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Abstract— Remote detection of cognitive load has many pow-
erful applications, such as measuring stress in the workplace.
Cognitive tasks have an impact on breathing and heart rate
variability (HRV). We show that changes in physiological
parameters during cognitive stress can be captured remotely
(at a distance of 3m) using a digital camera. A study (n=10) was
conducted with participants at rest and under cognitive stress.
A novel five band digital camera was used to capture videos
of the face of the participant. Significantly higher normalized
low frequency HRV components and breathing rates were
measured in the stress condition when compared to the rest
condition. Heart rates were not significantly different between
the two conditions. We built a person-independent classifier
to predict cognitive stress based on the remotely detected
physiological parameters (heart rate, breathing rate and heart
rate variability). The accuracy of the model was 85% (35%
greater than chance).

I. INTRODUCTION

Heart rate variability (HRV) is a commonly used mea-

sure of autonomic nervous system (ANS) activity. The two

branches of the ANS are the sympathetic nervous system

(SNS) and parasympathetic nervous system (PNS) which

dynamically control the beat-to-beat differences of the heart.

The HRV low frequency (LF) component is modulated

by baroreflex activity and contains both sympathetic and

parasympathetic activity [1]. The high frequency (HF) com-

ponent reflects parasympathetic influence on the heart, it

is connected to respiratory sinus arrhythmia (RSA). An

estimate of sympathetic modulation (the sympatho/vagal

balance) can be made by considering the LF/HF power ratio.

Cognitive tasks (such as mental arithmetic) have an impact

on HRV [2], [3], [4]. Those under mental stress showed re-

duced HF HRV components compared to a control group [3].

During an attention task lower total HRV power was ob-

served, in addition to a change in heart rate, when compared

to baseline [4]. It may be possible to use spectral analysis of

HRV to predict such things as the optimal work time under

mental stress [5]. Automatic detection of cognitive load has

much potential in such a context. Although nonverbal cues

such as facial expressions can be useful in detecting cognitive

states (such as concentration) [6], in many cases people do

not exhibit facial muscle movements. Thermal imaging has

been used to remotely capture stress [7] however the cost of

the cameras is high. Remote measurement of cognitive stress
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Fig. 1. Overview of the automated system for prediction of cognitive
stress from remotely measured physiology. 1) Facial landmarks detected
and color channel information extracted from the ROI, 2) BVP extracted
from color channel signals and HR, BR and HRV parameters calculated, 3)
physiological features used to predict restful state or cognitive stress state.

via HRV captured from digital cameras could allow for low-

cost non-contact measurement of attention, concentration or

engagement and be useful in the workplace and education.

The gold standard for HRV measurement is the elec-

trocardiogram (ECG). However, high degrees of agreement

(in both the temporal and frequency domains) have been

observed between measurements of HRV derived from

ECG and measurements made using photoplethysmography

(PPG) [8]. PPG is a low-cost and non-invasive technique

for measuring the cardiovascular blood volume pulse (BVP)

through variations in transmitted or reflected light [9].

Recently, it has been shown that it is possible to recover

the blood volume pulse (BVP) from images of the human

face [10]. Furthermore, it is possible to do so without a ded-

icated light source and with a low-cost digital camera [11],

[12]. Small changes to the color band sensitivities of a

standard digital camera can also improve the accuracy of

the BVP recovered from video images and allow equivalent

measurements to be made from greater distances [13]. High

correlations between contact sensor measurements and these

remote measures of heart rate, breathing rate and HRV low

and high frequency components have been shown. Balakrish-

nan et al. [14] presented a method for recovering the BVP

waveform from motion of the human head allowing the heart

rate to be detected even if no skin is visible. However, their

system was out performed by camera PPG measurements in

some cases and is susceptible to rigid head motions.

This paper addresses remote measurement of subtle

changes in HR, BR and HRV and classification of restful

and stress states based on these features. In the remainder

of this paper we will: 1) present an experiment and results

that show measurable changes in physiology using a digital

camera, 2) demonstrate that these can allow remote capture

of changes between a restful state and under cognitive stress,

3) build and test a classifier for predicting a restful state and
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Fig. 2. Experimental set-up. Contact measurements of the blood volume
pulse and electrodermal activity were collected using finger sensors and
breathing measured using a chest strap. A camera, placed 3m from the
participant, was used to capture videos images at 30fps, 960x720 resolution.

one of cognitive stress based on physiological features.

II. DATA COLLECTION

A. Set-Up

Camera: The camera used to collect the video sequences

was a digital single-lens reflex (DSLR) camera with a

standard Zuiko 50mm lens. The camera’s sensor has the

capability of capturing five color bands which includes

the typical three color band sensors (red, green and blue

(RGB)) and also cyan and orange frequency band sensors

(RGBCO). Previous work suggested that the combination of

the cyan, orange and green bands was the best for recovering

physiological parameters [13] and considerably outperforms

the RGB signal combination, this was true across a number

of participants. The sensitivity profile of the camera can be

found in [13].

We use an automated method for recovering the heart

rate, breathing rate and HRV spectrograms from the recorded

videos presented in [13]. Figure 3 shows an overview of

the approach. The videos were exported in an uncompressed

format. The physiological and video recordings were ana-

lyzed offline using custom software written in MATLAB

(The Mathworks, Inc.). The facial region of interest was

segmented and color channel signals extracted by taking a

spacial average of the pixel values in each frame. Indepen-

dent Component Analysis (ICA) was used to recover source

signals from the color channel signals and the signal with

the strongest BVP signal selected. BVP peaks were detected

and used to calculate the HRV spectrogram. We construct

the spectrograms by calculating the power spectral density

(PSD) from the IBIs for a moving window over the whole

session. The Lomb periodogram was used to obtain the PSD

over a 60 second moving window. The sessions were two

minutes in length, the step size was one second.

Contact Measurements: We collected contact PPG and

respiration measurements to validate the remote physiologi-

cal measurements. PPG, respiration and electrodermal activ-

ity were recorded using FDA-approved sensors (Flexcomp

Infiniti by Thought Technologies, Inc.). PPG and electroder-

mal activity (EDA) were measured with finger sensors and

respiration with a chest strap. The EDA was measured from

the middle and ring fingers of both hands and the BVP from

the left index finger.

To calculate the HRV spectrogram using the PPG mea-

surements from the contact finger sensor, peak detection was

performed on the PPG waveform with a moving time window

of length 0.25 seconds. The Lomb periodogram was again

used to obtain the PSD over a 60 second moving window.

B. Experiments

This study was approved by the Institutional Review Board

of the Massachusetts Institute of Technology. All experi-

ments were conducted indoors and with a varying amount

of sunlight and indoor illumination. Participants were seated

and the data were recorded on a laptop (Toshiba, Windows

7). Our experiments featured 10 healthy participants of

both genders (seven females), different ages (18-30) and

skin color. During the experiment participants were seated

approximately 3m away from the camera and asked to face

the camera while the videos were recorded. Figure 2 shows

the set-up used to record the data. Two minute recordings

of the participants were taken, the contact measurements

and video sequences were synchronized by simultaneously

starting both recordings.

Measurements at rest: In the first experiment participants

were asked to sit still, look toward the camera and relax. The

video and physiological recordings were captured for two

minutes. For one of the participants in the rest condition the

contact finger BVP measurements were noisy due to motion

artifacts, this session was not used for the validation of the

remote measurements.

Measurements under stress: In the second experiment

participants were asked to perform a mental arithmetic task

(MAT) silently (without talking). Starting with the number

4000 they were required to subtract 7, then subtract 7

again, and so on, as quickly as possible. The video and

physiological recordings were captured for two minutes. The

participants started the task immediately after the recordings

were started. In order to increase the cognitive stress induced

we told the participants that they were competing against the

other people to reach the lowest number. All the participants

reported experiencing more stress in this condition.

C. Quantification of Physiological Parameters

For both the camera and contact measurements we cal-

culated the HR, BR and HRV low frequency (LF) and

high frequency (HF) components. HR was calculated as

60/IBI , where IBI is the mean of the inter-beat intervals.

BR can be estimated from the dominant high frequency

component of the HRV [16]. We determine the BR from

the center frequency of the highest peak (fHFpeak) between

0.15 and 0.4Hz of the HRV power spectrum. For the contact

measurements the BR was calculated as the frequency of the

dominant peak fresp. in the PSD of the recorded respiratory

waveform as 60*fresp.. The LF and HF powers of the

HRV were calculated as the area under the PSD curve

corresponding to 0.04-0.15Hz and 0.15-0.4Hz respectively.

LF and HF were quantified in normalized units in order to

minimize the impact of difference in total power.

III. PREDICTION OF COGNITIVE STRESS

Using the physiological parameters measured with the

camera as features, we build and test a classifier for predict-

ing whether an individual is under cognitive stress or at rest.
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Fig. 3. Overview of the automated method used to recover the HRV spectrogram from videos of a human face. 1) Facial landmarks are detected using [15]
and the face region of interest (ROI) segmented (excluding the region around the eyes), 2) spatial average of each color channel in the ROI over time
calculated, 3) source signals, calculated via Independent Component Analysis (ICA), are filtered, 4) the channel with the estimated strongest BVP signal
selected and inverted if necessary, 5) BVP signal interpolated to 256Hz, peaks detected, and IBIs calculated, 6) spectrogram calculated with a moving
window (length 60s, step size 1s).

We test a Naive Bayes model and a support vector machine

(SVM) with linear kernel for the classification. SVMs have

been shown to perform well on many classification prob-

lems. The input features were the mean heart rate, mean

breathing rate, normalized HRV LF power, normalized HRV

HF power and HRV LF/HF power ratio for each session.

The cost, C, parameter was set to 0.1. We performed a

person-independent testing by withholding the data for one

participant in the test set and using all the remaining data for

training. We repeated this 10 times, once for each participant.

IV. RESULTS

A. Validation of Remote Physiological Measurements

We compare the physiological parameters calculated us-

ing the camera measurements to those calculated from the

contact sensor measurements. The correlations between the

contact and remote methods were: HR = 1.0, BR = 0.93,

HRV LF = 0.93, HRV HF = 0.93 and HRV LF/HF ratio

= 0.93, p < 0.01 for all. The root mean squared errors for

the HR, RR and HRV LF/HF were 0.106, 1.53 and 0.145

respectively. High agreement was observed and shows that

the camera can accurately capture the BVP signal.

B. Impact of Cognitive Stress on Physiology

We compare the remotely measured physiological param-

eters for each of the participants. Figure 4 (a-d) shows the

values of HR, BR, HRV LF and HRV LF/HF ratio for

each participant (blue = rest, red = session). Figure 4 (e-

g) shows the mean HR, BR and HRV LF/HF ratio across all

participants with error bars showing one standard deviation

either side of the mean. Figure 5 shows examples of remotely

measured HRV spectrograms from three participants at rest

(top row) and under cognitive stress (bottom row). Using

a sixty second window over a two minute video gave

sixty second spectrograms. The higher LF/HF ratio under

cognitive stress is evident. For the significance measures two-

sample Kolmogorov-Smirnov tests were used.

C. Prediction of Stress from Physiology

The prediction accuracy of the model for classifying rest

or cognitive stress using a linear SVM was 85%, this is a

two-class case with balanced class sizes and therefore a naive

prediction would be 50%. Table I shows the accuracy using

the HR, BR and HRV features alone and in combination.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
a) Heart Rate (HR)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

b
e
a
ts

/m
in

b) Breathing Rate (BR)

b
re

a
th

s/
m

in

p
o
w

e
r

(n
.u

.)

c) HRV LF d) HRV LF/HF

participant participant

rest

p
o
w

e
r

ra
ti

o

0

20

40

60

80

100

0

5

10

15

20

25

0

0.5

1

1.5

b
e
a
ts

/m
in

b
re

a
th

s/
m

in

p
o
w

e
r 

ra
ti

o

e) Mean HR f) Mean RR g) Mean HRV LF/HF

stress

p<0.002 p<0.005

Fig. 4. Comparison of remotely measured physiological parameters for
each participant during rest and stress. a) Heart rate, b) breathing rate, c)
HRV LF, d) HRV LF/HF ratio. Mean parameters are shown for: e) heart
rate, f) breathing rate and g) HRV LF/HF. Error bars show one standard
deviation either side of the mean. Breathing rate and LF/HF ratio are the
most discriminative features, heart rate was the least discriminative.

V. DISCUSSION

The physiological measurements made using the camera

were highly correlated with the contact sensor measurements

and are sensitive enough to capture differences between

the responses of participants at rest and under cognitive

stress. For 90% of the participants the breathing rate was

higher during the cognitive stress session than at rest. The

mean breathing rate across all participants during the stress

sessions was significantly higher than during the rest sessions

(p < 0.002). For 80% of the participants the HRV LF

components were higher during the cognitive stress session.

The mean HRV LF/HF ratio across all participants during

the stress sessions was also significantly higher than during

the rest sessions (p < 0.005), this supports the results in [4].



TABLE I

CLASSIFICATION ACCURACY FOR PREDICTION OF REST VS. STRESS

USING DIFFERENT COMBINATIONS OF FEATURES.

Accuracy (%) Random HR BR HRV All

Naive Bayes 50 65 75 70 80
SVM 50 60 75 70 85
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Fig. 5. Remotely measured HRV spectrograms from three participants at
rest (top row) and under cognitive stress (bottom row). LF PSD components
are measured from 0.04-0.15 Hz, HF PSD components are measured from
0.15-0.4Hz. The higher LF/HF ratio under cognitive stress is evident.

However, unlike [4] heart rate alone was not a strong pre-

dictor of cognitive stress, there was no significant difference

between the mean heart rates in the rest and stress condition.

The remotely measured spectrograms (Figure 5) show that

the dominant frequency for all participants shifted between

the rest and stress conditions. In addition the dominant

frequency was not stationary during each session, showing

why HRV spectrograms can provide useful information about

the dynamics of a response.

The SVM classifier prediction accuracy was very good

even with a challenging person-independent training scheme,

85% (17 out of 20) of sessions were correctly labeled as rest

or cognitive stress. HRV components and breathing rate were

the strongest predictors of cognitive stress. The responses of

participants two and three under stress were misclassified as

rest, they both showed relatively slow BRs and participant

three had the lowest HRV LF/HF ratio under cognitive stress.

The response of participant five at rest was misclassified

as under stress, the highest BR was measured in that con-

dition. Perhaps this was because the participant found the

experiment, and having to wear contact sensors, stressful. In

this case the rest condition may not have represented a truly

relaxed state. All other sessions were correctly classified.

VI. CONCLUSIONS AND FUTURE WORK

We present remote measurement of physiological param-

eters using a digital camera (at a distance of 3m). We

captured the physiological responses of participants at rest

and under cognitive stress. The remote measurement of heart

rate, breathing rate and heart rate variability closely agreed

with contact measurements. Significant differences were ob-

served in the remotely measured BRs and HRV components

between the states of rest and cognitive stress. Heart rate

was not significantly different between the rest and stress

conditions. We designed a person-independent classifier for

predicting whether a participant was under cognitive stress or

at rest from the remotely measured physiology. The accuracy

of the model was 85% much higher than a naive prediction.

The BR and HRV features were the most discriminative.

This work suggests it is possible to remotely measure an

individual’s cognitive load using a digital camera, a finding

that could be very useful for workplace stress measurement

or in learning contexts. Different types of stressors (e.g.

physical, emotional, cognitive) are likely to result in different

types of responses, future work will investigate the impact

of other stressors on physiological responses. Although par-

ticipants were free to move during the experiments they

remained facing the camera at all times. The effects of greater

rigid head motions and facial expressions will be studied in

future work.
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