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Abstract 

Background: Biotelemetry offers an increasing set of tools to monitor animals. Acceleration sensors in particular can 
provide remote observations of animal behavior at high temporal resolution. While recent studies have demonstrated 
the capability of this technique for a wide range of species and behaviors, a coherent methodology is still missing (1) 
for behavior monitoring of large herbivores that are usually tagged with neck collars and frequently switch between 
diverse behaviors and (2) for monitoring of vigilance behavior. Here, we present an approach that aims at remotely 
monitoring different types of large herbivore behavior including vigilance with acceleration data.

Methods: We pioneered this approach with field observations of eight collared roe deer (Capreolus capreolus). First, 
we trained a classification model for distinguishing seven structural behavior categories: lying, standing, browsing, 
walking, trotting, galloping and ‘others’. Second, we developed a model that predicted the internal states, active and 
resting, based on the predicted sequence of structural behaviors and expert-based rules. Further, we applied both 
models to automatically monitor vigilance behavior and compared model predictions with expert judgment of 
vigilance behavior. To exemplify the practical application of this approach, we predicted behavior, internal state and 
vigilance continuously for a collared roe deer.

Results: The structural behaviors were predicted with high accuracy (overall cross-validated accuracy 71%). Only 
behaviors that are similar in terms of posture and dynamic body movements were prone to misclassification. Active 
and resting states showed clear distinction and could be utilized as behavioral context for the detection of vigilance 
behavior. Here, model predictions were characterized by excellent consistency with expert judgment of vigilance 
behavior (mean accuracy 96%).

Conclusion: In this study, we demonstrated the strong potential and practical applicability of acceleration data 
for continuous, high-resolution behavior monitoring of large herbivores and showed that vigilance behavior is well 
detectable. In particular, when combined with spatial data, automated behavior recognition will enrich many fields in 
behavioral ecology by providing extensive access to behaviors of animals in the wild.
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Background
Solid data about animal behavior are essential for many 

fields of science and management. In the past, collecting 

these kinds of data was associated with time-consuming 

field observations and was seldom possible with elusive, 

nocturnal, wide-ranging or aquatic species. Advances 

in animal-borne sensors now allow for an automated 

remote monitoring of animal behavior. Starting in the 

1990s, the use of GPS telemetry stimulated substantial 

progress in animal ecology [1]. By analyzing animal tra-

jectories, researchers also started to gain information 

about animal behavior that was driving the observed 

movement pattern [2–4].

Currently, sensors that measure acceleration in dif-

ferent dimensions and with high frequency are about to 
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provoke a new boost in ecology [5]. Unlike GPS sensors, 

which only allow for detecting behaviors that produce 

distinct movement patterns, acceleration sensors allow 

for monitoring of a wide variety of behaviors by provid-

ing information about an animal’s posture and motion. 

�is is technically feasible because acceleration sensors 

measure two types of acceleration: static body accelera-

tion and dynamic body acceleration [6]. Static body accel-

eration originates from the earth’s gravitational field and 

is used to calculate the posture of the sensor (see detailed 

description in [6]). Dynamic body acceleration originates 

from all motions of the body part to which the sensor 

is attached. To obtain valid information about animal 

behavior from acceleration data, it is necessary to identify 

characteristic signatures inside the data that are corre-

lated with the target behaviors. �e methodological steps 

for automating this task have been extensively described 

[7, 8] and include data collection, data processing, mod-

eling and model application. Acceleration is either meas-

ured continuously or over discrete time segments of fixed 

width, which are called ‘bursts.’ After data collection, the 

raw acceleration data are processed into meaningful pre-

dictor variables that reflect features of static or dynamic 

body acceleration. When acceleration is sampled contin-

uously, the signal is first divided into segments of fixed 

width (e.g., 5  s) from which the predictor variables are 

then calculated (i.e., the predictor variables summarize 

the acceleration data of the segment, and each segment 

with its set of predictor variables constitutes an obser-

vation). When acceleration is already sampled in bursts, 

the original bursts or subsegments are used for param-

eterization. Modeling is usually based on supervised 

classification models that are trained with a ground-tru-

thed dataset [7–9]. In this case, the behavior of tagged 

animals must be observed in the field, which allows for 

assigning a behavioral category to each segment of the 

training dataset. Alternatively, unsupervised clustering 

combined with a subsequent expert-based interpretation 

of the identified clusters can be used [10]. �e resulting 

model can then be used to automatically detect behav-

ior. Automatic classification of animal behavior has been 

successfully applied in many mammals, birds, fish and 

reptiles (see recent summary in [5]). �e current state of 

the art of parameterizing the acceleration signal in seg-

ments of fixed width, however, has two major disadvan-

tages. First, segments during which the animal displayed 

several behaviors will deteriorate the performance of the 

resulting model [7, 11]. �is is particularly problematic 

in species like roe deer which frequently change behav-

ior. Second, the segment width is ideally adjusted to the 

acceleration signature of the target behavior. When sev-

eral behaviors are targeted (e.g., browsing and standing), 

segments of fixed width are unable to account for behav-

ior-specific signatures of different length.

Automatic monitoring of vigilance behavior with accel-

eration data is a particular challenge that, to the best of 

our knowledge, has not been addressed so far. Hereafter, 

we refer to structural behavior categories as those that 

are characterized by the structure of the behavior, i.e., by 

a specific motion and posture (e.g., ‘standing with head 

up’) [12]. Further, we refer to an animal’s internal state 

as the operationalized physiological and psychological 

state of an animal [13] that drives the animal to perform 

specific structural behaviors to fulfill one or more needs. 

Many species that are subject to predation perform struc-

tural behaviors that fulfill safety needs by reducing the 

risk of being killed [14, 15]. Large herbivores for exam-

ple frequently display the structural behavior ‘standing 

with head up’ which is commonly interpreted as vigilance 

behavior by which animals aim for monitoring their sur-

roundings for approaching predators and, thereby, reduce 

the probability of an attack [14–16]. Behavioral ecologists 

are most often not per se interested in the display of vigi-

lance behavior but want to measure the internal state of 

vigilance [16] (e.g., different levels of alertness) which is 

also referred to as perceived predation risk [14, 17]. �e 

internal state, however, is not directly observable but can 

be assessed by measuring the outward signs (e.g., the 

proportion of time or the frequency an animal displays 

vigilance behavior [16]). During periods when an animal 

is considered as being in state active or in state forag-

ing, displays of the behavior ‘standing with head up’ are 

considered good markers for measuring vigilance/per-

ceived predation risk because herbivores have to switch 

between different structural behaviors (e.g., feeding with 

head down standing with head up; Fig. 1) to fulfill safety 

and other needs (e.g., nutritional needs). �us, they have 

to balance conflicting needs in their behavioral decision-

making process and should invest more time in vigilance 

when perceived risk increases [14, 17]. While resting 

(prevailing needs are safety, regeneration and processing 

of food), an animal might display the structural behavior 

‘standing with head up’ as well (Fig. 1). Here, it might also 

be dedicated to fulfill safety needs but cannot be used as 

indicator of vigilance because the animal is not forced to 

trade between at least two different structural behaviors. 

Measuring vigilance, therefore, requires (1) monitoring 

of the structural behavior ‘standing with head up’ and (2) 

evaluating the current internal state (i.e., not resting). In 

field observations that focus on vigilance behavior, the 

evaluation of an animal’s current state is usually han-

dled by observer judgment if the focal animal is active or 

foraging [18–20]. When automated remote monitoring 

of vigilance behavior with acceleration data is targeted, 
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procedures that predict the internal state of an animal 

have to be implemented in the modeling framework.

�e primary aim of this study is to develop an approach 

for an automated detection of vigilance behavior in large 

herbivores, based on acceleration data. We apply the 

approach to detect vigilance behavior in roe deer (Capre-

olus capreolus). In the first step, we develop and evalu-

ate a classification model that aims at classifying behavior 

of roe deer into structural behavior categories, based on 

video-documented field observations of collared animals. 

In the second step, we develop a model that synthesizes 

the sequence of predicted structural behaviors into the 

internal states ‘active’ and ‘resting’. Finally, we apply both 

models to detect vigilance behavior and compare model 

predictions with expert judgment of vigilance behavior. 

We exemplify the application of this approach by predict-

ing behavior, state and vigilance for a collared roe deer.

Methods
Study area

Fieldwork for this study was conducted in southwestern 

Germany (state of Baden-Wuerttemberg) at two study 

sites (Rhine valley: 48.67, 8.00; Hegau: 47.88, 8.73). Both 

sites were characterized by woody patches that were sur-

rounded by arable fields and meadows. During the winter 

months, the vegetation height in all meadows and most 

fields was very low, allowing for good visibility of several 

100 m. A dense network of paved and gravel roads was 

present at both sites.

Capture and handling of animals

From 2011 to 2013, we captured roe deer in box-traps 

and drive-nets. All deer that weighed more than 15  kg 

and showed good health were equipped with a neck col-

lar. All capture, tagging and monitoring protocols were 

approved by the animal welfare and hunting administra-

tion of Baden-Wuerttemberg. In total, we collared 47 ani-

mals (Rhine valley 35, Hegau 12). �e collars were made 

by e-obs GmbH (Munich, Germany), weighed 370  g 

and, thus, reached maximally 2.5% of the body mass of 

tagged deer. �e collar itself was made out of leather and 

hosted a GPS sensor, an acceleration sensor and a UHF 

transmitter in a case on top and two batteries (D-cells) 

on each side (Additional file 1: Fig. S1). �e weight and 

the low center of gravity of the batteries prevented the 

collar from turning around the neck and positioned the 

GPS/acceleration unit at a dorsal position. �e accelera-

tion sensor measured acceleration in three perpendicu-

lar axes. Based on the dorsal position, the axis measured 

acceleration in forward–backward horizontal motion (x 

axis, denoted as surge), left–right horizontal motion (y 

axis, denoted as sway) and up-down vertical motion (z 

axis, denoted as heave). We measured acceleration every 

minute at a sampling rate per axis of 10.54 Hz in bursts of 

9.1 s in length, whereby each axis was sampled alternat-

ingly (xyzxyzxyz…). GPS-positions were taken based on 

an accelerometer-informed schedule [21]. Once the vari-

ance of five consecutive acceleration bursts of the z axis 

was below a threshold of 1000 (inactive animal, collar 

settings ACC_L_THR: 1000), the collar collected a GPS-

position every 2  h, above this threshold every 15  min 

(active animal).

Behavioral observations

All behavioral observations were made in the winter 

months of 2011 and 2012 by two observers. In the field, 

Fig. 1 Illustration of structural behaviors (bottom line and pictures), internal states (top line) and vigilance behavior (red rectangles). Large herbivores 
switch between different structural behaviors to satisfy prevailing needs (e.g., nutritional and safety needs) when being in state active. Here, a 
display of the structural behavior ‘standing with head up’ is referred to as vigilance behavior and can be utilized as index for perceived predation risk. 
‘Standing with head up’ is also displayed during resting states (e.g., when animals stand in the sun for longer periods of time). Here, it can not be 
used as indicator of vigilance, because the animal is not forced to trade different structural behaviors to fulfill prevailing needs
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the observer first located the collared animals within 

range via UHF triangulation and afterward placed him-

self in a favorable position inside a car and waited for 

approaching animals. To increase the amount of accel-

eration data during field observations, some collars 

were rescheduled to measure acceleration bursts every 

15 s for the observation period. Almost all observations 

were done on meadows due to the low visibility inside 

the forest. We documented the observed behavior with 

a video camera (Panasonic Lumix DMC-TZ 10, Pana-

sonic HC-V500). Before or after each observation, a 

digital radio-controlled clock, which automatically syn-

chronized to the German DCF77 time signal, was filmed 

to facilitate easy synchronization of acceleration data and 

video segments.

Data processing

In the laboratory, we first synchronized the acceleration 

signals with the video recordings and allocated a struc-

tural behavior category to each acceleration measure-

ment. For this purpose, we used the programs Windows 

Movie Maker 5.1 in combination with R [28] and the 

program  Observer® XT 10 by Noldus Information Tech-

nology. We described behavior based on the structural 

behavior categories: lying, standing, browsing, walking, 

trotting, galloping and ‘others’ (Table  1 with detailed 

description).

Additionally, we classified the posture of the animal’s 

neck in head down, head middle, head up and head mov-

ing (Table 2 with detailed description), because roe deer 

can display all behaviors with different neck postures. 

All behavior and posture categories were exhaustive and 

exclusive.

�e acceleration data were sampled in units of milli-

volts. We transformed the raw acceleration data in units 

of g (1  g =  9.81  m/s2) with a linear transformation fol-

lowing the user manual [22]. As every sensor is a little 

different, it is recommended to calibrate each collar by 

successively aligning every axis perpendicular toward 

the earth’s gravitational field. �is allows for calculating 

sensor-specific offset and slope (see detailed description 

in [22]). We were not able to do the calibration for half 

of the collars, because we did not calibrate them before 

collaring the animals and afterward did not get all col-

lars back from the field. Instead, we used the average 

calibration values of 30 calibrated collars as constants 

for the linear transformation. Calibration revealed small 

differences in the collar-specific offsets which influenced 

measurements of static body acceleration. To prevent 

potential bias in the classification model, we calculated a 

collar-specific correction value (see detailed description 

in Additional file 2: Fig. S2) that was used to calculate a 

centered static body acceleration of the x axis (sba_x_c, 

Table 3). We calculated static body acceleration, dynamic 

body acceleration, mean dynamic body acceleration, 

mean difference and variance between adjacent data 

points, variance of static body acceleration, variance 

and maximum of dynamic body acceleration, dominant 

power spectrum and the frequency of the dominant 

power spectrum (see Table 3 with detailed description). 

Most predictor variables were already used in former 

studies [7, 23, 24].

Instead of assigning predictor variables to segments of 

fixed width, we calculated those for each data point based 

on moving windows with variable width (Fig.  2). Static 

body acceleration was calculated with a moving aver-

age using a window width of seven data points (0.66  s). 

�is window width showed fine smoothing when animals 

changed posture [25]. All other predictor variables were 

calculated with window widths of 10 data points (~1  s, 

labeled as w1), 22 data points (~2  s, labeled as w2), 45 

data points (~4 s, labeled as w5) and 96 data points (~9 s 

labeled as w9).

Modeling

�e modeling approach consisted of three modules. In 

the first module, we developed and evaluated a classifica-

tion model that classified the observed acceleration sig-

nal into structural behavior categories. We expanded this 

module with another classification model that targeted 

the posture of an animal’s neck. In the second module, we 

developed a model to synthesize the predicted sequence 

of structural behaviors into the internal states active and 

Table 1 Ethogram of animal structural behavior

Behavior Label Description of behavior

Lying l Lying on the ground without body movements

Standing s Standing without body movements

Browsing b Ingestion of food alternated with single steps 
between food sources

Walking w Walking

Trotting t Trotting

Galloping g Galloping

Others o Shaking, scratching with antler, scratching with hoof, 
grooming

Table 2 Ethogram of animal posture

Posture Label Description of posture

Head up u Head is kept above shoulder height

Head middle m Head is kept at shoulder height

Head down d Head is kept below shoulder height

Head moving mo Head is moving from one posture to another 
(e.g., from down to up)
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Table 3 Description of predictor variables

(i = data point within the burst, w = window width). Each predictor variable is calculated for each acceleration axis (except odba_xyz) and for di�erent window widths 

(except sba). These are indicated by speci�c su�xes (e.g., meandl_x_w2 stands for the meandl that is calculated over the acceleration data from the x axis with a 

window width of 2 s)

Name Formula Description

sba sbai =
1

7
∗

∑i+3

j=i−3
accj Static body acceleration

sba_x_c sba_x_ci = sba_xi − correction_valuetag Corrected static body acceleration of x axis

dba dbai = |acci − sbai | Dynamic body acceleration

mdba
mdbai =

1

w

∑i+ w
2

j=i− w
2

dbai
Mean dynamic body acceleration

mdba_xyz
mdba_xyzi =

∑i+ w
2

j=i− w
2

(

dba_xj + dba_yj + dba_zj
) Overall mean dynamic body acceleration of the x-, y- and z-axis

meandl
meandli =

1

w

∑i+ w
2

j=i− w
2

∣

∣accj+1 − accj
∣

∣

Mean absolute difference between adjacent data points

vardl
vardli =

1

w−1

∑i+ w
2

j=i− w
2

(∣

∣accj+1 − accj
∣

∣ − meandli
)2 Variance of the absolute difference between adjacent data points

varsba
varsbai

1

w−1

∑i+ w
2

j=i− w
2

(

sbaj − sba
)2 Variance of the static body acceleration

vardba
vardbai =

1

w−1

∑i+ w
2

j=i− w
2

(

dbaj − dba
)2 Variance of the dynamic body acceleration

maxdba
maxdbai = MAX

i+ w
2

j=i− w
2

(

dbaj
) Maximum of the dynamic body acceleration

dps See R-Script (Additional file 8). Dominant power spectrum

fdps See R-Script (Additional file 8). Frequency of the dominant power spectrum

animal_id:  53      01.03.2013 
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Fig. 2 Acceleration signal of the x- (black), y- (red) and z-axis (blue). Left plot shows the raw acceleration data transformed to values in g. Top right 
shows static body acceleration (sba, calculated with a window width of seven data points); bottom right shows mean dynamic body acceleration 
(mba_w2, calculated with a window width of 22 data points) of the same burst (see Table 3 for a detailed description of the predictor variables). 
In the first 5 s the animal is browsing with the head below shoulder height. Afterward, the head is raised above shoulder height and the animal is 
standing
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resting. In the third module, we combined the previous 

modules to predict vigilance behavior.

Previous studies that tested different classification 

techniques to classify behavior from acceleration data did 

not find substantial differences in terms of model perfor-

mance [8, 26]. �erefore, we employed classification trees 

(CART algorithm, R package rpart [27, 28]) which are 

relatively fast-running and straightforward to interpret. 

�e amount of behavior-tagged acceleration data differed 

between the observed animals (Additional file  3: Fig. 

S3). In case of differences in the individual acceleration 

signatures, this would have caused biased splitting rules 

toward animals with more data. Hence, we homogenized 

the dataset and randomly selected a subset of 1500 data 

points per behavior category and animal. We evalu-

ated the minimum amount of data points per subset and 

observed a stabilization of the splitting rules after 1000 

data points. For some animals, we had less than 1500 

data points for the behavior categories trotting, gallop-

ing and ‘others’. Here, we used all available data points. 

�e resulting dataset was split into 2/3 training and 1/3 

validation datasets. We were not particularly interested 

in the behavior category ‘others’ and reduced the weight 

(model parameter ‘weight’) for these data points until 

‘others’ behavior was classified into a single leaf. Prelimi-

nary testing showed that model calibration based on ran-

dom tenfold cross-validation led to substantial overfitting 

of the models. We therefore used cross-validation based 

on the individual animals to determine the optimal tree 

size. Here, the model is trained successively for x  −  1 

animals and tested for the out-of-bag animal. We let the 

classification tree grow to full size and then pruned it to 

the smallest tree whose cross-validation error is less than 

the minimum cross-validation error plus one standard 

deviation (‘1-SE rule,’ [27]). We evaluated model perfor-

mance by predicting the pruned classification model to 

the validation dataset and calculated model accuracy

sensitivity

and positive predictive value

accuracy

=
number of true positives + number of true negatives

total number of datapoints
,

sensitivity =
number of true positives

number of true positives + number of false negatives

=
number of true positives

number of all positives
,

ppp =
number of true positives

number of true positives + number of false positives

=
number of true positives

number of positive calls

for each animal separately. Furthermore, we developed 

and evaluated a classification model that predicted the 

posture of the animal’s neck (posture model). For this 

model, we selected parameters that reflect neck posture 

(sba_x, sba_x_c and sba_z) as predictor variables and 

excluded data points when the head was moving (posture 

‘head moving’). We applied the same model procedure as 

for the behavior model.

We categorized the internal state of an animal into 

active and resting. We based state classification on the 

predicted sequence of structural behaviors from the 

behavior model. We defined an animal in state active, 

when it primarily displays the behaviors browsing, walk-

ing, trotting, galloping and ‘others’ (in the following sum-

marized as active behaviors because all involve physical 

motions) for a duration of at least 7  min. We decided 

for a minimum duration to exclude short peaks of active 

behaviors (e.g., relocation, scratching) during resting 

states. Similarly, we consider an animal in state resting, 

when it displays primarily lying or standing behavior (in 

the following, summarized as passive behaviors) for a 

duration of at least 7  min. We used standing and lying 

behavior because roe deer displayed both behaviors while 

resting (personal observations). Here, the minimum 

duration of 7  min compromises between roe deer that 

sometimes rest (e.g., lay down) between two browsing 

periods for short periods and deer that are highly alert 

(stand and scan the surrounding) for several minutes (see 

discussion). �e length of 7  min was derived from dis-

cussions with several roe deer experts. We implemented 

these rules in the following way. First, we applied the 

behavior model to the acceleration data of interest. We 

merged the predicted behaviors lying and standing as 

passive behaviors and all other behaviors as active behav-

iors and calculated the proportion of active behavior per 

burst (pactive). We then calculated a moving average with 

a window width of seven minutes over the time series 

pactive. �e generated time series showed obvious peri-

ods with high activity and periods with low activity (a 

graphical illustration is provided in Additional file 4: Fig. 

S4). To find the transition points between active and rest-

ing states, we calculated the crossing points between the 

moving average and a threshold value. As selection cri-

terion for the optimal threshold value, we calculated the 

total proportion of time in state active for a sequence of 

threshold values (0, 0.05, 0.1, …, 1) and plotted both. Due 

to the primarily ‘passive’ and thus very homogeneous 

character of resting states, we wanted to select a thresh-

old value that (1) maintains low variation within resting 

states and (2) reliably discriminates resting and active 

states. We, therefore, argue for the smallest threshold 

value after the sharp decline in the proportion of time in 

state active that occurs, when resting states are separated 
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from active states. �e choice of the window size and the 

threshold value affected the starting/ending points of 

active states. To better match the exact starting/ending 

points, we scanned the time windows where the thresh-

old value was intersected a second time and assigned the 

final starting/ending points of active states to the times-

tamp of the last/first burst at which its pactive actually 

exceeds the threshold value. �is procedure also detected 

active states that were shorter than 7 min. According to 

our definition of active states, we finally removed these.

According to the common definition of vigilance 

behavior, we defined an animal as vigilant when it is 

standing still, with the head raised above shoulder height, 

while being in state active [15]. �e final behavior model 

had difficulties to differentiate between the behaviors 

standing and lying. �is resulted in many standing events 

being classified as false lying events. It is very unlikely 

that an animal lies down for short periods of time (e.g., 

a few seconds) while being in state active. Hence, all 

predicted lying events inside an active state are presum-

ably true standing events. Based on this assumption, 

we merged both behaviors for vigilance detection and 

joined the corresponding splitting rules. Additionally, the 

behaviors standing and lying were solely classified based 

on parameters that reflect the dynamic body acceleration. 

For vigilance detection, we explicitly wanted to integrate 

the posture head up as a classification rule to separate 

out events where the animal is standing with the head in 

low or middle position. Hence, we constructed the vigi-

lance model by manually combining the splitting rules 

that predicted the behaviors standing and lying from the 

behavior model, and the splitting rules that predicted the 

posture head up from the posture model. We predicted 

vigilance behavior inside all active states. To evaluate 

this approach, an experienced person assessed two video 

recordings per animal and tagged all occurrences of vigi-

lance behavior according to expert judgment. After, we 

compared these with the predictions from the vigilance 

model and calculated accuracy, sensitivity and positive 

predictive value for each animal.

Model application

We predicted animal behavior, state and vigilance behav-

ior for a two-year-old male roe deer (animal id 53) in 

March of 2013. To spatially and temporally plot vigilance 

levels, we projected the collected GPS-positions onto 

the time series of active and resting states and assigned 

each GPS-position to one of the two states. We then cal-

culated the proportion of time spent vigilant in a time 

window of 10 min around each active GPS-position. We 

selected only active GPS-positions that were situated at 

least 15 min away from the transition points in order to 

prevent potential bias when the animal switches from 

a resting to active state and vice versa. Additionally, we 

plotted the detected active states over the time of day 

(actogram), calculated the proportion of time in state 

active during day vs night and time budgets for the pre-

dicted structural behavior categories.

Results
We documented all behavior categories of interest for 

eight animals in the field. Five additional animals were 

observed just for short periods of time with an incom-

plete set of behaviors and were therefore not considered 

for this analysis. In total, we behavior-tagged more than 

15  h of acceleration data. �e amounts of behavior-

tagged acceleration data differed substantially between 

the animals (Additional file  3: Fig. S3). Browsing and 

lying were observed most frequently.

�e final classification model discriminated all behav-

iors of interest (Fig.  3; cross-validation plot: Additional 

file  5: Fig. S5 left). �e model separated the behaviors 

standing and lying from the active behaviors by the mean 

dynamic body acceleration (mdba_xyz_w2). Browsing 

behavior was subsequently split by the corrected static 

body acceleration of the x axis (sba_x_c) and, thus, by 

the posture of an animal. �e behaviors walking, trot-

ting and galloping were again discriminated by predictor 

variables that correspond to the dynamic body accelera-

tion. Applied to the test dataset, the classification model 

correctly predicted all behaviors in 71% of the cases 

(range between animals 66–79%). �e confusion matrix 

(Table 4) revealed that most erroneous predictions were 

distributed in behavior categories that are characterized 

by similar body posture and dynamic body acceleration. 

�us, the model mixed standing with lying, browsing 

with walking and trotting with galloping. Errors con-

cerning the behavior ‘others’ were distributed over all 

behaviors. For most behavior categories, sensitivity and 

positive predictive value were comparable between ani-

mals (Fig. 4, left).  

Optimal tree size of the posture model according to the 

one standard deviation rule was 12 (Additional file 5: Fig. 

S5 right). �is and the next smaller model did not yield an 

obvious improvement to the model. We, therefore, pruned 

the tree to a size of three (Fig. 5). �e model discriminated 

all three postures based on the corrected static body accel-

eration of the x axis. �e overall model accuracy for the 

posture model was 88% (range between animals 78–91%). 

�e posture model made most errors by mixing head 

down with head middle, and head middle with head up, 

but rarely mixed head up with head down (Table 5). Sen-

sitivity and positive predictive value were comparably high 

for all animals and postures (Fig. 4, right).

According to the criteria for an optimal threshold 

value to discriminate between active and resting states, 
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we selected a threshold value of 0.05 (Additional file  6: 

Fig. S6). �us, when an animal displayed more than 5% 

active behaviors within a time window of 7 min, it made 

the transition from resting to active and vice versa (with 

the exception that the resulting state lasted for at least 

7  min). We constructed our classification model for 

vigilance detection by combining the splitting rule that 

discriminated the behaviors standing and lying (mdba_

xyz_w2 < 0.11, behavior model) with the splitting rule for 

posture head up (sba_x_c < −0.4, posture model). Com-

pared to expert judgment of vigilance behavior (in total 

230  min of video recordings evaluated), the model pre-

dicted vigilance behavior with a mean accuracy of 96.02% 

(range between animals 92.56–98.95%), mean sensitivity 

of 98.35% (95.39–100%) and mean positive predictive 

value of 96.85% (91.61–98.97%).

In March of 2013, animal 53 displayed 309 active states 

(Fig. 6, left) with a mean number of 10.3 active states per 

24 h (sd 2.53). On average, the active states accounted for 

42% of the day (sd 0.05). We observed a slight tendency 

to higher activity levels during nighttime on most days 

(Fig. 6, right). �e mean duration of an active state was 

59  min (sd 41). An average resting state lasted 81  min 

(sd 48 min). According to the predicted behaviors from 

the behavior model, during active states, animal 53 

spent most time browsing (62%), followed by standing 

(16%), lying (6%), walking (7%) and ‘others’ (6%) (Addi-

tional file 7: Fig. S7). Trotting and galloping behavior was 

mdba_xyz_w2 < 0.11

dps_x_96 < 0.014

sba_x_c1 >= −0.85

sba_x_c1 >= 0.15

vardba_z_w5 < 0.095 meandl_z_w5 < 0.39

mdba_z_w5 >= 0.075 vardba_z_w5 < 0.19l s

s

b g

w o t g

yes no

Fig. 3 Classification tree of the behavior model. The model classified behavior into lying (l), standing (s), browsing (b), walking (w), trotting (t), gal-
loping (g) and ‘others’ (o). See Table 3 for a detailed description of the predictor variables

Table 4 Confusion matrix of the behavior model

The confusion matrix divides all data points according to the reference (x axis, true behavior) and the behavior prediction from the classi�cation model (y axis). The 

number of data points correctly classi�ed is shown in italics

Reference

Lying Standing Browsing Walking Trotting Galloping Others

Prediction  Lying 3545 1142 0 6 0 0 91

 Standing 272 1811 103 71 0 3 297

 Browsing 2 133 3450 469 11 4 191

 Walking 11 354 310 2719 96 32 773

 Trotting 0 9 0 102 974 86 29

 Galloping 1 37 7 29 153 1317 126

 Others 169 514 130 400 3 4 1287
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observed less than 1% of the time. During resting states, 

animal 53 was mostly lying (94%) and standing (4%). 

�e spatial distribution of resting GPS-positions was 

clearly more clumped than that of active GPS-positions 

(Fig. 7, left). Animal 53 was, on average, vigilant for 8.5% 

of the time during active states. Spatial differences in 

the observed vigilance behavior were not clearly visible 

(Fig. 7, right). However, when vigilance levels are plotted 

temporally (Fig.  8), it appears that animal 53 was more 

vigilant during daylight and reduced its vigilance level 2 h 

after sunset.   

Discussion
�e primary aims of this study were to develop and eval-

uate models for an automated classification of animal 

behavior, internal state and vigilance behavior based on 

raw acceleration data of Roe deer. We were able to suc-

cessfully implement all three tasks.

�e classification model for animal behavior discrimi-

nated all structural behaviors with an overall accuracy 

of 71%. However, the model struggled with reliably dis-

criminating between behaviors that share similar accel-

eration signatures. �is was especially the case for the 

behaviors standing and lying, where 29% of the standing 

data points were erroneously classified as lying. In both, 

the animal is characterized by almost no body movement 

and an identical neck posture that makes differentiation 

behavior model

0
.0

0
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0
.4

0
.6

0
.8

1
.0

l s b w t g o

posture model

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

d m u

eulavevitciderpevitisopytivitisnes

Fig. 4 Boxplots show variation in sensitivity and positive predictive value for each behavior category of the behavior model (left) and for each 
posture category of the posture model (right) between the animals. Boxplots depict the median (horizontal line), first and third quartiles (box), maxi-
mum and minimum values (whiskers) and extremes (open circles)

sba_x_c1 >= 0.14

sba_x_c1 >= −0.4d

m u

yes no

Fig. 5 Classification tree of the posture model. The model classified 
the posture of an animal’s neck into down (d), middle (m) and up (u). 
See Table 3 for a detailed description of the predictor variables

Table 5 Confusion matrix of the posture model

The confusion matrix divides all data points according to the reference (x axis, 

true posture) and the posture prediction from the classi�cation model (y axis).

The number of data points correctly classi�ed is shown in italics

Reference

Down Middle Up

Prediction  Down 3615 225 16

 Middle 378 3214 447

 Up 7 350 3537
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difficult. Posterior plausibility checks are an option to 

correct for presumably misclassified behaviors that 

are unlikely to occur in the specific context. We imple-

mented this approach for vigilance detection and joined 

the classification rules that predicted lying and stand-

ing behavior due to unlikely occurrence of lying behav-

ior while being classified as state active. In doing so, we 

could reduce false predictions during active states, but 

were not able to reduce them during resting states. Using 

internal states as contextual information for error correc-

tion could be beneficial for many species whenever inter-

nal states are featuring the presence or absence of specific 

behaviors. Visual inspections of model predictions also 

revealed that false predictions often affected only a few 

data points that were surrounded by true predictions. 

�is could provide further options for posterior model 

improvement by implementing moving windows that 

vote for the most frequent behavior inside the window. 

Detailed evaluation of model performance is especially 

important, if the model is to be extrapolated to other 

animals or outside the observation period. Variations in 

the acceleration data between and within animals might 

be caused by varying sensor measurement, collar tight-

ness, collar position, individual-specific variations in 

behaviors or changing environmental conditions (e.g., 

seasonal changes in vegetation height or changing habi-

tat availability). Shamoun-Baranes et al. [7] therefore sug-

gested to develop individual-based models, which is most 

often technically unfeasible, especially in terms of time-

consuming field observations and elusive study species. 

Instead, we aimed at constructing one population-based 

model and controlled potential bias by implementing 

collar-specific parameter correction (parameter sba_x_c), 

homogenization of the training dataset and cross-vali-

dation based on the animals. Additionally, we calculated 

animal-specific performance parameters for each behav-

ior category. �ese were in similar ranges, indicating that 

overfitting toward individual animals was hardly present. 

Only for a few animals we observed varying values for the 

behaviors trotting and galloping, which were most likely 

caused by the low number of data points. �e behavior 

category ‘others’ was less predictable. Here, we pooled 

several behaviors despite their divergent acceleration sig-

natures. �ese probably interfered with the acceleration 

signatures of the main behavior categories. Once one of 

these behaviors is targeted, we recommend to split ‘oth-

ers’ into more homogeneous behavior categories. Finally, 

the choice of a rather simple modeling technique allowed 

for an easy evaluation of the classification rules. We iden-

tified one split, in particular, that needs special attention 

time of day

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

2013−03−01

2013−03−05

2013−03−10

2013−03−15

2013−03−20

2013−03−25

2013−03−30

proportion of time 
 in state active (%)

total
daytime
nighttime

0 20 40 60 80 100

Fig. 6 Left Actogram of animal 53 in March of 2013, blue bars represent time windows when the animal was in state active. Yellow lines represent 
sunrise and sunset. Right Proportion of time in state active calculated for each day, separately for daytime (yellow), nighttime (blue) and both (black). 
Sunrise and sunset mark the transition from daytime to nighttime and vice versa. Sunrise also determines the switch between two days so that 
each day consists of one daytime and the following nighttime
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Fig. 7 Animal locations categorized according to resting and active states (left), and active locations categorized according to different vigilance 
levels (right) for animal 53 in March of 2013. A GPS-location is marked as an active/resting location when it was collected during an active/resting 
period of animal 53. Vigilance is calculated as the proportion of time spent vigilant during active states, calculated in a time window of 10 min 
around each active GPS-location

time of day

0:00 2:00 4:00 6:00 8:00 10:00 13:00 16:00 19:00 22:00

0%

20%

40%

60%

Fig. 8 Boxplot of the predicted proportion of time spent vigilant while being in state active, separated for each hour of the day, for animal 53 in 
March of 2013. Yellow lines represent sunrise and sunset. Box widths are adjusted proportionally to the number of data points
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when model prediction for other seasons is intended. An 

animal is classified as browsing when the dynamic body 

acceleration is in a specific range (odba_xyz_w2  <  0.11 

and var_dba_z_w5  <  0.1) and, more importantly, when 

the head moves down (sba_x_c  ≥  0.15). �is specific 

splitting rule might have been influenced by our obser-

vation period during the winter months when the veg-

etation is normally low. During the growing season or 

in environments that are characterized by high vegeta-

tion, animals might not be forced to lower their heads to 

ingest food. �is would produce false predictions of cate-

gory walking or ‘others’ under the current model. Unfor-

tunately, we were not able to do behavioral observations 

during the growing season or in other habitat types due 

to the low visibility of the animals. �us, when model 

extrapolation is intended, effective evaluation of model 

predictions is required and could be further supported by 

seasonal or habitat-specific histograms of the predictor 

variables to check for data consistency (see Kroeschel in 

preparation).

In comparison with previous studies, which established 

the predictor variables based on the acceleration burst or 

segments of fixed width, we modified the classification 

procedure by calculating the predictor variables for each 

data point with moving windows of varying widths. We 

did not aim at comparing this approach with an approach 

using fixed segments. However, we expect that using 

each data point was advantageous because we gener-

ated an extended set of predictor variables that allowed 

for finer adaption to behavior-specific acceleration sig-

natures. Further, we delegated the choice of the optimal 

width for each behavior to the classification model. We 

were also able to reliably detect changing behaviors inside 

a burst. However, parameters that capture features of 

the dynamic body acceleration within a moving window 

were still prone to cause false predictions at the transi-

tion points of two behaviors. �is was apparent when 

the model would sometimes predict short intervals (usu-

ally less than one second) as false moving or false ‘oth-

ers’ behavior when animals switched from ‘standing with 

head up’ to ‘browsing with head down.’ But even in these 

cases, the true change of behavior was usually detected 

very quickly, allowing for easy post-processing of the 

false prediction (see “Discussion” section above).

Discriminating behavior into structural behavior cat-

egories is usually straightforward because it involves 

clearly observable behavior categories. In state detection, 

this is often not the case, as we are not yet able to moni-

tor an animal’s mind directly. Nevertheless, states can 

be discriminated, particularly, when they differentiate in 

the value range of observable and, in case of automated 

classification, measurable parameters. We differenti-

ated states based on expert-based rules that were applied 

to a sequence of structural behaviors. After exploratory 

comparison of model predictions and video recordings, 

we are confident that model predictions coincided with 

expert judgment in most circumstances. However, the 

model will fail when animals are either in state active 

but mainly vigilant for more than 7 min (results in false 

resting and thus missed vigilance) or lying down for less 

than 7  min between active states (results in false active 

and false vigilance). Adjusting either the width of the 

time window or the threshold value would not substan-

tially improve the model because false model predictions 

simply shift to one or the other case. In these situations, 

human observers are superior because they are able to 

acquire additional information (e.g., posture of ears, body 

tension, external stimuli) that facilitate correct discrimi-

nation. Unfortunately, we lacked this information with 

our sensors, although techniques like measurements of 

micromovements [29] or heart beat [30] promise to fill 

this gap soon. Additionally, animals sometimes gradu-

ally transition from one state to another or display active 

behaviors (e.g., grooming) after lying down. �ese inter-

mediate states, which mainly occur at the transition 

points, poorly fit into a binary discrimination in active 

and resting and can only be overcome by a finer discrimi-

nation of states. Not only the proportion but also the 

temporal sequence of specific structural behaviors prom-

ises to hold important information for discriminating 

these more complex states. �e wide array of techniques 

being developed for state detection in movement ecology 

[4] might provide helpful tools to process this extended 

set of parameters.

In recent years, the concept of internal states gained 

increasing recognition in behavioral ecology, because it 

allows for the integration of alternating needs into statis-

tical models [13, 31]. So far, internal states were always 

deduced from movement pattern [2–4], physiological 

measurements [32] or activity measurements [11, 33, 

34]. Combining these with behavioral parameters could 

substantially improve state detection, because fine-reso-

lution behavioral data facilitate plausible interpretation 

and, thereby, detailed discrimination of states.

Very high agreement with expert judgment of vigilance 

behavior confirmed that even complex behaviors can be 

predicted with acceleration data. Moreover, the observed 

vigilance levels were comparable to previous field studies 

with roe deer ([35]: median vigilance 10.5%, range <0.01–

72.7% (Poland); [20]: mean 24.21%, sd 14.55% (France), 

both sampled outside the hunting period). In contrast 

to these, we were able to continuously monitor vigilance 
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behavior in focal animals, even when the animal was hid-

den in cover, and without introducing any disturbance 

caused by observer presence in the field. However, when 

applying the presented approach, a few points have to be 

considered. �e transition points between active and rest-

ing states are especially prone to misclassification errors 

when resting animals are erroneously classified as active. 

To prevent bias, we omitted the transition points by exclud-

ing a buffer of 10 min around these and, thus, focused on 

the core active states. Unfortunately, we were not able to 

control for false predictions of vigilance behavior when ani-

mals were lying down for short periods of time. Here, we 

currently recommend being cautious about sampling inter-

vals of very high vigilance due to the risk of misclassified 

lying behavior. Many researchers focused field observations 

of vigilance on animals that were foraging. We differenti-

ated active and resting states and excluded resting states 

for monitoring of vigilance. �us, we relaxed strict foraging 

periods and also allowed for periods when the animal was, 

e.g., primarily moving. We do think that this simplification 

was adequate because (1) active states of roe deer during 

wintertime are mainly dedicated to gaining energy (which 

was indicated by high proportion of browsing behavior in 

animal 53 during those states) and (2) other active behav-

iors besides foraging (e.g., moving) are likewise character-

ized by limited predator detection probabilities [36] and, 

thus, should be traded with vigilance behavior to main-

tain safety. State classification, nevertheless, can be easily 

modified by targeting structural behaviors that are distinc-

tive for more specific states (e.g., state foraging can be dis-

criminated by a minimum proportion of browsing behavior 

inside the moving window).

We pioneered this approach with data from roe deer, 

but each step of the approach can be easily adapted to 

other large herbivores. Other species, however, require 

separate behavioral observations to train classification 

models and species-specific rules to discriminate internal 

states.

Conclusion
By predicting behavior, state and vigilance to an exem-

plary dataset, we demonstrated diverse applications and 

the huge potential behind acceleration data that can be 

assembled with the presented approach. In particular, 

continuous monitoring of vigilance behavior, in combi-

nation with detailed behavior budgeting and spatiotem-

poral allocation of both, will provide new insights in how 

large herbivores perceive and control predation risk [14, 

17], will allow to test scientific hypotheses and models 

[e.g., 37] and, additionally, will provide helpful tools for 

wildlife management [e.g., 38].

Authors’ contributions

MK designed the study, conducted the data analysis and wrote the manu-
script. Fieldwork and behavior-tagging of acceleration data was done by 
FWe, FWi and MK. IS and BR contributed to analysis, theory and writing the 
manuscript. All authors read and approved the final manuscript.

Additional �les

Additional �le 1: Fig. S1. Picture of a collared roe deer with schematic 
representation of the acceleration axes. X axis measures acceleration in 
forward–backward horizontal motion (surge), y axis measures left–right 
horizontal motion (sway), and z axis measures up-down vertical motion 
(heave).

Additional �le 2: Fig. S2. The graph shows the density distribution of 
the static body acceleration of the x axis (sba_x, black line) from animal 
15. All animal-specific density distributions of the sba_x values showed 
two distinct peaks that correspond to an animal’s most frequent postures 
‘head up’ (1) and ‘head down’ (2). The posture ‘head up’ and, thus, the 
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for a minimum duration of 7 min. The bold black lines show the final active 
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mark the positions of model pruning.

Additional �le 6: Fig. S6. Total proportion of time in state active calcu-
lated for a sequence of threshold values. The red circle marks the selected 
threshold value.
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active states (right).
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