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Abstract

We propose an intuitive abstraction for a process to ex-
port its memory to remote hosts, and to access the mem-
ory exported by others. This abstraction provides a sim-
pler interface to RDMA and other remote memory tech-
nologies compared to the existing verbs interface. The
key idea is that a process can export parts of its mem-
ory as files, called remote regions, that can be accessed
through the usual file system operations (read, write,
memory map, etc). We built this abstraction in the Linux
kernel, and evaluated it. We show that remote regions are
easy to use and perform close to RDMA. We demonstrate
it via micro-benchmarks and by adapting two in-memory
single-host applications to use remote memory: R and
Metis. With R, using remote regions requires no changes
to the code and allows R to run with remote memory that
exceeds the physical memory of a host. With Metis, the
modifications amount to ≈100 lines of code and they al-
low Metis to scale its performance across 8 hosts.

1 Introduction
Remote memory allows a process to read and write

the memory of another process in a different host. This
is an exciting idea whose time has come [1]. Remote
memory is available now, using RDMA technology over
Infiniband or Ethernet [49, 29], and other new technolo-
gies are emerging [28, 24, 47]. Many applications are be-
ing redesigned to use remote memory (key-value storage
systems [43, 14, 30, 15], database systems [50, 6, 64],
map-reduce [39], etc).

Unfortunately, remote memory faces two problems
now. First, it has no standard interface. Current tech-
nology uses the RDMA verbs interface, but new hardware
such as Gen-Z and OpenCAPI will have their own in-
terfaces to control mapping, access, etc. Even RDMA is
still changing with key innovations, such as DCT [18],
that are offered in some implementations but not oth-
ers. Second, remote memory today is hard to use. With
RDMA, even the simplest program to access some data
from a remote host requires a complex ritual: code is re-
quired to initialize contexts, register memory, establish
RDMA connections, create queue-pairs, associate them
with connections, transition the queues through various
states, exchange RDMA keys, post commands on queues,
and poll the queues for completions [7]. Furthermore,
RDMA lacks naming and location services that applica-
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Host 1
fd=create(”/regions/oz”, 0644);
ptr=rmalloc(fd, 1024);
sprintf(ptr, ”alice”);
close(fd);

Host 2
fd=open(”/regions/oz”, O RDONLY);
buf=malloc(1024);
lseek(fd, pos buf, 0);
read(fd, buf, 1024); /* gets “alice” */
close(fd);

Figure 1: Using regions, Host 1 creates a region named oz in
REGIONFS, allocates a buffer in the region, and populates the
buffer. Host 2 then reads host 1’s string, similar to an RDMA-read
operation, except that developers need not program with RDMA
directly (which is complex).

tions need, forcing them to reimplement this functional-
ity every time.

In this paper, we propose a simple idea: to use files
as the interface to remote memory, shedding the com-
plexity of RDMA and providing a standard for new tech-
nologies. In particular, we propose remote regions or, in
short, regions. With regions, a process exports parts of its
memory as files in REGIONFS, a file system that a remote
host can then access using the usual file operations (read,
write, memory map, etc). In addition to a simple inter-
face, regions draw features from file systems to provide
functionality lacking in RDMA: name space, timestamps,
access control, etc (§4).

Regions are simple because they replace low-level
RDMA mechanisms with high-level controls that are op-
erated through a familiar interface. Figure 1 shows how
easily a host can use regions to read data in the mem-
ory of another host. By contrast, equivalent RDMA logic
takes around 300 lines of hard-to-understand code [7].

The main challenge in designing regions is to find the
right balance between elegance, expressiveness, and ef-
ficiency, while overcoming the limitations of the hard-
ware. To find this balance, we address questions of
file semantics, memory allocation, data sharing, memory
mapping, page fault preemption, security, data-metadata
separation, caching, cache coherence, and sharing gran-
ularity, while addressing RDMA limits on memory regis-
tration, connections, and keys. The current implementa-
tion of regions targets RDMA, but we believe region’s in-
terface will be applicable to new upcoming remote mem-
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ory technologies [24, 28], providing a common abstrac-
tion with which applications can be written in a portable
fashion across these new technologies.

We have built regions using RDMA in the Linux kernel
v4.8, and we evaluated their cost on a cluster of 8 ma-
chines with RoCE. Using microbenchmarks, we see that
accessing data via regions is reasonably close to RDMA.
We have used regions to extend two applications, R [48]
and Metis [41], to use remote memory. R is a system
for statistical processing of data, while Metis is an in-
memory implementation of map-reduce running on a sin-
gle host. We use regions to adapt R to operate on large
data sets in remote memory exceeding the available local
memory capacity. We do this by using R’s ff package to
store objects in memory-mapped files, and placing these
files in REGIONFS. We also use regions to produce a
distributed version of Metis that runs across many hosts,
sharing in-memory data. This change required only 82
lines of code, and allows Metis to scale to 8 hosts, giv-
ing it more memory and improving performance by 3.5×
compared to a single host.

2 Related work

Same interface, different goal. The file interface is
often used for remote storage, where the main goal is
to provide durable storage capacity. Several such sys-
tems use RDMA to improve performance, such as Oc-
topus [40], Crail [57], Ceph [11], and GlusterFS [25].
DAFS [13] is a file system protocol for RDMA, while [60]
is a proposal to run NFS over RDMA. The file interface
can also be used to manage large local memories [58].
All of the above works rely on a file interface but have a
different goal from our goal of accessing the memory of
remote applications.

Different interface, same goal. Prior work provides re-
mote memory with a different interface. LITE [61] pro-
vides a kernel interface that offers more flexible protec-
tion, and better scalability and isolation than verbs on
RDMA. There is much work in distributed shared mem-
ory (DSM) (e.g., [9, 33, 46, 2, 51, 53, 56, 8]) including
recent work on persistence using non-volatile memory
and replication [54]. FaRM [14, 15] provides transac-
tions over RDMA with lock-free reads. All these systems
provide a simpler interface than RDMA, but they do not
support the well-known file interface, which has many
advantages (§4).

Different interface, different goal. Many systems pro-
vide remote storage with an interface other than files, in-
cluding key-value stores (e.g., [43, 14, 30, 15]), Linda
tuples [10], distributed objects (e.g., [63, 27, 5]), and
database systems. These systems offer a different ab-
straction from regions. For example, key-value stores

provide GETs and PUTs on key-value pairs; Linda pro-
vides a tuple interface; distributed objects require appli-
cations to declare and manipulate the objects provided
by the framework; and database systems use SQL.

Remote memory applications. Several works have pro-
posed replacing disks with remote memory as a faster
target for swapping or paging (e.g., [23, 12, 34, 21, 31,
22, 17]). CacheDM [36] uses remote memory as a cache
for a network file system, while Infiniswap [26] uses re-
mote memory as a cache for a local swap/paging device.
Several of these applications are built with RDMA; they
might have been simpler to develop with regions.

New hardware. Disaggregated memory proposes a
new system architecture that detaches memory from ma-
chines and places it on a common fabric. The work in-
cludes academic papers [26, 37, 20, 4, 23, 45] and up-
coming technologies to support it, such as Gen-Z [24]
and Omni-Path [28]. Regions could provide an elegant
interface to disaggregated memory, though the imple-
mentation of regions will differ from the RDMA imple-
mentation we give (that will depend on the details of
these technologies, which are still work in progress).

3 Assumptions, goals, and motivation
We assume machines are connected to a network with

low latency, high bandwidth, and reliable connectivity—
such as, for example, machines in a few racks in a data
center. We assume a single administrative, trust, and
fault domain. We consider deployments with a couple
to tens of machines. While some companies have large
deployments with thousands of machines, the vast bulk
of our customers are enterprises with deployments of 100
or fewer machines in a private facility, and that is our tar-
get environment. Network partitions are rare and, when
they do occur, it is reasonable for the system to pause as
the rest of the system will be unavailable anyways (e.g.,
network file systems and other servers are unreachable).

Our goal is to provide abstractions for applications to
access the memory of other applications across the net-
work. Currently, the standard way to do that is to employ
one-sided read and write operations using the verbs li-
brary (libibverbs [35]). This interface has three issues
that we want to overcome:
• Complexity. As we mentioned, verbs operations are

complex, and we seek simple and intuitive alternatives.
• Dependency on existing technology. There are other

remote memory technologies under development other
than RDMA, such as Omni-Path [28] and Gen-Z [24]. We
would like to find high-level abstractions so that applica-
tions can be portable across these technologies.
• Resource limitations. RDMA has limitations on re-

sources at the network adapter, such as limited cache
sizes for connections and memory translations [14]. We
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want to design abstractions that can hide or overcome
these limitations without concerning applications.

We expect a simpler interface to have performance
costs but want them to be reasonable and we certainly
want to understand them, much like a developer needs to
understand the cost of other high-level features, such as
garbage collection, lambdas, etc.

4 Why files?
By using a file interface, regions get many benefits:
• Well-known. All developers know files.
• Utilities. The file interface inherits a vast repertoire

of utilities: editors, backup, grep, find, cp, cat, sed, awk,
etc. Regions allow these to be used with remote memory.
• Language support. Most of the functionality of

regions is in REGIONFS, and all major programming
languages support files. There is only a small library
(with synchronization and stub functions) that needs to
be ported to a given language.
• Interposition support. There are many tools to in-

terpose on file system calls, for tracing, debugging, au-
diting, and profiling (e.g., DFSTrace [44]). These tools
all work with REGIONFS.
• Name space. Directories and files make it easy to

find and organize data across applications in the network.
• Users and access permissions. Applications can use

the notion of users from the operating system combined
with access permissions to control who has access.

We get these benefits for free because the file interface
is well matched to our problem. In contrast, other inter-
faces to remote memory, such as RDMA, provide none of
these benefits.

5 The regions abstraction
We now explain how regions appear to users as an ab-

straction, and we explain how we arrived at this abstrac-
tion. We show how to provide the abstraction in §6.

In its simplest form, a (remote) region is a logically
contiguous part of the memory of a process, called the
owner process. The owner creates a region like a file, and
can operate on it by memory mapping, reading, writing,
or allocating variables using a special rmalloc function
(§5.2); these operations refer to data in local memory.
Processes in other hosts can also perform these opera-
tions, to access data in the memory of the owner.

5.1 Basic functions
Regions provide a file system called REGIONFS

mounted in a known location, such as /regions. Each
file in REGIONFS is a region stored in memory, either
locally or remotely. REGIONFS supports the usual file
operations (e.g., creat, unlink, open, close, read, write,
chmod, stat) in addition to mmap (§5.7). By default, a
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Figure 2: Example of the use of regions on a map-reduce style of
computation. (1) Three mapper processes in different hosts cre-
ate a region each, run some computation, and store the results
in their region; (2) a fourth reducer process reads the data in the
regions, and (3) creates a region and writes the result there; (4)
a fifth process reads that region and (5) produces a graph in the
display of a user.

region disappears when its creator process terminates or
crashes (accessing it results in an I/O error).

A directory in REGIONFS is not a region but organizes
regions, much like regular file systems; but unlike regu-
lar file systems, directories carry some special extended
attributes that regions inherit upon creation (§5.4).

5.2 Memory allocation
An application often dynamically allocates and de-

stroys many buffers in its lifetime. Rather than creat-
ing/deleting a region for each buffer, applications can
dynamically allocate/free buffers within a region, using
these functions:

void *rmalloc(int regionfd, size t len)
int rfree(void *ptr)

where regionfd is a descriptor for a region open in write
mode. Calling rmalloc is faster than creating a region:
the former executes entirely in memory, while the lat-
ter requires contacting a metadata manager over the net-
work (§6.6). In fact, an application might create just one
region and then allocate its buffers within that region.

5.3 Example of usage
We illustrate the use of a region with an example with

five processes that run a map-reduce style of computa-
tion (Figure 2). In existing map-reduce systems, pro-
cesses exchange data using a distributed file system such
as the Hadoop Distributed File System (HDFS) [3]. With
regions, processes can exchange data directly in mem-
ory, as with RDMA, but with the simplicity of using files.
Also, this is distinct from using an RDMA-enabled file
system (e.g., [40, 11, 25]), where processes store data in
a storage server and use RDMA to access the server; with
regions, processes can directly export data in their mem-
ory and read data from the memory of other processes.
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Attribute Type Description
OWNERPID pid t pid of process owning region
PERSISTENT bool keep region when process ends (§5.5)
MULTIHOSTED bool store region across many hosts (§5.6)
FIXVADDR uint64 t fixed virtual address (§5.7)
ONEWRITER bool only one process can open for writing
HOSTALLOC ip list hosts storing region if MULTIHOSTED (§5.6)

Figure 3: Region-specific attributes.

5.4 Region attributes

Beyond the attributes of a typical file (access bits, uid,
gid, etc), each region has some additional region-specific
metadata that determine certain behaviors (Figure 3).
The owner indicates the process who created the region;
this is different from the owner uid of a region/file, which
is a user. When this process ends, the region is auto-
matically deleted unless the PERSISTENT attribute is set
(§5.5). A region gets a fixed virtual address across hosts
if FIXVADDR is set (§5.7). A region can be opened for
writing by at most one process if ONEWRITER is set; this
is enforced across hosts. When a region grows in size,
new memory is typically allocated from the host of the
owner, but it is possible to allocate it from remote hosts
as well if MULTIHOSTED is set, in which case HOSTAL-
LOC indicates the hosts to allocate from (§5.6).

Applications set these attributes when the region is
created. Since we use the standard creat() call to cre-
ate regions, which cannot specify attributes, we define
an additional function

int rsetdefaultattr(int attr, char *val, int len) /* returns error flag */

that sets the default attributes of new regions for the call-
ing thread.

5.5 Persistent regions

By default, a region is backed by the memory of a pro-
cess. If the process terminates, its memory is deallocated
and the region is automatically deleted. This could be un-
desirable in some cases: the process might wish to leave
the data in memory for a short while until it is consumed
by another process. One solution to this problem is for
the process to defer its termination until its data has been
consumed. This solution is complex because it requires
the process to coordinate with other applications.

We provide a simpler solution: to retain the region
contents after the process terminates. Upon termination,
a process releases its memory but not the region. We call
such regions persistent regions. Persistent regions should
be deleted by the consuming process later. They are also
deleted when the host reboots. To create a persistent re-
gion, a process sets the attribute PERSISTENT.

5.6 Multi-hosted regions
A multi-hosted region is a special type of region that is

stored across many hosts. These regions can store large
data that exceed the physical memory of any single host.

To create a multi-hosted region, a process sets attribute
MULTIHOSTED and optionally chooses the hosts where
the region will be allocated via attribute HOSTALLOC
(§5.4); if this is not set, the default is to use all hosts.

5.7 Memory mapping
Processes can memory map a region using mmap(),

so that the region can be accessed by memory opera-
tions instead of read() and write(). The function returns a
pointer where the region is mapped. If a region is created
with the FIXVADDR attribute, it is given a fixed virtual
address [54]: it always maps to that address, no matter
which process or host maps the region. This ensures that
pointers to data in regions remain valid across hosts, al-
lowing regions to store dynamic data structures and other
data that require indirection. To implement this feature,
we reserve virtual addresses across the cluster (§6.10).

5.8 Performance enhancing functions
Memory mapping of a region on a remote host is

implemented using page faults. Page faults have two
causes: (1) when a process first accesses a page, to fetch
the page; (2) when the process first writes to the page,
to mark it dirty. If the first access is a write, one page
fault both fetches and marks it dirty. Because page faults
are expensive, we provide two ways to prevent them:
prefetch and mark-dirty. With prefetch, applications re-
quest the system to fetch pages immediately, by calling

int rprefetch(void *addr, size t len, bool sync) /* ret: error flag */

which prefetches data in a region starting at addr with
length len; if sync is set, it waits until the data it fetched.
To avoid page faults due to writes, applications can re-
quest the system to mark the page dirty, by calling

int rmarkdirty(void *addr, size t len, bool zero) /* ret: err flag */

before writing to a page. If parameter zero is true, this
function zeroes the pages without reading their contents.
This is useful to avoid the overhead of a read-modify-
write cycle if the application intends to completely over-
write the pages (see §8.3).

Function rprefetch is just an optimization that does
not change application semantics. Function rmarkdirty
is also an optimization when parameter zero is false; if
zero is true, rmarkdirty is equivalent to bzero().

5.9 Synchronization
When using regions, one might need to synchronize

processes across hosts (e.g., to share data, as in §5.3). We
provide several distributed synchronization primitives:
barriers, mutexes, and door bells (Figure 4). These are
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Function Description
rbarrier init(name, n) Create barrier for n callers
rbarrier wait(name) Wait for barrier
rmutex init(name) Create mutex
rmutex lock Acquire mutex
rmutex unlock Release mutex
rbell init(name) Create door bell
rbell ring(name) Increment bell value
rbell wait(name) Wait for new value, return it
rdelete(name) Deallocate

Figure 4: Available synchronization primitives.

offered in a user library, since a file system has no such
functionality. A barrier has a parameter n and the caller
blocks until the barrier has been called at least n times.
This serves to synchronize a group of processes. A mu-
tex ensures at most one caller gets the mutex at once. A
door bell has an initial value 0; the ring function incre-
ments it; the wait function waits for it to be incremented
since its last call, returning the current value.

5.10 Caching
When a process uses a region of a different host,

the system locally maintains a page cache of data that
has been recently read or that has been modified. The
cache is a write-back cache (modifications are propa-
gated back to the region in the background). The system
does not provide cache coherence, because it is too ex-
pensive; rather applications can obtain coherence at the
moments of their choice by explicitly using two mecha-
nisms, flushing and clearing caches:

int msync(void *addr, size t len, int flags) /* returns error flag */
int rclearcache(void *addr, size t len) /* return error flag */

where addr is the address within one of the open regions.
Flushing [msync] causes dirty pages to be written back
to the region, so the owner can observe the modified
data. Clearing pages [rclearcache] removes them from the
cache, so that the calling process subsequently obtains
fresh data from the owner. These functions produce an
effect only at a process remote to the region or for multi-
hosted regions, as the owner of single-hosted region does
not have a cache. After clearing a page, a process might
invoke rprefetch() to avoid a page fault (§5.8).

Processes sharing a region must follow some disci-
pline on how to use these functions to avoid data cor-
ruption. We propose a simple and effective scheme in
the next section.

5.11 Sharing data
To correctly share data, processes must flush and clear

their caches carefully. Doing so is not easy in general,
but we now describe a simple scheme that works well
in the use cases that regions are designed for. To ex-

Type Regions RDMA
Owner-
remote

Owner writes to region and
remote process reads, or re-
mote process writes to re-
gion and owner reads

One process writes locally
and another RDMA-reads, or
one process RDMA-writes
and another reads locally

Remote-
remote

A remote process writes to
region and a remote process
reads from region

One process RDMA-writes
to third party’s memory and
another RDMA-reads

Figure 5: Two patterns of sharing data between processes in
different hosts using regions and the analogue using RDMA.

plain how this is done, we broadly classify sharing of
data alongside two dimensions.

The first dimension is who participates in the sharing
relative to who owns the data. There are two possibil-
ities: owner-remote sharing and remote-remote sharing
(Figure 5). With owner-remote sharing, one of the pro-
cesses sharing owns the region or the memory. With
remote-remote, the process that owns the region or mem-
ory is a third party. Owner-remote sharing is simpler to
deal with, because there is only one cache involved (the
cache of the remote process), while remote-remote shar-
ing involves two caches, one for each remote process.

The second dimension is what we call the granularity
of sharing. With fine-grained sharing, processes inter-
leave their execution often and share small bits of data
(e.g., one or a few variables) at a time, with frequent
coordination. For example, in a mutual exclusion algo-
rithm, two processes frequently read and write common
variables containing the state of flags or counters, often
changing the role of who reads and writes the shared
information. With coarse-grained sharing, one process
produces a large chunk of data before another process
consumes it; for example, in the map-reduce computa-
tion of Figure 2, the mappers produce large outputs that
are later consumed by the reducer.

We anticipate that regions will be used for both owner-
remote and remote-remote sharing alongside the first di-
mension, but only for coarse-grained sharing alongside
the second dimension, because fine-grained sharing over
the network is generally too costly. Coarse-grained shar-
ing does not require the cache to be coherent very of-
ten: it suffices to be coherent in the instant after the
producer has finished writing and before the consumer
starts reading. Accordingly, processes can flush or clear
their caches at that moment, as follows. With owner-
remote sharing, the remote process either flushes or clear
its cache, depending on whether it is producing or con-
suming data. With remote-remote sharing, the remote
process that produces data flushes its cache, while the
remote process that consumes data clears its cache.

5.12 Pseudo file system
Regions have more metadata than files. We expose this

metadata to users in a pseudo file system /proc/regions,
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File name Description
hosts List of hosts using regions
memusage Aggregate memory usage of regions hosted locally
pools List of pools (§6.7) with used/free space and daemon’s

logical address
daemon pid of daemon process (§6.4)
procs pid of local processes using regions
files/pathname Metadata of region in pathname: vaddr, maximum

size, pool, attributes

Figure 6: Region metadata stored in pseudo file system
/proc/regions.

accessible only by root. Available Information includes
local memory usage of regions, a list of local pools, and
the local processes using regions (Figure 6). Moreover,
for each region r, /proc/regions/files/r indicates the re-
gion’s fixed virtual address, maximum size, pools from
which memory is allocated, and attributes.

5.13 Limitations
Regions have a limitation: a process cannot use them

to export data in its stack or static variables, because
the process must allocate data in regions using rmalloc.
However, these limitations may not matter: it is easy to
change static variables to heap variables, and it is proba-
bly a bad idea for applications to export data in the stack,
since that data disappears when its call frame is deleted.

6 Realizing regions using RDMA
We now describe how we realize regions using RDMA.

While the design is centered around RDMA, we expect
that its key ideas will be applicable to future disaggre-
gated memory hardware.

6.1 Basic architecture
Figure 7 shows the architecture of regions. There are

four main logical components: REGIONFS file system,
user library, daemon, and manager. Broadly, the RE-
GIONFS file system component implements the VFS ker-
nel operations required of a file system, while the user
library implements synchronization and performance-
enhancing functions. The first module is instantiated
once per host; the second, once per application. The dae-
mon (one per host) allocates and maintains large pools of
memory in which regions are allocated, and shares these
pools with both local and remote processes. The man-
ager provides the control plane, handling every file sys-
tem operation except reading and writing data. The man-
ager has one instance but it is replicated for high avail-
ability using standard mechanisms, such as Paxos state
machine replication [32, 52]. We provide more details in
the next sections.

6.2 RegionFS file system component
This component is a kernel module that implements

the file system for region, with functionality to drive the

sync
functions

RDMA network
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Module Description Section
regionfs file system for regions §6.2
user lib user-level file system §6.3
daemon holds and exports memory pools §6.4
manager handles control operations §6.5
sync funcs barrier, mutex, doorbell §6.3
local alloc kmalloc §6.3
ioctl stubs functions without VFS analogues §6.3
kernel lib communication library §6.12
RPC comm for communicating with manager §6.12
RDMA comm for communicating with daemons §6.12
open regions list list of regions that client has opened §6.2
region map tracks where a region is stored §6.8
vfs ops VFS interface to file system §6.6
RDMA handler accepts RDMA connections §6.12
vaddr allocator allocates virtual addresses §6.10
RPC handler handles requests from clients §6.12
open regions all open regions in the system §6.5
pool allocator allocates cluster memory §6.9
region list all regions in the system §6.5
pool list all pools in the system §6.5
host list keep track of hosts §6.5

Figure 7: Architecture. Region components are in gray. The
figure shows two application hosts, but we expect a few dozens
of them. There is a single manager, and it is replicated for fault
tolerance. The manager is involved only in infrequent control
operations, staying out of the performance-critical data path.

execution of file system operations, coordinating with
the manager and the other hosts’ daemons. The module
keeps an important data structure, the open region list,
which tracks all regions that the application has opened,
with their virtual addresses, and map for locating the data
within the region. We detail the VFS operations in §6.6
after some more background, but they fall into two cate-
gories: Data operations (read, write, readpage, etc) exe-
cute locally or over RDMA, depending on where a region
resides. Metadata operations (directories, file attributes,
etc) are similar to the implementation of a network file
system (e.g., to create a directory, it calls the manager,
which then records information about the directory).

6.3 User library component
The user library provides the synchronization func-

tions (§5.9), an allocator for rmalloc (§5.2), and ioctl
stubs. The synchronization functions issue an RPC to the
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manager, which implements the actual functionality. The
RPC call blocks until the synchronization occurs (e.g., a
barrier gets all its participants). For the rmalloc allocator,
we memory map the region (if it has not been mapped
already) and organize the space using a buddy allocator.
The allocator uses a magic number at the beginning of
the region to know if the allocator structures must be ini-
tialized. The ioctl stubs provide region-specific functions
without a corresponding VFS operation (rsetdefaultattr
(§5.4), rprefetch (§5.8), rmarkdirty (§5.8), rclearcache
(§5.10)). The stubs translate these functions into ioctl’s
that get handled by VFS.

6.4 The daemon
The daemon serves three purposes. First, it overcomes

resource limitations of the RDMA network adapter, which
cannot keep many connections or export many buffers
because its internal cache is small [14]. To address these
problems, the daemon allocates big pools of physical
memory (§6.7) and then allocates regions within these
pools. Thus, a host exports a few pools (rather than many
regions) and a remote process can connect just with the
daemon to access the data of all applications in the host
(instead of connecting to each application). Second, the
daemon allows a host to offer memory to multi-hosted re-
gions (§5.6) even if the host has no running applications.
Third, the daemon supports persistent regions (§5.5) by
holding the region’s data when a process terminates.

6.5 Manager
A central manager handles all control operations: cre-

ation, opening, closing, deletion, and memory-mapping
of regions; file system metadata operations (create and
delete directories, set and get inode attributes); alloca-
tion of memory for regions; and allocation of global vir-
tual addresses. To do that, the manager keeps track of the
hosts in the system, file system metadata (inodes and di-
rectory contents), memory usage of all pools at each host,
allocation of regions, allocation of virtual addresses, and
list of all open regions. The manager is not involved
in reading and writing data in regions—the performance
critical operations—so it is not a bottleneck. However, a
larger system might require distributing the manager.

6.6 VFS operations
To open a region [open()], the client calls the manager;

if the region exists, the manager returns its starting vir-
tual address and region map (§6.8); the client adds the
region to its open regions list and stores its virtual ad-
dress and region map. To create a region, the client calls
the manager to check if the region already exists, to pre-
allocate an initial set of pages to it, to allocate virtual ad-
dresses (§6.10), and to return the starting virtual address
and region map, which the client stores.

To read a region [read()], the client consults the re-

A B region XC region Y1 2 3 4

host 1

C ... pool 2

pool 1A B 1 2 ...

128 KB

host 2

... pool 4

pool 33 4 ...

Figure 8: Four pools in two hosts. Region X stores its data in two
pools of a host. Region Y is multi-hosted, spanning pools of two
different hosts.

gion map and issues RDMA read(s) to the proper host(s);
it then copies the result to the user-provided buffer. To
write a region [write()], the client checks if the write falls
outside the preallocated space for the region; if it does, it
contacts the manager to extend the region and the region
map; then, the library copies the user-provided buffer
into RDMA-registered memory, consults the region map
to determine the host(s) to contact, and issues RDMA-
write(s) to the proper host(s).

To prefetch data [ioctl for rprefetch()], the client con-
sults the region map to determine where to read the data
from, reads over RDMA, and places it in the file system
cache. Similarly, to write back [msync()] a page, the
client consults the region map, write-protects the page,
writes the page over RDMA, and marks the page clean.
To mark a page dirty [ioctl for rmarkdirty()], the client
sets the dirty bit for the page. To clear a page from the
cache [ioctl for rclearcache()], the client evicts it from
the file system cache.

6.7 Pools
A pool is a chunk of physical memory, at one of the

hosts, that is used to store a region or parts thereof (Fig-
ure 8). Pools are allocated by the daemon (§6.4) and
are shared with local processes (using shared memory)
and with remote processes (using RDMA). To share lo-
cally, the daemon allocates its pools using anonymous
files [38], which are chunks of anonymous memory that
can be memory mapped at many processes. More pre-
cisely, the daemon creates a pool using memfd create;
then, an application process can memory map the pool at
the addresses that correspond to a region that the process
needs. Regions need not be contiguous within a pool;
however, to reduce the number of memory maps, the dae-
mon allocates the region in large contiguous chunks.

To share its pools with remote hosts, the daemon
RDMA-registers each pool so that it can be read and writ-
ten over RDMA. RDMA provides access control through
a key for each buffer that a host exports. Because a pool
is a single buffer, this mechanisms is coarse-grained: it
provides identical access to all data in the pool.

6.8 Finding region data
A region map tracks where a region is stored, by map-

ping offsets in a region to a host, a pool in that host, and
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an offset in that pool. The map has entries, each repre-
senting a fixed-length contiguous chunk of memory on
one pool at one host. There are two aspects to this map:
its granularity and how to represent hosts and pools.

Granularity. The granularity involves a trade-off be-
tween the size and the flexibility of the map. A small
grain leads to a prohibitively large map; a large grain
leads to internal fragmentation. A natural size might be
the page size (4 KB), but that causes a significant 0.2%
space overhead for the map (e.g., 2 GB for a 1 TB re-
gion). We chose the granularity to be 128 KB for an
overhead of 64 KB for a 1 TB region.

Target representation. We want map entries to take at
most 64 bits. We use 47 bits to represent a 64-bit address
within a host, by dropping the lower 17 bits and aligning
over 217 =128 KB chunks, which coincides with the map
granularity above. We use the remaining 17 bits as a
global identifier that maps to a host and a pool in that
host; this map is kept by the manager (“pool list” box in
Figure 7) and cached by the user library.

6.9 Managing memory

There are two aspects to memory management: local
and cluster allocation.

Local allocation. Each host has limited memory and one
needs to decide how much to reserve for pools and re-
gions. We make this determination locally at each host,
where the daemon allocates and frees pools as needed.

Cluster allocation. When an application needs mem-
ory, one needs to decide which pool(s) to use; for multi-
hosted regions, one needs to also decide which hosts will
provide memory. We make this determination in a cen-
tralized fashion: the manager knows about all participat-
ing hosts, their pools, and the free space in each pool
(“pool allocator” box in Figure 7). The manager receives
requests to create new regions, with an initial space to
preallocate for future region growth. It then decides from
what pools to allocate the memory using some alloca-
tion policy. The current policy is as follows. For re-
gions in a single host, the manager picks from the pools
in that host; if the host does not have enough memory,
it asks the daemon to create more pools; if the daemon
is unable, the request to create or expand a region fails.
For multi-hosted regions (§5.6), the manager picks mem-
ory from the hosts in a round-robin fashion, allocating
ALLOCSIZE≥217 bytes at a time. Note that ALLOCSIZE
becomes the maximum contiguous size that a client can
transfer in one RDMA request. We pick ALLOCSIZE to
be 2 MB—a value large enough to offset the initial fixed
costs of an RDMA transfer (with a 40 Gbps network, the
initial cost to transfer 2 MB is 0.3% of the total cost).

6.10 Allocating virtual addresses
Regions are assigned a fixed and unique virtual ad-

dress (§5.7). Therefore, we must ensure that (a) differ-
ent regions get assigned disjoint virtual addresses, even
if they are created by different applications in different
hosts, and (b) an application will not use a region’s vir-
tual addresses for other purposes. To ensure (a), we use
centralization: region creation goes through the man-
ager, who knows about all virtual addresses in use by
regions. The manager assigns unique virtual addresses
to each region (“vaddr allocator” box in Figure 7). To
ensure (b), we reserve a range of virtual addresses for
regions using the dynamic linker responsible for load-
ing binaries. There are many ways to do that in Linux.
First, we can specify an ET EXEC object file type in
the ELF binary and then create a program header with
attributes p vaddr and p memsz, indicating the address
and size of the virtual address to reserve [19]; this re-
quires statically linking all libraries. Second, we can use
a custom dynamic linker that avoids the virtual addresses
reserved for regions; we do that by including in the ELF
binary an INTERP program header with the path to the
linker [16]. These approaches require modifying the ap-
plication binary. A third approach, which requires no
binary changes, is to modify the default dynamic linker,
ld-linux.so.

Are there enough virtual addresses? Today, Intel pro-
cessors use page tables with four levels, addressing 48
bits of addresses; one bit is used by the Linux kernel,
leaving 47 bits for applications. If we reserve another bit
for regions, that leaves 64 TB for each application and
64 TB for all regions. If that is not enough, Intel plans
to support five-level page tables, which add 9 bits of vir-
tual addressing [55]; reserving one bit for regions gives
32 PB for each application and 32 PB for all regions.

6.11 Security
We enforce access control using the file system, which

assumes that the kernel is trusted. This provides reason-
able security against damage from bugs and human er-
rors, but an attacker of a host gets access to the regions
in every host. Providing stronger security is future work.

6.12 Other modules
The kernel lib consists of two kernel modules: (1) RPC

comm module implements RPC’s to the manager, and (2)
the RDMA comm modules establishes a reliable RDMA
connection to remote hosts and implements one-sided
RDMA read and write. The RPC handler module at the
manager handles RPC requests from clients. The RDMA
handler at the daemons registers the pools with RDMA,
reports the RDMA key and pool address to the manager
so that clients can later access the pool, and accepts reli-
able RDMA connections from remote daemons.
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System Description
rdma RDMA read or write
nfs-tmpfs NFS to a ramdisk
tmpfs local ramdisk

rr regions
rr+ regions with prefetching

Figure 9: Baselines (top) and systems under study (bottom).

6.13 User-level file interface
An earlier version of REGIONFS was implemented

as a user-level file system [42] and a user-level page-
fault handler [62]. We found that data operations were
faster, because they could use RDMA’s user-level inter-
face. However, page fault handling was slower. As fu-
ture research, it would be interesting to explore a hybrid
design that provides both user-level and kernel interfaces
to the same file system to get the best of both worlds.

7 Implementation
We implemented a prototype of regions for the Linux

kernel v4.8 with 7700 lines of C/C++. Our current im-
plementation differs from the design in a few significant
ways: (1) we do not replicate the manager, (2) at each
daemon, we have a fixed number of pools, hence a fixed
amount of memory for regions, and (3) our VFS file sys-
tem implements only the functionality needed to run our
applications and benchmarks.

8 Evaluation
Our goal is to understand how well do regions per-

form, and how easy it is to use them in practice. To
answer these questions, we use micro-benchmarks, ex-
amine code complexity, modify two applications to use
regions, and measure their performance.

8.1 Testbed
Our testbed has 8 machines connected to a 100 Gbps

RoCE switch. Each server has 128 GB RAM, a 800 GB
SATA SSD, dual Intel Haswell-EP 2.4 GHz processors
with a Mellanox ConnectX-4 NIC and Linux kernel 4.8.

8.2 Baselines
We compare the performance of regions against three

baselines (Figure 9). RDMA offers a different interface
to remote memory (RDMA verbs). Nfs-tmpfs and tmpfs
provide a similar interface as regions (files), but without
access to remote memory: nfs-tmpfs accesses files in a
RAM disk of the NFS server, while tmpfs accesses files
in a local RAM disk without network overheads, repre-
senting an upper bound on achievable performance.

We consider two variants of regions (rr and rr+) with-
out and with performance enhancements that we describe

read write
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Figure 10: Latency for transferring data (no caching).

in each experiment. In all experiments, we configure a
region to be stored remotely from the benchmark or ap-
plication operating on it, and so they access the region
over the network rather than locally.

8.3 Performance of memory-mapped access

Setup. We study the time it takes for regions to read and
write memory-mapped data. In an experiment, we mem-
ory map a file or region, and then sequentially read or
write bytes. We choose an operation type (read or write),
and operation size (number of bytes to read or write), and
repeat the operation 100 times, measuring the latency of
each operation. We compare regions against the base-
lines (nfs-tmpfs, tmpfs, rdma); RDMA does not support
memory-mapping, so we instead read or write the data
using one-sided RDMA verbs. We consider two varia-
tions of region. One variant (rr) performs raw operations
without caching: we drop the cache after every opera-
tion, so that every operation must go over the network.
The other variant (rr+) caches the most recently accessed
page, so that consecutive operations on the same page ac-
cess the cache, and writes to a page are buffered until the
entire page is written. We also consider a variant of nfs-
tmpfs that caches a page in the same way (nfs-tmpfs+).

Results. Figure 10 shows the results. For reads (left),
we see that nfs-tmpfs and rr are flat from 64 bytes un-
til 4K; this is because the file system operates at a page
granularity, so it fetches an entire page even if the re-
quest needs fewer bytes. RDMA and tmpfs have the low-
est latency, at 41% and 54% of rr’s latency on 64 bytes,
and 38% and 28% on 1MB. This is because rr suffers
from overheads of page faults, 4KB-transfer granular-
ity, and the file cache; tmpfs also incurs those overheads,
but it compensates by avoiding the network latency. nfs-
tmpfs is the worst due to higher network overheads. For
writes (right), results are qualitatively similar; for rr and
nfs-tmpfs, writes are slower than reads because the file
system performs a read-modify-write operation, where
it first reads the page before it writes it, requiring two
network round trips. With RDMA, writes are faster than
reads because RDMA writes complete as soon as they are
posted on the PCIe bus at the remote host, whereas reads
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Figure 12: Distribution of latency for reading and writing 4 KB on
a memory-mapped region using rr.

need to get data from memory.
These comparisons are unfair to file systems: unlike

RDMA, they fetch full 4KB pages even for small requests,
and cache them; doing so benefits applications that use
the page later, but Figure 10 gives no credit for that. So,
we now consider the effects of having a cache. Figure 11
shows the results with caching of the last page accessed.
We see much improvement for small requests. Here, rr+
performs better than RDMA up to 4KB (reads) or 1KB
(writes). We include RDMA in the graph for comparison,
but it has no cache. Theoretically, an application can im-
plement its own caching for RDMA, but doing so makes
RDMA even more complex. In contrast, caching comes
for free with a file system, without any application effort.

Figure 12 shows the cdf for reading or writing 4 KB
of data using rr (no cache). We see a concentration from
10–11 us for reads, with the 95-percentile at 12 us; and
a concentration from 23–26 us for writes, with the 95-
percentile at 25.8 us. As we pointed out, writes are
slower because the file system performs a read-modify-
write operation (with memory-mapping, the system does
not know that the application will eventually overwrite
the entire page). This overhead is avoided by calling
rmarkdirty (§5.8) prior to writing a page (not shown).

8.4 Performance of the file system

Setup. We run Sysbench, a standard file IO bench-
mark [59], to measure the performance of reading data
from REGIONFS. We configure Sysbench with a single
thread that reads from a 2GB file and reports throughput,
average latency, and 95% latency. We study sequential
and random reads of 16 KB chunks. We compare RE-
GIONFS against nfs-tmpfs and local tmpfs.

Seq Seq Seq Rnd Rnd Rnd
Tput LatAve Lat95 Tput LatAve Lat95

System (MB/s) (ms) (ms) (MB/s) (ms) (ms)
nfs-tmpfs 4871 0 0.01 4247 0 0.01
rr 5432 0 0.01 4821 0 0.01
tmpfs 6556 0 0 6048 0 0

Figure 13: Sysbench file IO benchmark results. Seq refers to
sequential reads, Rnd to random reads.

regions RDMA
Functionality Description loc loc
Initialization Code needed in every application 6 229
Producer-consumer Simple message queue 29 103
Linked list Traverse linked list 18 68
Hash table Lookup operation of hash table 14 78
Access revocation Remove access from a host 1 37

Figure 14: Equivalent functionality in regions and RDMA.

Results. Figure 13 shows the results. For throughput,
tmpfs performs the best: 6.5 and 6.0 GB/s for sequen-
tial and random reads, respectively, while REGIONFS
is within 83% and 80%—reasonably close to the in-
memory performance of tmpfs, despite going to the net-
work. Nfs-tmpfs is the worst at 4.9 and 4.2 GB/s. For la-
tency, the resolution of the benchmark is 0.01ms, which
is too large to reflect the difference between the differ-
ent systems. (Please refer to the previous experiments,
where we report other latency numbers.)

8.5 Code complexity

Setup. To study code complexity, we implement func-
tionality that is commonly used in remote memory appli-
cations, and compare the number of lines of code (LOC)
to implement them using REGIONFS and RDMA verbs.

Results. Figure 14 shows the complexity results. We
see that region code has much fewer lines of code –
4.2 times on average, excluding initialization and revoca-
tion. For initialization, region requires just opening and
memory mapping a file, while RDMA requires initializing
contexts, memory registration, establishing connections,
creating, transitioning and initializing queue pairs, key
exchange, and more. For the other functionality, regions
are similarly simpler, requiring just memory or file oper-
ations, while RDMA code must manually submit requests
to queue pairs, monitor for completions, etc. In addi-
tion, RDMA verbs require explicit management of a par-
titioned global address space, which translates to more
work at the application level. This complexity makes it
hard for new developers to even get started on RDMA.

Next, we further study complexity, by using regions to
adapt two applications to use remote memory.

8.6 Application: R
R is a statistical processing system for data in mem-

ory. Using regions, we adapt R to use remote memory. R
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Figure 15: R application. Bars show total runtime (smaller is
better). Error bars show std deviation.

has a large number of packages to extend its core func-
tionality, including a package ff that extends R’s memory
capacity using memory-mapped files. ff provides objects
that are each stored in a file; to limit memory consump-
tion, small parts of the file called sections get memory
mapped and unmapped as needed, with at most one sec-
tion per file mapped at a time. We set up ff to use the files
in REGIONFS, and to use sections that are 128KB wide.

Setup. In each experiment, we choose a workload for
R and an input size. We use R to process the workload
with an input of the given size, and we measure the time
it takes. The workload mimics a data analyst that has a
large data set and uses R to analyze parts of it. The data
set is a large matrix stored in a host different from the
one running R, representing data generated elsewhere in
the network that does not fit in R’s memory. The matrix
is stored as several ff objects, one per column, with 200
columns and a number of rows that varies from 5 to 20
million. We consider two workloads:
• R-Agg. Compute an aggregation (mean) over ten

columns of the matrix. This workload represents an ex-
treme in terms of the ratio of computation to memory
accesses: it almost entirely performs memory accesses,
by reading data and only computing a sum.
• R-LR. Compute a linear regression over ten columns

of the matrix. The algorithm accesses the rows of the ma-
trix several times, but performs significant more compu-
tation than R-Agg, representing a balance between mem-
ory accesses and compute.

We consider three systems: rr, tmpfs, and nfs-tmpfs.

Results. Figure 15 (right) shows the R-Agg workload.
Regions approach tmpfs within 1%, despite having to
read the input from a remote host. In comparison, nfs-
tmpfs is within 6% of tmpfs.

For the R-LR workload (Figure 15 left), we see a simi-
lar trend but with a larger running time incurred by linear
regression. Regions are again within 1% of tmpfs, while
nfs-tmpfs is within 9% of tmpfs.

While the performances of tmpfs and nfs-tmpfs are
similar to rr, tmpfs and nfs-tmpfs do not permit R to run
with a large memory because their capacity is limited by

the available memory locally or in the nfs server. By con-
trast, regions can be multihosted (§5.4) to aggregate the
memory of many machines.

We also ran R and placed the ff-generated files in an
SSD rather than in REGIONFS, as a way to obtain more
space. The running time of R increased by 2.5× (for R-
agg) and 2.7× (for R-LR) relative to rr.

As for code complexity, we made no changes to R’s ff
package; we just set it up to use files in REGIONFS.

8.7 Applications: Metis
Metis is an in-memory map-reduce processing frame-

work. Metis reads its initial input from a file, and
launches many threads to run map-reduce. In map-
reduce, the data is partitioned across a set of mappers,
each producing an output; the outputs of all mappers are
grouped based on a key, and the groups are partitioned
across the reducers; each reducer produces some output,
and all outputs are aggregated in the end. Metis runs on
a single host, using work queues to distribute map and
reduce tasks among many threads.

We modify Metis to run across many hosts, using re-
gions to share its input and output. More specifically,
the modified Metis does three things: (1) reads the ini-
tial input from remote hosts using regions, representing
data produced by another computation, such as a previ-
ous map-reduce job1, (2) runs threads across many hosts,
with each host writing the output to a region to make it
available to the other hosts, and (3) collects the regions
with the results from all the hosts and aggregates the out-
put. In effect, we produce a distributed version of Metis,
while retaining its in-memory processing.

Setup. In each experiment, we run a map-reduce job to
produce a histogram. In this job, each mapper processes
a partition of the input and produces a partial histogram;
the reducers then aggregate the bins, each reducer re-
sponsible for a disjoint set of bins; a final stage collects
the bins from the reducers.

We consider two systems: the original Metis and our
distributed version. We vary the number of threads in
each system; for the distributed version, we vary the
number of hosts. We measure the time to run the map-
reduce computation. The input is a 2.6 GB image file,
and the output produces 403 bins. Metis has an option
called prefault to initially preload all input to memory.

Results. Figure 16 (left) shows the results for a single
host as we increase the number of threads. We see that rr
is faster because it reads the input from remote memory,
while Metis reads from an SSD. For one host and one
thread, rr is 2.0× faster than Metis; for 4 threads, it is
3.5× faster. By increasing the number of threads to 4,

1The motivation is that many map-reduce applications run a chain
of map-reduce jobs, each consuming the output of the previous job.
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Figure 16: Metis application performance. On the left, there is
a single host; rr refers to our distributed version of Metis, while
orig and pf refer to the original Metis, where pf enables Metis’s
prefault option. On the right, we show our distributed version of
Metis on 8 hosts (there are no bars for the original Metis since
it runs only on 1 host). The y-axis is running time (smaller is
better). Error bars show std deviation.

Metis and rr improve by 1.91× and 3.4×. If we exclude
reading the input (with prefault), performance improves
by 2.3–2.9× compared to rr.

Figure 16 (right) shows the results for our distributed
version of Metis running on eight hosts and 1–4 threads
per host. We see that performance improves compared to
running with one host. Using 8 hosts, rr is 3.5, 2.5, 1.7×
faster for 1, 2, 4 threads than rr using a single host with
the same number of threads. The improvement comes
from the hosts running the computation in parallel. The
scalability is not linear because the running time is only
a few seconds and so the overhead of synchronizing the
hosts between phases is relatively high.

As for code complexity, the modifications to Metis
consist of 82 lines. This is small, as the changes amount
to changing a centralized system into a distributed one.

9 Conclusion
In this paper, we applied the Unix idea that “every-

thing is a file” to remote memory, obtaining an abstrac-
tion in which a process exports parts of its memory as
a file that remote processes can access. We studied the
design behind this abstraction, described a prototype that
achieves reasonable performance, and showed that appli-
cations can easily benefit from it.
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