by Globus.

The current Globus system supports a global “Globus id” but requires that a user have an account

at a site before it can use that site’s resources. Globus provides a cryptographiczdly secure mapping

from Globus id to local ids, hence allowing a user to authenticate once (to Globus) and subsequently

access resources at any Globus site where the user has an account. These mechanisms can easily

be adapted for use by RIO. Authentication is performed by Nexus when a RIO client connects to a

RIO server. If authentication succeeds, the local user id of the Globus user is also established, and

hence the file access rights of the Globus user at that site are determined. Once authentication is in

place, Globus/Nexus mechanisms can be used to apply digitd signatures for message integrity and/or

encryption for privacy. If desired, these mechanisms can be applied only when communicating over

networks defined to be insecure.

In the longer term, we expect Globus (and hence RIO) to eliminate the requirement that a user

have a local account at every site. Access control lists are one approach to authorization in this regime.

Cryptographically signed “use condition certificates” [12] represent another promising approach.

4 Experimental Studies

We report on experiments designed to determine the basic performance characteristics of RIO and to

provide a preliminary evaluation of RIO’s utility for applications. These experiments comprise a series

of microbenchmarks similar to those used traditionally for evaluation of 1/ O library performance, plus

a single application.

4.1 Experimental Platform

In selecting an experimental platform, we must trade off our interest in exploring true remote 1/0

against the need for a controlled environment in which the impacts of different performance issues can

be easily measured. These considerations motivate us to define a testbed comprising two partitions

of the same IBM SP multicomputer. Within each partition, communication can occur via vendor-

supplied MP1, while TCP/IP is used between partitions. The client runs in one partition and the

server in the other. Because of our use of forwarder nodes, this simple configuration has performance

characteristics quite similar to two IBM SPS connected by a high-bandwidth local or metropolis an

area network. While intrapartition communication peaks at over 30 MB /see with latencies of aro”und

50 psec, interpartition communication peaks at 8 MB/see with Iatencies of around 2000 psec.

All experiments were performed on the IBM SP2 at the Cornell Theory Center and used IBM

PIOFS version 1.2 as the “remote” fllesystem. All nodes used in our experiments were SP thin nodes

(roughly equivalent to RS/6000 Model 390, with at least 128 MB memory) running AIX 4.1. PIOFS

distributes files across multiple PIOFS servers [2]. At Cornell, there are eight such servers. Each file

consists of a set of celk, and each celI is stored on a particular server node. The default number of

cells is the number of PIOFS servers; if the number is greater, cells are striped across servers in a

round-robin fashion. A file is divided into basic striping units (B SUS), which are assigned to cells in

a round-robin fashion. The default BSU size is 32 KB. In some situations, tuning of these various

parameters can significantly affect performance. We used default values in all experiments.

PIOFS performance is sensitive to the size of the data being read and written. For small (< 8 KB)

accesses, access time is about 4 to 5 msec, presumably because of the round-trip

between the node performing 1/0 and the PIOFS server nodes. High performance

for large read and write sizes.
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4.2 Microbenchmark Results

Our microbenchmarks are designed to reveal how RIO read and write bandwidths vary as functions

of Pc (note that F’.s = Pc in all experiments) and read or write size. Each microbenchmark uses

blocking operations to transfer contiguous data from/to a single shared file.

Figure 3 shows the transfer rates (totals summed over PC processes) that we measured for Pc =

PS =1,2, and 4, and for different access sizes. We give results for RIO and for PIOFS only; our PIOFS

results mat ch those of other researchers. We also include in the graph horizontal lines representing the

bandwidth measured with two simple ping-pong programs. The line labeled “Client/server forwarding”

was obtained with a program that bounces large messages between a client process and a server process,

via the intervening forwarders. Hence, it approximates the best data transfer rate that can be obtained

for synchronous operations between a single client and a single server in our architecture. The line

labeled “TCP peak” was obtained with a simpler program that uses TCP to bounce large messages

back and forth between two processes. This line approximates the best data transfer rate that can be

achieved with Nexus and TCP on the IBM SP. The first number (4.25 MB/see) is less than the second

(8.6 MB/see) because a round-trip client/server communication involves six messages, as compared

to just two in the latter case.

Examining Figure 3, we see that sustained bandwidth generally increases with Pc, but peaks at

around 4.2 NfB/sec for the larger transfer sizes, when we saturate the forwarder-to-forwarder con-

nection. We are able to exceed 4.25 MB/see slightly in some situations because of pipelining of

communications. Other preliminary experiments show modest (10-20 percent ) improvements in RIO

performance when nonblocking operations are used, because pipelining is enhanced.

These results show that RIO is able to drive the network connecting client and server at close to

its peak bandwidth, at least for large messages. We see also that in our experimental configuration,

the principal obstacle to improved performance is the capacity of this network. Faster networks and

improved forwarder structures are two possible approaches to improving performance.

4.3 Application Results

We use the BTIO benchmark from the NAS 1/0 benchmark suite [5], specifically, the program

BTIO-simple-mpiio. This benchmark simulates the 1/0 required by a pseudo-timestepping flow

solver. It implements an approximate factorization algorithm with the requirement that after every

k iterations, the three-dimensional solution vector (of size JV3) is written to a disk file (no reads are

performed). A total of I iterations of the algorithm are performed. The application code is in Fortran

and uses the MPI-10 interface to write output data to a single file.

In our experiments, we fix k = 5 and 1 = 200 and consider problem sizes iV = 32 and lV = 64; total

data written in these two cases is 52 MB and 420 MB, respectively. We define the elapsed time as the

wall clock execution time for the application, and the application sustained 1/0 transfer rate as (total

amount of 1/0 performed) /(elapsed time). The elapsed time includes both the time for computation

and 1/O inside the application. Note that this 1/0 transfer rate is different from that measured in the

microbenchmarks, where no significant computation is performed. We use four application processors

in all experiments, for a total of 10 processors, with 2 forwarding nodes and 4 server nodes. We have

observed similar behavior with different numbers of application processors, and hence for brevity we

do not report those results.

BTIO-simple-mpiio performs many small writes in an irregular pattern and hence performs poorly

on PIO FS, due to the high PIOFS overhead associated with small writes. Hence, we produced a

modified version of the benchmark that redistributes the output data before the solution vector is

written to disk. In the redistribution code, each node essentially collects data from other nodes into
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Table 1: Execution times for the original and optimized BTIO application (sees)

Version N Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock)

Original 32 285.28 310.46 457.39 314.54

Original 64 1711.48 1912.94 2278.97 1886.00

Opt~mized I 32 I
I ! 1 1 1

178.68 \ 203.86 I 186.07 ~ 180.99

Optimized I 64 I 1446.05 I 1647.51 I 1524.20 ! 1389.35 I

Table 2: Application sustained 1/0 transfer rates for the original and optimized BTIO (MB/see).

Note that these rates are computed based on the total elapsed times, not just the 1/0 times

Version iv Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock)

Original 32 0.1838 0.1689 0.1146 0.1667

Original 64 0.2451 0.2193 0.1840 0.2224

Optimized 32 0.2934 0.2572 0.2818 0.2897

Optimized 64 0.2900 0.2546 0.2752 0.3019

a temporary contianous write buffer; each processor then performs a single write operation at each

dump.

We measure elapsed time for four configurations: when using PIOFS directly (i.e., without using

RIO); when using RIO (blocking calls) to transfer data from the application to the RIO server, which

then makes the PIOFS calls; when using RIO [nonblocking calls); and when data is first written

to PIOFS directly, without RIO, and then transferred to a user filesystem with ftp. The latter

configuration corresponds to the use of staging. In the nonblockkg version of the original code,

multiple (up to 64) 1/0 operations may be outstanding. In the nonblocking RIO version of the

optimized code, we issue an asynchronous write for each dump and then proceed with computation,

waiting for completion only at the start of the next dump. This is possible because writes are performed

from the write buffer.

Tables 1 and 2 show the elapsed times and application sustained transfer rates measured for both

the original and optimized versions of the program. The optimized version of BTIO performs better

than the original, due to the reduced number of write operations. We see that nonblocking calls

significantly affect performance in all cases. This is because in the absence of nonblocking calls,

the round-trip message exchange between application and server is a significant source of overhead.

When nonblocking operations are used, performance improves either because multiple 1/O operations

are pipelined (in the original code) or because 1/0 and round-trip overheads are overlapped with

computation (in the optimized code). As a result, throughput is close to what we get when accessing

PIOFS directly: in fact, because PIOFS does not support nonblocking operations, RIO performs better

than local PIOFS in some cases. The maximum application sustained transfer rate is 0.29 MB/see for

local PIOFS and 0.30 MB/see with RIO. If we consider only 1/0 time (and hence compute burst 1/0

rates), we obtain 1/0 rates of 2-4 MB/see.

Finally, we see that the total execution time when using RIO is, in most cases, less than the total

turnaround time when staging is used (PIOFS+ftp). For the optimized code with N = 64, RIO is

19 percent faster. This result is due to the overlapping of computation and data transfer achieved by

RIO and illustrates how remote 1/0 can improve application performance as well as providing a more

convenient interface.
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5 Conclusions

We have argued for the importance of remote 1/0 as a tool for high-performance, low-overhead dis-

tributed computing. Remote 1/0 libraries allow programs to use familiar parallel 1/0 interfaces to

access data contained in remote filesystems. In principle, they can improve performance, enhance

flexibility, and reduce complexity in applications that must access nonlocal data. We have identified

some of the challenges that must be overcome before these benefits can be realized; these include high

latencies, low bandwidths, complex configurations, and security. We have also described a prototype

remote 1/0 library called RIO that incorporates solutions to some of these problems. Performance

experiments in a controlled multicomputer environment show that RIO introduces little overhead and

can achieve improved turnaround time compared to remote execution combined with staging.

The work presented here is just a first step toward a truly usable remote 1/0 facility for high-

performance computing applications. Our next step will be to depIoy the RIO prototype in a wide

area computing testbed. Our first target is the sites connected by the ESnet and CAIRN networks, in

particular Argonne, Berkeley, and USC!/ISI. This environment will enable us to evaluate our techniques

more realistically and will also support experiments with network quaJ.ity of service reservation. We

also plan detailed comparisons with distributed filesystems for a range of scientific applications.
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