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Abstract. Evapotranspiration (ET) plays an important role in

surface–atmosphere interactions and can be monitored using

remote sensing data. However, surface heterogeneity, includ-

ing the inhomogeneity of landscapes and surface variables,

significantly affects the accuracy of ET estimated from satel-

lite data. The objective of this study is to assess and reduce

the uncertainties resulting from surface heterogeneity in re-

motely sensed ET using Chinese HJ-1B satellite data, which

is of 30 m spatial resolution in VIS/NIR bands and 300 m

spatial resolution in the thermal-infrared (TIR) band. A

temperature-sharpening and flux aggregation scheme (TSFA)

was developed to obtain accurate heat fluxes from the HJ-

1B satellite data. The IPUS (input parameter upscaling) and

TRFA (temperature resampling and flux aggregation) meth-

ods were used to compare with the TSFA in this study. The

three methods represent three typical schemes used to handle

mixed pixels from the simplest to the most complex. IPUS

handles all surface variables at coarse resolution of 300 m in

this study, TSFA handles them at 30 m resolution, and TRFA

handles them at 30 and 300 m resolution, which depends

on the actual spatial resolution. Analyzing and comparing

the three methods can help us to get a better understand-

ing of spatial-scale errors in remote sensing of surface heat

fluxes. In situ data collected during HiWATER-MUSOEXE

(Multi-Scale Observation Experiment on Evapotranspiration

over heterogeneous land surfaces of the Heihe Watershed Al-

lied Telemetry Experimental Research) were used to vali-

date and analyze the methods. ET estimated by TSFA ex-

hibited the best agreement with in situ observations, and

the footprint validation results showed that the R2, MBE,

and RMSE values of the sensible heat flux (H ) were 0.61,

0.90, and 50.99 W m−2, respectively, and those for the la-

tent heat flux (LE) were 0.82, −20.54, and 71.24 W m−2,

respectively. IPUS yielded the largest errors in ET estima-

tion. The RMSE of LE between the TSFA and IPUS meth-

ods was 51.30 W m−2, and the RMSE of LE between the

TSFA and TRFA methods was 16.48 W m−2. Furthermore,

additional analysis showed that the TSFA method can cap-

ture the subpixel variations of land surface temperature and

the influences of various landscapes within mixed pixels.

1 Introduction

Five types of methods have been developed to estimate evap-

otranspiration (ET) or latent heat flux (LE) via remote sens-

ing.

1. Surface energy balance models calculate LE as a

residual term. According to the partitioning of the

sources and sinks of the soil–plant–atmosphere con-

tinuum (SPAC), surface energy balance models can be

classified as one-source (Bastiaanssen et al., 1998; Su,

2002; Allen et al., 2007; Long and Singh, 2012a) or

two-source models (Shuttleworth and Wallace, 1985;

Norman et al., 1995; Xin and Liu, 2010; Zhu et al.,

2013).

2. Penman–Monteith models are used to calculate LE

by using the Penman–Monteith equation and numer-

ous surface resistance parameterization schemes that
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control the diffusion of evaporation from soil sur-

faces and transpiration from plant canopies. These two-

source Penman–Monteith models separate soil evapora-

tion from plant transpiration (Cleugh et al., 2007; Mu et

al., 2011; Leuning et al., 2008; Chen et al., 2013; Sun et

al., 2013; Mallick et al., 2015).

3. Land surface temperature–vegetation index (LST-VI)

space methods assign the dry and wet edges of the LST-

VI feature space as minimum and maximum ET, respec-

tively. These methods interpolate the media, and use the

Penman–Monteith or Priestley–Taylor equation to cal-

culate the LE (Jiang and Islam, 1999, 2001; Sun et al.,

2011; Long and Singh, 2012b; Yang and Shang, 2013;

Fan et al., 2015; Zhang et al., 2005).

4. Priestley–Taylor models expand the range of the

Priestley–Taylor coefficient in the Priestley–Taylor

equation (Jiang and Islam, 2003; Jin et al., 2011) or

combine the physiological force factors with the energy

component of ET (Fisher et al., 2008; Yao et al., 2013).

5. Additional methods include empirical/statistical meth-

ods (Wang and Liang, 2008; Yebra et al., 2013) and the

use of complementary-based models (Venturini et al.,

2008) and land-process models with data assimilation

schemes (Bateni and Liang, 2012; Xu et al., 2015).

If the operational algorithm can be described as a linear com-

bination of inputs, or if the surface variables and landscapes

are homogeneous at the pixel scale, scale error does not ex-

ist (Hu and Islam, 1997). However, it is difficult to develop

linear operational models due to the complexity of mass and

heat transfer processes between the atmosphere and land sur-

face. ET estimation models have been generally developed

for simple and homogeneous surface conditions. However,

heterogeneity is a natural attribute of the surface of the Earth.

Therefore, larger spatial-scale errors occur when these re-

motely sensed models are applied to calculate the regional

ET using satellite data.

In previous studies, researchers have coupled high- and

low-resolution satellite data and statistically quantified the

inhomogeneity of mixed pixels to correct the scale error in

ET estimations using (1) temperature downscaling, which

converts images from a lower (coarser) to higher (finer) spa-

tial resolution using statistical-based models with regression

or stochastic relationships among parameters (Kustas et al.,

2003; Norman et al., 2003; Cammalleri et al., 2013; Ha et

al., 2013); (2) the correction-factor method, which uses sub-

pixel landscapes information to determine the correction fac-

tor of scale bias (Maayar and Chen, 2006); and (3) the area-

weighting method, which calculates roughness length and

sensible heat flux based on subpixel landscapes (Xin et al.,

2012). These correction methods mainly focus on two prob-

lems: inhomogeneity of landscapes and inhomogeneity of

surface variables.

Studies have shown that different landscapes (Blyth and

Harding, 1995; Moran et al., 1997; Bonan et al., 2002; Mc-

Cabe and Wood, 2006) and the subpixel variations of sur-

face variables, such as stomatal conductance (Bin and Roni,

1994), or leaf area index (Bonan et al., 1993; Maayar and

Chen, 2006), can cause errors in turbulent heat flux estima-

tions. Surface variables’ inhomogeneity is rather difficult to

evaluate, as the subpixel variation of surface variables can be

large, even in the pure pixels. For example, generally, tem-

peratures over land surfaces vary strongly in space and time,

and it is common for the LST to vary by more than 10 K over

just a few centimeters of distance or by more than 1 K in less

than a minute over certain cover types (Z. L. Li et al., 2013).

However, in case of mixed pixels, surface variables such as

land surface temperature are commonly considered as a sin-

gle value to represent the entire pixel area in ET estimation

models, which results in large errors.

The focus of this study is on the effects of surface het-

erogeneity when estimating ET. Based on the satellite prod-

ucts that are currently available, three methods were used to

analyze the uncertainties produced by surface heterogene-

ity: (1) input parameter upscaling (IPUS) does not con-

sider the surface heterogeneities at all. It was designed to

simulate the satellites that have identical spatial resolutions

in both the visible near-infrared (VNIR) and thermal in-

frared (TIR) bands; (2) temperature resampling and flux

aggregation (TRFA) does not consider the heterogeneity

of LST; and (3) temperature sharpening and flux aggrega-

tion (TSFA) considers all the surface heterogeneities. These

methods were designed for use with the majority of satel-

lite data or products that have inconsistent spatial resolutions

between the VNIR and TIR bands, such as the Landsat and

HJ-1B satellites.

The surface variables in this paper were mainly derived

from HJ-1B satellite data. The Chinese HJ-1A/B satellites

were launched on 6 September 2008, and were designed

for disaster and environmental monitoring, as well as other

applications. The HJ-1B satellites are equipped with two

charge-coupled device (CCD) cameras and one infrared

scanner (IRS) with spatial resolutions of 30 and 300 m, re-

spectively. Compared to high-temporal-resolution satellite

data, such as the MODIS satellite data, or high-spatial-

resolution satellite data, such as the Landsat 7 or 8 satellites

data, HJ-1B data have the advantage of a high spatiotemporal

resolution. Since the satellites were launched, the HJ-1/CCD

time series data have been widely used in China to accurately

classify land cover (Zhong et al., 2014a) and monitor vari-

ous environmental disasters (Wang et al., 2010). Land-based

variables, such as leaf area index (LAI), land surface temper-

ature (LST), and downward longwave radiation (Ld), have

been retrieved by the HJ-1B satellites using algorithms de-

veloped by Chen et al. (2010), H. Li et al. (2010, 2011), and

Yu et al. (2013), respectively. These variables lay the foun-

dation for ET research.
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Although the HJ-1B satellites provide CCD data with a

high spatial resolution of 30 m, the spatial resolution of the

TIR band is only 300 m. Thus, surface heterogeneity effects

must be considered when estimating the heat flux.

2 Methodology

2.1 Temperature-sharpening method based on

statistical relationships

Surface thermal dynamics affect ET. The spatial resolution

of TIR images is usually not as high as the spatial resolution

of visible near-infrared (VNIR) bands because the energy of

VNIR photons is higher than the energy of thermal photons.

Thus, the inhomogeneity of TIR images would be larger than

the inhomogeneity of VNIR images. Since the land surface

temperature is calculated from the TIR band, the uncertainty

of the variables becomes unpredictable when the inhomo-

geneity of TIR images is enhanced. Therefore, land surface

temperature data should be derived with a high spatial reso-

lution.

The land surface temperature can be reconstructed at the

spatial resolution of the VNIR images by using a statisti-

cal temperature-sharpening strategy proposed by Kustas et

al. (2003). This method assumes that the negative correlation

between the normalized difference vegetation index (NDVI)

and LST is invariant. The NDVI reflects vegetation growth

and coverage, and the LST reflects surface thermal dynam-

ics. The LST decreases with increasing vegetation cover. The

scatter plot between the LST and NDVI values forms a fea-

ture space that is applicable at different scales when a suffi-

cient number of pixels exist.

HJ-1B satellite images can provide vegetation and thermal

information at spatial resolutions of 30 and 300 m, respec-

tively. The 300 m resolution thermal data cannot sufficiently

distinguish the surface temperatures of small targets within

pixels. However, this issue can be addressed by tempera-

ture sharpening based on the functional relationship between

NDVI and LST. A flowchart of temperature sharpening is

shown in Fig. 1, and LST at the NDVI pixel resolution can

be derived based on the following steps (Kustas et al., 2003):

1. The NDVI30 is aggregated to 300 m NDVI (NDVI300).

Then, the NDVI300 is divided into three classes

(0 ≤ NDVI300 < 0.2, 0.2 ≤ NDVI300 < 0.5, and 0.5 ≤

NDVI300).

2. A subset of pixels is selected from the scene where the

NDVI is as homogeneous as possible at a pixel resolu-

tion of 300 m based on the coefficient of variation (CV).

The CVs are calculated using the original 30 m NDVI

data (NDVI30) as follows:

CV =
SD

mean
, (1)

where SD and mean are the standard deviation and the

average values of 10 × 10 pixels of NDVI30, respec-

tively. The CVs are sorted from smallest to largest.

Lower CVs correspond to more homogeneous land sur-

face values, and a threshold should be determined to

guarantee that a sufficient number of pixels is avail-

able for least squares fitting between NDVI300 and T300.

Therefore, the fractions of 25 % of the lowest CVs are

selected from each class.

3. A least squares expression is established between

NDVI300 and T300 using the selected pixels.

T̂300 (NDVI300) = a + b × NDVI300 + c × NDVI2
300 (2)

4. For each 30 m pixel within a 300 m pixel, T̂30 can be

calculated according to Eq. (2) as follows:

T̂30 (NDVI30) = a + b × NDVI30 + c × NDVI2
30 + 1T̂300, (3)

where 1T̂300 = T300 − T̂300 is the deviation between the

regressed temperature and the temperature that was ob-

served by the satellite at 300 m.

2.2 Area-weighting method based on landscape

information

Coarse pixels are inhomogeneous because various types of

land use may be included. Using a dominant type to represent

such a large landscape is irrational. The spatial resolution of

LST is significantly increased by temperature sharpening in

Sect. 2.1. Consequently, all inputs of ET algorithms can be

obtained at high spatial resolutions. Then, inhomogeneity is-

sues can be greatly diminished by dividing the landscape into

finer pixels.

Combined with a high-resolution classification map,

subpixel-scale parameters can be used in the ET algorithm,

which is more rational than using a dominant class type be-

cause different landscapes may require different ET algo-

rithms. The surface energy fluxes can be averaged linearly

due to the conservation of energy (Kustas et al., 2003), and a

simple average that calculates the arithmetic mean over sub-

pixels is the best choice for flux upscaling (Ershadi et al.,

2013). Thus, the aggregated flux at a low resolution F(x,y)

is the arithmetic mean of all the n × n subpixel fluxes that

constitute the contributing flux F(xi , yj ) at coordinate (xi ,

yj ):

F(x,y) =
1

n × n

n
∑

i=1

n
∑

j=1

F
(

xi,yj

)

. (4)

Because the average of the subpixels fluxes is equal to the

area-weighted sum of each land-type result, the final coarse

result can be derived from the area-weighted sum of each

land type result within the landscape. The main steps in the

area-weighting process are shown below (Xin et al., 2012):
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Figure 1. Flowchart of temperature sharpening.

1. The VNIR and TIR input data sets are geometrically

corrected and registered.

2. The area ratios of different land cover types within each

pixel of a low-spatial-resolution classification image are

counted.

3. According to the fine-classification data, different pa-

rameterization schemes can be used in the ET algorithm

to calculate the subpixel flux, such as the net radia-

tion (Rn), soil heat flux (G), and sensible heat flux (H ).

4. To calculate the regional flux, the flux of the large pixel

is calculated by the area-weighting method as follows:

F =
n

∑

i=1

wi · Fi, (5)

where wi is the fractional area contributing flux Fi of

class type i and F is the aggregated flux at the coarse

resolution. The LE is computed as a residual of the sur-

face energy balance in the TSFA (see Sect. 2.3) process,

in which a high-spatial-resolution image is used to re-

duce the number of mixed pixels.

2.3 Pixel ET algorithm

The surface energy balance describes the energy between

the land surface and atmosphere. The energy budget is com-

monly expressed as follows:

Rn = LE + H + G, (6)

where Rn is the net radiation, G is the soil heat flux, H is

the sensible heat flux, and LE is the latent heat flux ab-

sorbed by water vapor when it evaporates from the soil sur-

face and transpires from plants through stomata. The widely

used one-source energy balance model considers a homo-

geneous SPAC medium and ignores the inhomogeneity and

structure. In this case, LE can be expressed as follows:

LE =
ρcp

γ
·
es − ea

ra + rs
, (7)

where γ is the psychometric constant; es and ea are the aero-

dynamic saturation vapor pressure and atmospheric water va-

por pressure, respectively; and ra and rs are the water va-

por transfer aerodynamic resistance and surface resistance,

respectively. Surface resistance includes soil resistance and

canopy resistance. The surface resistance is influenced by the

physiological characteristics of the vegetation and the water

supply of roots. Thus, it is difficult to obtain surface resis-

tance via remote sensing, and surface resistance is highly un-

certain, particularly over heterogeneous surfaces. To avoid
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error introduced by the uncertainty of the surface resistance,

LE is computed as a residual of the surface energy balance

equation.

Rn is the difference between incoming and outgoing radi-

ation and is calculated as follows:

Rn = Sd(1 − α) + εsLd − εsσT 4
rad, (8)

where Sd is the downward shortwave radiation, α is the sur-

face broadband albedo, εs is the emissivity of the land sur-

face, Ld is the downward atmospheric longwave radiation,

σ = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann con-

stant, and Trad is the surface radiation temperature.

G is commonly estimated using the empirical relationship

with Rn. Because the canopy exerts a significant influence on

G, the fractional canopy coverage FVC is used to determine

the ratio of G to Rn as follows:

G = Rn × [Ŵc + (1 − FVC) × (Ŵs − Ŵc)] , (9)

where Ŵs is 0.315 for bare soil and Ŵc is 0.05 for a full vege-

tation canopy (Su, 2002). H is the transfer of turbulent heat

between the surface and atmosphere, which is driven by a

temperature difference and controlled by resistances that de-

pend on local atmospheric conditions and land cover prop-

erties (Kalma et al., 2008). According to gradient diffusion

theory, the equation for H is as follows:

H = ρcp
Taero − Ta

ra
, (10)

where ρ is the density of the air; cp is the specific heat of

the air at a constant pressure; Taero is the aerodynamic sur-

face temperature obtained by extrapolating the logarithmic

air temperature profile to the roughness length for heat trans-

port; Ta is the air temperature at a reference height; and ra is

the aerodynamic resistance, which influences the heat trans-

fer between the source of the turbulent heat flux and the ref-

erence height. Aerodynamic resistance was calculated based

on the Monin–Obukhov similarity theory (MOST) using a

stability correction function (Paulson, 1970; Ambast et al.,

2002). The zero-plane displacement height, d , and roughness

length, z0 m, were parameterized by the schemes proposed by

Choudhury and Monteith (1988).

In this approach, H must be accurately estimated. How-

ever, calculating H using Eq. (10) is difficult. Because re-

mote sensing cannot obtain Taero, the value of Taero is gen-

erally replaced with the radiative surface temperature Trad,

which is not always equal to Taero. The difference between

these terms for homogeneous and full-coverage vegetation

is approximately 1–2◦ (Choudhury et al., 1986), and it can

reach 10◦ in sparsely vegetative areas (Kustas, 1990). The

method that corrects for this discrepancy adds excess re-

sistance rex to ra. We used the brief method proposed by

Chen (1988) to calculate rex: rex = 4/u∗.

Figure 2 shows the flowchart for merging ET retrieval and

temperature sharpening based on HJ-1B satellites.

The spatial-scale effect is generally revealed by a discrep-

ancy between different upscaling methods. In one method,

parameters are upscaled to a large scale before calculating

the heat flux. In the other method, heat flux is calculated at

a small scale, and the results are then upscaled. In this study,

the resolution of the final output result is 300 m. To evaluate

the heterogeneity-reducing effect of TSFA, two other upscal-

ing methods, called IPUS and TRFA, were implemented (see

Fig. 3). In the case of IPUS, the inputs of the energy balance

model are first retrieved at 30 m resolution (see information

of HJ-1B satellite data in Sect. 3.2.1) and then aggregated to

300 m resolution. Subsequently, these 300 m inputs are used

in the one-source energy balance model to obtain the four

energy balance components at 300 m resolution. In TRFA,

the LST at 300 m is first resampled to 30 m using the nearest

neighbor method and the 30 m resolution inputs are used for

estimating ET. The outputs of the four energy-balance com-

ponents of the TRFA are obtained using the area-weighting

method shown in Sect. 2.2.

3 Study area and data set

3.1 Study area

Our study was conducted in the middle stream of the Heihe

River basin (HRB), which is located near the city of Zhangye

in the arid region of Gansu province in northwestern China

(100.11–100.16◦ E, 39.10–39.15◦ N). The middle reach of

the HRB is a typical desert–oasis agriculture ecosystem dom-

inated by maize and wheat. Areas of the Gobi Desert and the

alpine vegetation in the Qilian Mountains are located near

the study area (see Fig. 4). The artificial oasis is highly het-

erogeneous, which impacts the thermal dynamics and hy-

draulic features. Consequently, the water use efficiency and

ET are variable. The Heihe River basin has long served as

a test bed for integrated watershed studies, as well as land

surface and hydrological experiments. Comprehensive ex-

periments, such as the Watershed Allied Telemetry Exper-

imental Research (WATER) project (Li et al., 2009), and

an international experiment – the Heihe Basin Field Exper-

iment (HEIFE) as part of the World Climate Research Pro-

gramme (WCRP), have been conducted in this basin. One

major objective of HiWATER was to capture the strong land

surface heterogeneities and associated uncertainties within a

watershed (X. Li et al., 2013).

3.2 Data set

In this study, data are mainly derived from the HJ-1B satel-

lite. We combined these data with ancillary data and in

situ Multi-Scale Observation Experiment on Evapotranspi-

ration over heterogeneous land surfaces of The Heihe Water-

shed Allied Telemetry Experimental Research (HiWATER-

MUSOEXE) data to estimate and validate the HJ-1B land

surface variables and heat fluxes.
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Figure 2. Flowchart of ET retrieval using the temperature-sharpening and flux aggregation method.

Figure 3. Flowchart of the three upscaling methods for retrieving evapotranspiration.

3.2.1 Remote sensing data

HJ-1B satellite data

The specifications of HJ-1B are shown in Table 1. The

satellite has quasi-sun-synchronous orbits at an altitude of

650 km, a swath width of 700 km and a revisit period of

4 days. Combined, the revisit period of the satellites is 48 h.

Because HJ-1A/B CCDs lack an onboard calibration system,

cross-calibration methods were proposed to calibrate the

CCD instruments (Zhang et al., 2013; Zhong et al., 2014b).

The image quality of the HJ-1A/B CCD is stable, the perfor-

mances of each band are balanced (Zhang et al., 2013) and

the radiometric performance of the HJ-1A/B CCD sensors is

similar to the performances of the Landsat-5 TM, Observer-

1 (EO-1) Advanced Land Imager, and Terra ASTER. The

image quality of the HJ-1A/B CCD is very similar to the

image quality of Landsat-5 TM (Jiang et al., 2013). In ad-

dition, the accuracy of the TIR band’s onboard calibration

meets the land surface temperature retrieval requirements

but not the sea surface temperature retrieval requirements

(J. Li et al., 2011). The Center for Resources Satellite Data

and Application (CRESDA) in China releases calibration co-

efficients annually on its website (http://www.cresda.com).

These data are freely available from the CRESDA website

(http://218.247.138.121/DSSPlatform/index.html).

We used the HJ-1B satellite data from the HRB region

in 2012. Because many variable-retrieving algorithms re-

quire clear-sky conditions when calculating ET, we com-

bined data quality information with visual interpretation to

select satellite images without clouds. Considering the period

of ground observations discussed in Sect. 3.2.2, we obtained

data for 11 days: 19 and 30 June; 8 and 27 July; 2, 15, 22,

and 29 August; 2, 13, and 14 September.

Hydrol. Earth Syst. Sci., 20, 4409–4438, 2016 www.hydrol-earth-syst-sci.net/20/4409/2016/
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Figure 4. Study area and distribution of EC towers in HiWATER-MUSOEXE.

Figure 5. Flowchart of land surface variable retrieval. The abbreviations are defined as follows: SZA: solar zenith angle; SAA: solar azimuth

angle; VZA: view zenith angle; AOD: aerosol optical depth; ABT: at-nadir brightness temperature; Sd: downward shortwave radiation;

USR: upward shortwave radiation; ULR: upward longwave radiation; and Ld: downward longwave radiation.

Table 1. Specifications of the HJ-1B main payloads.

Sensor Band Spectral Spatial Swath Revisit

range resolution width time

(µm) (m) (km) (days)

CCD

1 0.43–0.52

30 4
2 0.52–0.60 360 (single)

3 0.63–0.69 700 (two)

4 0.76–0.90

IRS

5 0.75–1.10

720 4
6 1.55–1.75 150

7 3.50–3.90

8 10.5–12.5 300

The HJ-1B satellite data of the HRB were preprocessed,

including geometric correction, radiometric calibration, and

atmospheric correction. The following surface variables are

needed in Eqs. (1) to (10): downward shortwave radiation,

downward longwave radiation, emissivity, albedo, fractional

vegetation coverage (FVC), cloud mask data, meteorological

data, LAI, and LST. Figure 5 illustrates a flowchart of the

retrieval of these variables.

1. Surface albedo was obtained from the top of the at-

mosphere (TOA) reflectance by the HJ-1A/B satellite

using a lookup table based on an angular bin regres-

sion relationship according to the algorithm proposed

by Liang et al. (2005) and Q. Liu et al. (2011). The

surface albedo and bidirectional reflectance distribu-

tion function (BRDF) of the HJ-1A/B satellite in the

regression procedure were monitored using POLDER-

3/PARASOL BRDF data sets, and BRDF was used to

obtain the TOA reflectance in the 6S (second simula-

tion of a satellite signal in the solar spectrum) radiation

transfer mode.

www.hydrol-earth-syst-sci.net/20/4409/2016/ Hydrol. Earth Syst. Sci., 20, 4409–4438, 2016
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2. The NDVI is the regression kernel of the temperature-

sharpening procedure and is used to calculate the FVC.

Atmospherically corrected surface reflectance values

were used to calculate the NDVI as follows:

NDVI =
ρnir − ρred

ρnir + ρred
(11)

and

FVC =
NDVI − NDVIs

NDVIv + NDVIs
, (12)

where ρnir and ρred are the reflectances in the near-

infrared and red band, respectively, and NDVIv and

NDVIs are the fully vegetated and bare soil NDVI val-

ues, respectively. As an important input for the parame-

terization of surface roughness length and aerodynamic

resistance, the LAI was determined using the following

equation (Nilson, 1971):

P(θ) = e−G(θ)·�·LAI/cos(θ) (13)

P(θ) = 1 − FVC, (14)

where θ is the zenith angle, P(θ) is the angular distribu-

tion of the canopy gap fraction, G(θ) is the projection

coefficient (0.5) and � is the total foliage clumping in-

dex, which can be obtained from the GLC global clump-

ing index database according to the land use type (He et

al., 2012).

3. Land surface emissivity (LSE) is needed to calculate the

Rn and is extremely important for retrieving LST. In

this paper, LSE was calculated using the FVC as fol-

lows (Valor and Caselles, 1996):

ε = εv · FVC + εg(1 − FVC) + 4 < dε >

· FVC · (1 − FVC) (15)

where ε is the LSE, < dε > is an effective value of the

cavity effect of emissivity, the mean dε of all vegetation

species in this study is < dε > = 0.015, εv and εg are

the vegetation and ground emissivity, respectively.

4. Land surface temperature is a single-channel parametric

model for retrieving LST based on HJ-1B/IRS TIR data

developed by H. Li et al. (2010) was employed to obtain

the LST. This model was developed from a parametric

model based on MODTRAN4 using NCEP atmospheric

profile data.

5. Downward shortwave radiation was calculated in this

study by applying the algorithm proposed by L. Li et

al. (2010). MOD05, TOMS, aerosol and solar angle data

were used to estimate the direct light flux and diffuse

light flux using a lookup table that was generated via the

6S radiation transfer mode (Vermote et al., 2006). This

method considered the influences of complex terrain,

and a topographic correction was performed by using

products of the ASTER digital elevation model (DEM).

6. Downward longwave radiation (Ld) was calculated by

the algorithm proposed by Yu et al. (2013). The TOA

brightness temperature of the HJ-1B thermal channel

was used to substitute the atmospheric effective tem-

perature. Effective atmospheric emissivity was param-

eterized as an empirical function of the water vapor

content. These values were substituted for atmospheric

temperature and atmospheric emissivity to estimate the

value of Ld. Because this Ld retrieval method was only

valid for clear-sky conditions, cloud masking informa-

tion was used to determine clear skies. When cloud con-

tamination existed in the image, the brightness tempera-

ture was relatively low, causing the Ld to be lower than

that in the cloudless images.

Ancillary data

Ancillary data were used because the bands of the satellite

could not invert all of the variables needed to retrieve ET.

1. MODIS provides atmospheric water vapor

data (MOD05), including a 1 km near-infrared product

and a 5 km thermal-infrared product, every day. The

1 km near-infrared water vapor product was used to

retrieve Ld in this study.

2. For surface elevation data, we used the 30 m resolu-

tion global digital elevation model (GDEM) based on

ASTER, which covers 83◦ N–83◦S, to derive Sd.

3. For atmosphere ozone data, a total ozone mapping

spectrometer (TOMS), which was carried on an Earth

Probe (EP) satellite, was used to derive Sd. The TOMS-

EP provided daily global atmospheric ozone data at a

resolution of 1◦ × 1.25◦ (L. Li et al., 2010).

4. For atmosphere profile data, global reanalysis data

from the National Centers for Environmental Predic-

tion (NCEP) were used to derive LST. These data

were generated globally every 6 h (0:00, 06:00, 12:00,

18:00 UTC) for every 1◦ of latitude and longitude (H. Li

et al., 2010).

3.2.2 HiWATER experiment data set

The in situ HRB observation data were provided by Hi-

WATER. From June to September 2012, HiWATER de-

signed nested observation matrices over 30 km × 30 km

and 5.5 km × 5.5 km within the middle stream oasis in

Zhangye to focus on the heterogeneity of the scale effect in

HiWATER-MUSOEXE.

In the larger observation matrix, four eddy covari-

ance (EC) systems and one superstation were installed in the

oasis–desert ecosystem. Each station was supplemented with

an automatic meteorological station (AMS) to record meteo-

rological and soil variables and monitor the spatial–temporal

variations of ET and its associated factors (X. Li et al., 2013).
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Table 2. The in situ HiWATER-MUSOEXE station information.

Station Longitude Latitude Tower Altitude Land

height (m) cover

(m)

EC1 100.36◦ E 38.89◦ N 3.8 1552.75 vegetation

EC2 100.35◦ E 38.89◦ N 3.7 1559.09 maize

EC3 100.38◦ E 38.89◦ N 3.8 1543.05 maize

EC4 100.36◦ E 38.88◦ N 4.2 1561.87 building

EC5 100.35◦ E 38.88◦ N 3 1567.65 maize

EC6 100.36◦ E 38.87◦ N 4.6 1562.97 maize

EC7 100.37◦ E 38.88◦ N 3.8 1556.39 maize

EC8 100.38◦ E 38.87◦ N 3.2 1550.06 maize

EC9 100.39◦ E 38.87◦ N 3.9 1543.34 maize

EC10 100.40◦ E 38.88◦ N 4.8 1534.73 maize

EC11 100.34◦ E 38.87◦ N 3.5 1575.65 maize

EC12 100.37◦ E 38.87◦ N 3.5 1559.25 maize

EC13 100.38◦ E 38.86◦ N 5 1550.73 maize

EC14 100.35◦ E 38.86◦ N 4.6 1570.23 maize

EC15 100.37◦ E 38.86◦ N 4.5 1556.06 maize

EC17 100.37◦ E 38.85◦ N 7 1559.63 orchard

GB 100.30◦ E 38.91◦ N 4.6 1562
uncultivated

land – Gobi

SSW 100.49◦ E 38.79◦ N 4.6 1594
uncultivated

land – desert

SD 100.45◦ E 38.98◦ N 5.2 1460 swamp land

The station information is shown in Table 2, and the distri-

bution of the stations is shown in Fig. 4. Within the artifi-

cial oasis, an observation matrix composed of 17 EC tow-

ers and ordinary AMSs exists where the superstation was lo-

cated. The land surface was heterogeneous and dominated by

maize, maize intercropped with spring wheat, vegetables, or-

chards, and residential areas (X. Li et al., 2013). Because the

EC16 and HHZ stations lacked Rn and G observation data,

they were excluded from this study.

The ground observation data included the H and LE. Reli-

able methods were used to ensure the quality of the turbulent

heat flux data. Before the main campaign, an intercompar-

ison of all instruments was conducted in the Gobi Desert

(Xu et al., 2013). After basic processing, including spike

removal and corrections for density fluctuations (WPL cor-

rection), a four-step procedure was performed to control the

quality of the EC data. In this procedure, data were rejected

when (1) the sensor had been malfunctioning, (2) precipi-

tation occurred within 1 h before or after collection, (3) the

ratio of missing data was greater than 3 % in the 30 min raw

record and, (4) the friction velocity was below 0.1 m s−1 at

night (for more details, see S. M. Liu et al., 2011; Xu et

al., 2013; Liu et al., 2016). EC outputs are available every

30 min. G was measured by using three soil heat plates at

a depth of 6 cm at each site, and the surface G was calcu-

lated using the method proposed by Yang and Wang (2008)

based on the soil temperature and moisture above the plates.

Surface meteorological variables, such as wind speed, wind

direction, relative humidity, and air pressure, were used to

interpolate images using the inverse distance weighting. Re-

Table 3. The station validation results of land surface temperature.

Station R2 MBE RMSE Station R2 MBE RMSE

(K) (K) (K) (K)

EC1 0.82 0.18 1.74 EC11 0.42 1.59 2.98

EC2 0.82 0.59 1.54 EC12 0.87 0.62 1.51

EC3 0.69 0.38 1.90 EC13 0.83 0.44 1.48

EC4 0.83 −9.87 10.04 EC14 0.73 1.43 2.44

EC5 0.83 1.71 2.34 EC15 0.74 1.53 2.41

EC6 0.61 0.30 2.44 EC17 0.78 1.20 2.32

EC7 0.82 0.39 1.40 GB 0.69 0.12 2.33

EC8 0.83 0.45 1.55 SSW 0.59 1.38 3.82

EC9 0.63 2.31 3.15 SD 0.76 −3.83 4.84

EC10 0.68 1.32 2.45

searchers can obtain these data from the websites of the

Cold and Arid Regions Science Data Center at Lanzhou

(http://card.westgis.ac.cn/) or the Heihe Plan Data Manage-

ment Center (http://www.heihedata.org/).

Energy imbalances are common in ground flux observa-

tions. The conserving Bowen ratio (H / LE) and residual clo-

sure technique are often used to force the energy balance.

Computing the LE as a residual variable may be a better

method for energy balance closure under conditions with

large LEs (small or negative Bowen ratios due to strong

advection) (Kustas et al., 2012). Thus, the residual closure

method was applied because the oasis effect was distinctly

observed in the desert–oasis system on clear days during the

summer (S. M. Liu et al., 2011).

4 Results and analysis

4.1 Evaluation of surface variables

To control model inputs and analyze error sources, the

coarse-resolution land surface temperature, downward short-

wave radiation, downward longwave radiation, Rn, and G

were evaluated using in situ data.

The ground-based land surface temperature, Ts, was cal-

culated using the Stefan–Boltzmann law from the AMS mea-

surements of the longwave radiation fluxes (Li et al., 2014)

as follows:

Ts =

[

L↑ − (1 − εs) · L↓

εs · σ

]

1
4

, (16)

in which L↑ and L↓ are in situ surface upwelling and atmo-

spheric downwelling longwave radiation, respectively, and

εs is the surface broadband emissivity, which is regarded

as the pixel value of the HJ-1B at the AMS. The coeffi-

cient of determination R2, mean bias error (MBE) and root

mean square error (RMSE) of the LST are 0.71, −0.14 K,

and 3.37 K, respectively. As shown in Table 3, the accuracy

of EC4 is low. The main causes of the large errors are as

follows: (1) buildings and soil/vegetation are distinct materi-

als, the LSE algorithm may not be suitable for buildings and

www.hydrol-earth-syst-sci.net/20/4409/2016/ Hydrol. Earth Syst. Sci., 20, 4409–4438, 2016

http://card.westgis.ac.cn/
http://www.heihedata.org/


4418 Z. Q. Peng et al.: Remote sensing algorithm for surface evapotranspiration

Table 4. The station validation results of downward shortwave radiation.

Station R2 MBE RMSE Station R2 MBE RMSE

(W m−2) (W m−2) (W m−2) (W m−2)

EC1 0.97 25.23 27.73 EC11 0.90 30.11 33.76

EC2 0.84 28.29 33.57 EC12 0.96 24.35 26.43

EC3 0.97 17.56 19.25 EC13 0.93 12.41 17.92

EC4 0.98 6.07 9.34 EC14 0.98 32.40 33.49

EC5 0.98 10.60 12.29 EC15 0.94 26.71 29.71

EC6 0.93 27.68 30.71 EC17 0.94 −20.25 24.54

EC7 0.89 −17.69 27.59 GB 0.89 25.34 30.63

EC8 0.83 15.63 25.50 SSW 0.63 18.51 34.93

EC9 0.96 −2.27 9.96 SD 0.98 5.70 13.82

EC10 0.94 −3.50 11.97

Table 5. The station validation results of downward longwave radiation.

Station R2 MBE RMSE Station R2 MBE RMSE

(W m−2) (W m−2) (W m−2) (W m−2)

EC1 0.85 4.16 17.21 EC11 0.93 −2.72 10.55

EC2 0.88 0.11 14.23 EC12 0.87 −0.84 14.80

EC3 0.91 −35.65 37.88 EC13 0.86 −7.28 15.98

EC4 0.88 3.36 16.38 EC14 0.82 4.07 16.42

EC5 0.88 −0.79 15.02 EC15 0.85 17.67 23.06

EC6 0.84 2.55 15.43 EC17 0.90 −1.11 12.87

EC7 0.75 −5.90 19.72 GB 0.88 9.50 27.82

EC8 0.80 −1.35 17.49 SSW 0.85 25.33 34.50

EC9 0.86 10.44 17.99 SD 0.85 −26.54 34.08

EC10 0.87 7.98 16.05

(2) the EC4 foundation is non-uniform and is not suitable for

validation. After removing the EC4 data, the R2, MBE, and

RMSE values of the LSTs were 0.83, 0.69 K, and 2.51 K, re-

spectively. The LST errors of SSW and SD were large due to

large errors on particular days. For example, although it was

briefly cloudy above station SSW on 27 July, this area was

not identified as cloudy in the cloud detection process.

The R2, MBE, and RMSE values of Sd were 0.81,

13.80 W m−2, and 25.35 W m−2, respectively. The station

validation results are shown in Table 4. The accuracy of

SSW is low. Because cloudy conditions occurred briefly

on 27 July, few ground observations were obtained, and Sd

was significantly overestimated. After removing these data,

the R2, MBE, and RMSE values of Sd at SSW were 0.87,

10.90 W m−2, and 21.13 W m−2, respectively.

The R2, MBE, and RMSE values of the HRB Ld

were 0.73, 0.28 W m−2, and 21.24 W m−2, respectively. As

seen in Table 5, the accuracies at EC3, SD, and SSW were

low. The low accuracies at EC3 and SD potentially resulted

from (1) high humidity, which resulted in low at-nadir bright-

ness temperatures and low retrieved Ld, or (2) instrument

error, which occurred because the EC3 ground observations

were always greater than those of the other stations during

the same period. Although SSW was located in a desert,

the ground–air temperature difference was large. The Ld re-

trieval may have a large error because the models use sur-

face temperature when estimating Ld to approximate or sub-

stitute the near-surface temperature (Yu et al., 2013). The

corrected error of our Ld retrieving algorithm resulted from

the ground–air temperature difference in non-vegetated ar-

eas. The inaccuracy of the SSW LST may influence the Ld

results.

The R2, MBE, and RMSE values of the HRB Rn were

0.70, −9.64 W m−2, and 42.77 W m−2, respectively. The

station-validated results of Rn are shown in Table 6, which

indicates that the accuracies of EC4, EC7, EC17, and SSW

were relatively low. According to the sensitivity analysis of

Eq. (8), Ld and Sd are highly sensitive variables when cal-

culating Rn, while the albedo, LSE, and LST are not as sen-

sitive. Although LST was not a sensitive variable, the MBE

and RMSE values of LST at EC4 reached −9.87 and 10.04 K

because the land cover of EC4 was maize at 300 m resolu-

tion. However, the observation tower was located in a built-

up area, which potentially caused errors when estimating Rn.

The accuracies of Sd and Ld at EC7 were low on several days,

and MBE = −43.40 W m−2 and RMSE = 50.50 W m−2 after

removing these data. EC17 was located in an orchard, and the

signal that was received by the sensors at EC17 was affected
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Table 6. The station net radiation validation results.

Station R2 MBE RMSE Station R2 MBE RMSE

(W m−2) (W m−2) (W m−2) (W m−2)

EC1 0.76 −2.55 30.61 EC11 0.86 −15.13 28.05

EC2 0.79 2.52 25.24 EC12 0.90 −8.46 19.38

EC3 0.86 −35.84 42.97 EC13 0.88 −25.73 32.34

EC4 0.84 76.64 80.25 EC14 0.90 4.23 18.18

EC5 0.85 −24.41 32.34 EC15 0.84 8.33 23.01

EC6 0.82 4.35 23.44 EC17 0.89 −62.62 68.11

EC7 0.61 −58.66 67.83 GB 0.77 −10.40 38.86

EC8 0.83 −20.62 32.45 SSW 0.44 23.05 62.93

EC9 0.87 −29.60 36.27 SD 0.75 19.98 35.24

EC10 0.83 −24.35 33.51

Table 7. The station validation results of the soil heat flux.

Station R2 MBE RMSE Station R2 MBE RMSE

(W m−2) (W m−2) (W m−2) (W m−2)

EC1 0.50 19.73 31.53 EC11 0.71 4.23 19.23

EC2 0.24 20.78 28.72 EC12 0.53 20.29 24.79

EC3 0.03 −1.15 36.28 EC13 0.91 −0.89 17.27

EC4 0.45 18.50 22.29 EC14 0.82 −1.89 18.72

EC5 0.38 41.87 60.19 EC15 0.78 6.68 15.80

EC6 0.83 −5.91 14.57 EC17 0.49 8.26 33.59

EC7 0.28 7.50 24.65 GB 0.29 −17.86 26.81

EC8 0.68 −5.73 20.15 SSW 0.01 30.41 51.87

EC9 0.61 6.83 26.96 SD 0.71 −4.79 13.71

EC10 0.41 7.68 28.67

by the complex vertical structure of the orchard ecosystem.

The information of substrate plants may be ignored, lead-

ing to albedo retrieval errors. An albedo bias of 0.03 can

lead to an Rn error of approximately 20 W m−2 when the

solar incoming radiation is large. As previously discussed,

it was briefly cloudy on 27 July, and after removing those

data, the R2, MBE, and RMSE values of the Rn obtained at

station SSW were 0.72, 8.20 W m−2, and 37.60 W m−2, re-

spectively.

The R2, MBE, and RMSE values of the G in the HRB

were 0.57, 8.51 W m−2, and 29.73 W m−2, respectively. The

station-validated G results are shown in Table 7. At EC5,

the soil temperature and moisture were the same at different

depths after 19 July, which resulted in a surface G that was

equal to the G at a depth of 6 cm. G below the surface was

usually less than the G at the soil surface; thus, the valida-

tion results of G at EC5 indicate that G was overestimated.

At SSW, the brief cloudy period decreased the observed soil

surface temperature, which decreased the calculated surface

G. However, the remotely sensed G did not reflect this situ-

ation. In this case, the G was overestimated because the Rn

was overestimated. After removing the data on 27 July, the

R2, MBE, and RMSE values of the G at SSW were 0.17,

19.34 W m−2, and 33.30 W m−2, respectively.

4.2 Validation of heat fluxes by TSFA

Figure 6 provides the turbulent heat flux results calculated

by TSFA on 13 September 2012. The spatial distribution of

the turbulent heat flux is obvious. The H values of buildings

and uncultivated land, including land patches in the Gobi re-

gion, barren areas, and desert areas, were high, in addition

to the LEs of water and agricultural areas in the oasis. The

southern areas of the images show uncultivated barren land

bordering the Qilian Mountains that resulted from snowmelt

and the downward movement of water. In these areas, the

groundwater levels are high and the soil moisture content is

approximately 30 % based on in situ measurements at a depth

of 2 cm. Therefore, the LE values of barren areas in the south

are higher than the LE values of desert areas in the southeast,

although both areas were classified as uncultivated land.

Studies have shown that validation methods that consider

the source area are more appropriate for evaluating ET mod-

els than traditional validation methods based on a single pixel

(Jia et al., 2012; Song et al., 2012). In this study, a user-

friendly tool presented by Neftel et al. (2008), which is based

on the Eulerian analytic flux footprint model proposed by

Kormann and Meixner (2001) was used to calculate the foot-

prints of the function parameters. The continuous footprint
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Figure 6. Maps of the four energy components, (a) Rn, (b) G, (c) H , and (d) LE, calculated by TSFA on 13 September 2012.

function was dispersed based on the relative weights of the

pixels in which the source area was located.

The footprint validation results of the TSFA turbulent heat

fluxes are shown in Fig. 7 and Table 8. The R2, MBE, and

RMSE of H were 0.61, 0.90 W m−2, and 50.99 W m−2, re-

spectively, and those of LE were 0.82, −20.54 W m−2, and

71.24 W m−2, respectively. Because LE was calculated as a

residual term, it was impacted by Rn, surface G, and H . The

errors of all inputs may contribute to the LE, which compli-

cates the error sources of the LE. These errors are discussed

in detail in Sect. 4.3.2 and 4.4.

As shown in Fig. 7, the majority of the H values are small

because June, July, August, and September constitute the

growing season when ET greatly cools the air. The temper-

ature difference between the land surface and air is small,

leading to a low H . The points with large H values are in-

fluenced by uncultivated land. In our study area, the Gobi

region, barren area and desert area comprise the unculti-

vated land. The points in the scatter plot with large H values

represent desert, where the H values reach approximately

300 W m−2. Some points in the H scatter plot are less than

zero due to inversion from the oasis effect or irrigation. For

example, the HiWATER soil moisture data show that irri-

gation occurred on 22 August 2012. Irrigation is the main

source of water within the oasis and cools the land surface to

temperatures below the air temperature. In addition, irriga-

tion leads to errors in LST retrieval because it increases the

atmospheric water vapor content, as discussed in Sect. 4.1.

The model error is further analyzed in Sect. 4.4.

4.3 Comparison between TSFA, TRFA, and IPUS

To verify whether the TSFA method can simulate the het-

erogeneity of the land surface, the TRFA and IPUS meth-

ods were also implemented for comparison purposes. These

three methods were evaluated using (1) validation of TRFA

and IPUS based on in situ measurements and (2) quantitative

analysis based on the spatial distribution and scatter plots of

the four energy balance components.
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Figure 7. Scatter plot of the TSFA turbulent heat flux results.

Table 8. In situ validation results of heat flux using the TSFA.

TSFA-H (W m−2) TSFA-LE (W m−2)

Date R2 MBE RMSE R2 MBE RMSE

19 Jun 0.39 44.73 66.38 0.69 −44.15 80.60

30 Jun 0.73 23.71 38.96 0.88 −63.81 77.83

8 Jul 0.55 32.70 58.72 0.85 −43.02 72.32

27 Jul 0.90 −34.34 43.59 0.92 26.74 57.60

3 Aug 0.80 −4.77 18.92 0.78 −4.58 47.86

15 Aug 0.74 −18.37 38.82 0.93 4.75 35.41

22 Aug 0.40 31.64 66.21 0.65 −44.44 93.81

29 Aug 0.79 23.01 38.36 0.79 −50.45 77.99

2 Sep 0.21 −45.10 74.81 0.54 24.39 69.31

13 Sep 0.25 −9.64 41.01 0.59 −59.36 82.77

14 Sep 0.31 −34.11 50.88 0.47 27.99 67.50

4.3.1 Validation of the TRFA and IPUS heat fluxes

Table 9 provides the in situ validation results of H and LE

calculated using the IPUS and TRFA methods. Compared to

validation results of TSFA in Table 8, the TSFA produced a

better retrieval accuracy than the TRFA, and the TRFA was

better than the IPUS on all days and the MBE and RMSE

values of TSFA decreased and the R2 of TSFA increased on

most days. Table 9 shows that the improvements in accuracy

between TRFA and IPUS were relatively larger than those

between TSFA and TRFA. Compared to the IPUS results,

the TRFA results were similar to the TSFA results because

subpixel landscapes and subpixel variations of most vari-

ables were considered. Thus, TRFA effectively decreased the

scale error that resulted from heterogeneity because the 30 m

VNIR data were fully used. However, the performance of the

TRFA method is unstable. For example, on 3 and 29 August,

the TRFA results were slightly worse than the IPUS results.

This situation occurred because the different subpixel land-

scape temperatures were considered as equal to the values

estimated at the 300 m resolution. Thus, when values of LST

at 300 m scale have large retrieval errors, the turbulent heat

flux retrieval error may be amplified by the subpixel land-

scapes.

Variations in landscape characteristics systematically trig-

ger variations in surface variables. Landscape inhomogene-

ity can be classified using two conditions: nonlinear vege-

tation density variations between subpixels (e.g., different

types of vegetation mixed with each other or with bare soil)

and coarse pixels containing different landscapes (e.g., vege-

tation or bare soil mixed with buildings or water). To evaluate

the effects of TSFA, stations with a typical severe heteroge-

neous surface at EC4, a weak heterogeneous surface at EC11,

a typical pixel (called “TP” hereafter) at the boundary of the

oasis and bare soil (sample 62, line 102 in the image of study

area), and a uniform surface at EC15, were selected to ana-

lyze the temperature-sharpening results.

EC4 is used as an example because its land cover and sub-

pixel variations of temperature were complicated. Table 10

compares the turbulent heat fluxes calculated using the IPUS,

TRFA, and TSFA methods. Significant differences were ob-

served between the TSFA and IPUS results and between the

TRFA and IPUS results due to the heterogeneity of the sur-

face. The LE calculated using the TSFA method was more

consistent with in situ measurements than the LE calculated

using the IPUS method because the MBE and RMSE de-

creased considerably, the R2 increased, and the accuracy was

improved by approximately 40 W m−2. However, the LE cal-

culated by the TRFA was more accurate than the LE calcu-

lated by the TSFA, as discussed below.

The H calculated by using the TSFA method was more

accurate than the H calculated by using the TRFA and IPUS

methods. The RMSE of the results from the TRFA method

was relatively close to the RMSE of the results from the

TSFA method because the TRFA method also considers the

effects of the heterogeneity of landscapes. In addition, the

H values obtained from the TRFA method were always

greater than those obtained from the TSFA method. Because

the TSFA turbulent heat flux results are the same as the TRFA

turbulent heat flux results for buildings and water bodies in

our pixel ET algorithm, the differences between the TSFA

and TRFA results depend on the vegetation and bare soil.

Additionally, the 300 m resolution LST is larger than the LST

of the subpixels, such as pixels containing vegetation or bare

soil. This relationship occurs for two reasons: (1) the coarse
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Table 9. In situ validation results of the turbulent heat fluxes of IPUS and TRFA.

IPUS-H (W m−2) IPUS-LE (W m−2) TRFA-H (W m−2) TRFA-LE (W m−2)

Date R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

19 Jun 0.32 48.53 71.70 0.66 −47.68 86.02 0.39 52.28 70.98 0.65 −46.71 85.93

30 Jun 0.50 41.45 67.30 0.80 −81.75 102.33 0.69 42.64 60.85 0.86 −78.50 93.98

8 Jul 0.34 44.17 77.45 0.63 −66.75 118.63 0.44 54.20 76.00 0.82 −63.82 89.11

27 Jul 0.81 −33.14 50.01 0.83 25.61 74.26 0.84 −23.53 41.76 0.86 14.82 65.21

3 Aug 0.84 −5.23 33.50 0.74 −3.98 60.49 0.80 7.76 37.51 0.76 −18.23 62.71

15 Aug 0.64 −23.28 47.89 0.85 10.32 54.98 0.70 −14.77 39.99 0.89 0.59 45.22

22 Aug 0.31 41.50 74.81 0.61 −53.60 102.12 0.40 40.63 69.94 0.65 −54.17 98.97

29 Aug 0.72 27.15 44.16 0.76 −54.76 83.20 0.75 30.79 44.97 0.77 −59.43 86.22

2 Sep 0.28 −52.44 83.25 0.51 32.89 76.48 0.21 −45.77 75.84 0.52 24.37 71.69

13 Sep 0.08 −11.45 57.50 0.61 −57.38 81.83 0.06 −11.89 49.63 0.54 −57.78 84.58

14 Sep 0.12 −36.52 67.38 0.28 19.46 89.30 0.03 −34.34 64.85 0.38 25.41 75.96

Table 10. Comparison of the turbulent heat flux results at EC4.

EC4 H (W m−2) LE (W m−2)

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA

19 Jun 150.65 105.86 154.71 142.13 278.55 402.60 344.05 357.79

30 Jun 138.32 99.91 153.53 126.88 341.98 419.83 358.12 386.07

8 Jul 117.04 63.47 131.79 112.16 361.16 502.60 424.85 444.01

27 Jul 136.41 4.87 85.99 72.33 306.53 543.48 452.01 467.96

3 Aug 68.97 36.51 111.73 74.76 389.63 498.21 414.67 454.23

15 Aug 104.60 12.69 88.26 82.56 357.34 522.31 436.43 441.95

22 Aug 125.34 85.93 120.68 93.18 318.08 415.15 370.76 400.99

29 Aug 82.93 73.06 103.84 74.76 317.68 362.04 322.77 355.16

2 Sep 162.05 93.74 144.49 132.60 280.41 375.42 315.16 326.29

13 Sep 119.42 151.44 157.07 130.85 263.18 234.93 222.62 249.59

14 Sep 110.02 88.24 128.37 99.33 262.33 333.82 285.04 314.91

IPUS TRFA TSFA

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

EC4-H 0.11 −44.65 61.73 0.25 5.88 26.33 0.51 −16.93 26.54

EC4-LE 0.49 99.21 119.55 0.56 42.69 62.40 0.60 63.92 76.78

pixels contain buildings and result in a larger 300 m reso-

lution LST, and (2) the LSTs were underestimated at EC4

(as shown in Table 3), which would underestimate the value

of 1T̂300 in Eq. (3) and, consequently, the sharpening tem-

perature at 30 m and H . Because the LE was calculated as a

residual item in the energy balance equation, the errors of the

other three energy balance components accumulate in the LE

term. At EC4, the Rn was overestimated by approximately

80 W m−2, as discussed in Sect. 4.1, but the scale effect of

Rn was not obvious (see Sect. 4.3.2), and the G was overesti-

mated by approximately 20 W m−2. These results decreased

the accuracy of the available energy and overestimated the

error by 60 W m−2. Because the TRFA overestimates H , the

underestimation of H in the TSFA would result in larger

overestimation of LE than that estimated by the TRFA. Con-

sequently, the LE calculated by using the TSFA method is

less accurate than the LE calculated by the TRFA method.

Figure 8 shows that the classes and temperatures of

10 × 10 subpixels at 30 m correspond to the pixels with a

resolution of 300 m at the EC tower. In the IPUS upscal-

ing scheme, the 300 m pixels included buildings, maize, and

vegetable crops at the 30 m resolution and were identified as

maize. The canopy height gap between maize and vegetables

was large during our study period, resulting in the overesti-

mation of the canopy height. For additional details, see the

error analysis in Sect. 4.4. However, because buildings cor-

responded with H = 0.6Rn in this study, ignoring the con-

tributions of buildings would result in the underestimation of

H . Figure 8a shows the temperature-sharpening results in the

EC4 pixel on 29 August. The temperature retrieved at 300 m

scale was 303.49 K. Compared with the in situ measurement
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Figure 8. Distribution of classes and temperatures over (a) EC4, (b) EC15, (c) EC11, and (d) TP on 29 August 2012.

of 313.24 K, the temperature was underestimated at a resolu-

tion of 300 m. Even when substituting the in situ temperature

into the ET model, the value of H reached 399.60 W m−2 and

the LE became 0 W m−2. When substituting the in situ tem-

perature into the TRFA method, H was 396.49 W m−2 and

LE was 18.7 W m−2, indicating that the LE was underesti-

mated and the H was overestimated with large errors. After

processing by temperature sharpening, the distribution of the

temperature at the 30 m resolution agreed with the classifi-

cation. Temperature sharpening improved the description of

heterogeneity based on the thermodynamic-driven force of

the turbulent heat flux. These results apply to the ET model
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based on the classification map and high-resolution inputs

and correspond to more accurate sensible heat flux estimates.

The land surface of EC15 was uniform and consisted of

pure pixels covering maize fields. Consequently, the tem-

perature distribution at 30 m resolution was very homoge-

neous, and the surface temperature variations were com-

prised within a range of 1.6 K. Table 11 shows the in situ

validation results at EC15, for which the overall accuracy is

not high due to the low LST retrieval accuracy on 8 July,

which is discussed in Sect. 4.4.1. For homogeneous surfaces,

the gaps between IPUS, TRFA, and TSFA were not large

(within 10 W m−2), and the accuracy did not improve (MBE

and RMSE did not exhibit obvious variations). Statistically

sharpening the temperature may increase the uncertainty of

the model results for homogeneous surfaces; however, this

influence could be omitted.

The weak heterogeneous land surface at EC11 contained

barley, maize, and vegetables in a 300 m pixel resolution with

a fractional area of 58 : 41 : 1 and was classified as barley

at the 300 m resolution. The distributions of the classes and

temperatures are shown in Fig. 8c. The pixel belongs to the

first conditions of heterogeneity (nonlinear vegetation den-

sity variation between subpixels). Table 12 shows the in situ

validation results of EC11. The improvements in the accura-

cies of H and LE by temperature resampling or sharpening

were not as obvious as the improvements at EC4, which con-

tained totally different landscapes (the other inhomogeneous

condition).

Theoretically, the LE from the TSFA and TRFA at EC11

should be smaller than the IPUS LE values in the energy bal-

ance system. The height of maize (ranges from 0.3 to 2 m)

was generally higher than the height of barley (ranges from

0.9 to 1.1 m) in the study area from June to August. Taller

vegetation resulted in larger surface roughness and smaller

aerodynamic resistance, which led to larger H values and

smaller LE values, and vice versa (e.g., vegetables with a

canopy height of 0.2 m). When using the TSFA and TRFA

methods, patch landscapes consisting of different crops, such

as maize and vegetables, were considered. Thus, the LE was

smaller than the IPUS LE. On 19 June, the canopy height of

maize was 0.74 m, which was lower than the canopy height

of barley (1 m) and indicated that the H values that resulted

from the TRFA and TSFA methods were less than H that re-

sulted from the IPUS method. Because our validation method

considered the influence of source area, the in situ turbulent

heat flux validation results included the effects of neighbor-

ing pixels (i.e., on 3 August, the turbulent heat flux values

of the pixel corresponding to the location of EC11 was only

assigned a weight of 37 % in the source area).

The differences between the TSFA and TRFA methods

were small and resulted from the LST differences between

the 30 m resolution temperature-sharpening results and the

LST retrieved at the 300 m resolution, but these differences

were not evident at EC11. For example, on 29 August, the

temperature range was 1.4 K, as shown in Fig. 8c. This tem-

perature was even less than the temperature range at EC15

because the observation system at EC15 was a superstation

with a 40 m tall tower that may cause large shadow effects

and result in a relatively large temperature range. Hence,

the temperature-sharpening effect is not obvious after aggre-

gating the flux at the 300 m resolution under dense vegeta-

tion canopies. However, temperature sharpening can still de-

crease the heterogeneity that resulted from thermal dynam-

ics.

The excess errors at EC11 was caused by the relatively

low LST accuracy, with R2, MBE, and RMSE values of 0.42,

1.59 K, and 2.98 K, respectively. On August 29, the temper-

ature retrieved at 300 m scale was 301.6 K, and the observed

ground temperature was 300.20 K. The LST at the 300 m res-

olution was slightly overestimated. When the in situ tempera-

ture was substituted into the IPUS algorithm, the value of H

decreased to 16.06 W m−2 and LE became 467.43 W m−2.

When the in situ temperature was substituted into the TRFA

scheme, the value of H was 22.43 W m−2 and the LE was

461.58 W m−2, which were similar to the ground observa-

tions.

Another typical pixel located at the boundary of the bare

soil and the oasis with no flux measurements was used to

evaluate the correction effects of landscapes and temperature

sharpening. The land surface of the TP contained maize, veg-

etables, and bare soil at a fraction of 35 : 31 : 34. Table 13

shows that when neither the heterogeneity of the landscape

nor the LST are considered, the relative error of LE reached

180 W m−2. In addition, if only the LST heterogeneity is not

considered, the LE relative error reached 48 W m−2. This

result also reveals that the influences of landscape inhomo-

geneity are greater than the influences of inhomogeneity on

the LST in mixed pixels.

4.3.2 Comparison of the TRFA and IPUS methods

Using data of 13 September as an example, the spatial distri-

butions of the four components of the energy balance calcu-

lated by the IPUS and TRFA methods are shown in Figs. 9

and 10, respectively. TSFA minus IPUS and TSFA minus

TRFA, which display the spatial distributions of the scale ef-

fect, are shown in Fig. 11. Scatterplots of TSFA vs. IPUS and

TRFA are shown in Fig. 12.

A comparison of Fig. 6 with Fig. 9 shows that the spa-

tial distributions of the fluxes greatly change, except for Rn.

The TSFA results are synoptically smoother than the IPUS

results because the land cover types and temperature dis-

tributions in mixed pixels are not considered in IPUS. For

example, the boundary between the oasis and uncultivated

land becomes a belt of intermediate G, H , and LE because

these mixed pixels include uncultivated land and vegetation.

However, mixed pixels are classified as the dominant land

use type in the parameterization process of IPUS. This result

overlooks the contributions of heat flux from complex land

use types and overestimates or underestimates the turbulent

Hydrol. Earth Syst. Sci., 20, 4409–4438, 2016 www.hydrol-earth-syst-sci.net/20/4409/2016/



Z. Q. Peng et al.: Remote sensing algorithm for surface evapotranspiration 4425

Table 11. Comparison of the turbulent heat fluxes results at EC15.

EC15 H (W m−2) LE (W m−2)

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA

19 Jun 92.55 106.60 109.25 99.81 419.47 427.19 419.99 429.98

30 Jun 42.37 43.99 45.51 44.67 551.73 527.12 525.17 526.09

8 Jul 18.34 217.53 235.48 209.90 620.95 425.71 397.49 424.86

27 Jul 27.68 21.22 31.11 24.30 597.76 589.58 579.43 586.47

3 Aug 2.33 33.32 −0.07 0.01 592.37 565.20 601.33 601.33

15 Aug 48.81 32.31 46.28 44.62 553.74 561.92 547.48 549.11

22 Aug 54.59 154.34 151.77 158.60 473.68 408.37 410.80 405.07

29 Aug 9.80 94.97 95.01 90.91 473.54 399.25 398.52 402.93

13 Sep 176.96 265.62 209.65 257.81 307.72 165.40 221.68 173.58

14 Sep 188.34 198.15 197.04 196.60 274.98 275.07 276.05 276.56

IPUS TRFA TSFA

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

EC15-H 0.40 40.64 74.64 0.33 45.93 80.81 0.40 40.36 72.88

EC15-LE 0.74 −52.11 83.48 0.71 −48.80 82.51 0.74 −49.00 81.94

Table 12. Comparison of the turbulent heat flux results at EC11.

EC11 H (W m−2) LE (W m−2)

Date EC IPUS TRFA TSFA EC IPUS TRFA TSFA

19 Jun 33.94 173.69 158.12 158.18 531.46 391.60 407.42 407.40

30 Jun 25.03 3.29 23.12 21.37 635.22 586.37 566.48 568.28

8 Jul 32.29 68.17 97.16 96.13 601.98 567.73 538.77 539.81

27 Jul 21.42 −1.17 −1.58 −3.77 587.70 618.80 619.19 621.46

3 Aug 7.01 24.85 20.34 19.52 614.28 575.03 585.29 586.16

15 Aug 38.94 12.51 15.52 16.02 567.07 584.31 581.31 580.82

22 Aug 69.25 73.45 83.11 84.38 516.07 483.23 473.60 472.40

29 Aug 29.77 48.21 60.9 60.81 473.22 427.92 415.32 415.45

2 Sep 193.97 154.58 197.01 197.49 306.62 361.96 319.54 319.03

13 Sep 288.37 168.42 176.4 177.71 160.29 216.53 208.49 207.19

14 Sep 240.33 268.91 256.29 256.40 199.52 156.00 168.63 168.55

IPUS TRFA TSFA

Variable R2 MBE RMSE R2 MBE RMSE R2 MBE RMSE

EC11-H 0.61 −1.07 61.31 0.57 −0.36 63.24 0.67 −0.21 55.50

EC11-LE 0.88 −19.83 63.16 0.89 −18.12 60.02 0.90 −21.29 58.11

heat flux by approximately 50 W m−2. Since the TSFA can

integrate the effects of these land areas and reveals the rela-

tive actual surface conditions, the heat flux results of TSFA

vary less dramatically than those of IPUS, as shown in the

figures. The results are similar in the oasis area.

Based on Figs. 6 and 10, the TRFA and TSFA methods

are similar. Because the TRFA method considers the sub-

pixel landscapes that could be a significant source of error in

the ET models, the difference between the TSFA and TRFA

methods mainly resulted from the differences between the

sharpened LST and retrieved, resampled LST of subpixels at

the 30 m resolution. In addition, the bias between the TSFA

and TRFA is not as obvious as the bias between the TSFA and

IPUS methods, as shown in Fig. 11c–f. Furthermore, Fig. 11f

shows that the LEs calculated by using the TSFA method in

most oasis areas were slightly greater than the LEs calculated

by using the TRFA method, which yielded values of approx-

imately 20 W m−2.

The quadrangular shape with a relatively unstable bias

shown in Fig. 11a is caused by the Ld that was calculated

from the MOD05 water vapor product which exists as a quad-

rangular shape even after preprocessing the instrument mal-
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Table 13. Comparison of the turbulent heat flux results at TP.

H (W m−2) LE (W m−2)

Date IPUS TRFA TSFA IPUS TRFA TSFA

19 Jun 186.31 149.73 143.98 321.04 358.22 364.79

30 Jun 383.65 191.59 158.79 67.03 259.36 292.89

8 Jul 498.36 240.20 204.18 0.29 259.25 293.41

27 Jul 276.79 136.06 84.01 206.52 347.64 402.23

3 Aug 214.14 75.45 53.72 252.37 392.08 416.41

15 Aug 214.14 98.24 72.05 252.37 368.64 393.68

22 Aug 436.48 369.28 276.70 0.00 67.79 162.80

29 Aug 235.29 117.16 67.21 183.62 302.41 356.75

2 Sep 423.61 212.15 180.92 0.00 211.77 241.36

13 Sep 338.00 285.04 216.26 0.00 53.62 122.58

14 Sep 270.44 148.20 100.19 115.19 238.43 286.51

IPUS TRFA

Variable R2 MBE RMSE R2 MBE RMSE

TP-H 0.62 174.47 185.49 0.95 42.28 48.01

TP-LE 0.71 −175.91 186.63 0.97 −43.11 49.04

Figure 9. Maps of the four energy components, (a) Rn, (b) G, (c) H , and (d) LE, calculated using the IPUS method on 13 September 2012.
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Figure 10. Maps of the four energy components, (a) Rn, (b) G, (c) H and (d) LE, calculated using the TRFA method on 13 September 2012.

function gap. In Fig. 11, the differences of the four energy

components of the pure pixels between these three meth-

ods are within 5 W m−2, and the mixed pixels have different

ranges.

Figure 12 shows the scatter plots between the results of the

TSFA method and the other two methods for all four energy

balance components. Figure 12a and e show that Rn does

not vary much between the three methods and the scatter

is centralized around the 1 : 1 line. However, regarding the

spatial-scale effect, the differences in G, H , and LE calcu-

lated by using the IPUS and TSFA methods are obvious. The

scatter plots disperse at the mixed pixels, and the differences

between the TRFA and TSFA results are relatively smaller.

When using the TSFA method, the temperature-sharpening

results can be divided into results that are higher and lower

than the LST retrieved at 300 m. Compared to the LST re-

trieved at 300 m when using the TRFA method, a higher LST

is counterbalanced by a lower LST when calculating H us-

ing the TSFA. Thus, the effect of temperature heterogeneity

is neutralized in this case. This observation is potentially re-

sulted from the temperature-sharpening algorithms because

they tend to overestimate the subpixel LST for cooler land-

scapes and underestimate the subpixel LST for warmer areas

in the image (Kustas et al., 2003).

However, LE is calculated as a residual; thus, the differ-

ence of LE is resulted from G and H . When the 300 m mixed

pixels contained various types of landscapes, they were cat-

egorized as one type of landscape in the IPUS method and

a single temperature value was used to evaluate the thermal

dynamic effects when using the TRFA method. Pixels with

highly different G, H , and LE values are mainly distributed

near the mixed pixels, as shown in Fig. 11. An explanation

for these deviations is provided below.

The parameterization of G and H are based on the land

cover type. For example, for buildings, G = 0.4Rn (Kato and

Yamaguchi, 2005) (which is usually greater than the G of

vegetation and bare soil deduced from Eq. 9) and H = 0.6Rn,

and for water, G = 0.226Rn and LE = Rn − G. From the land

cover map shown in Fig. 4, four major classes exist in the

study area: buildings with a high H , uncultivated land with

a relatively high H , cropland with a relatively low H , and

water with H = 0.

1. If a pixel contains cropland and buildings and is cate-

gorized as cropland, the building area within the pixel

is ignored in the IPUS method. In this case, G and H
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Figure 11. Maps of the bias of the energy balance components calculated using the TSFA method minus the IPUS method: (a) Rn, (b) G,

(c) H , (d) LE; and TSFA minus TRFA: (e) H and (f) LE.

are underestimated and LE is overestimated. In addi-

tion, after considering the landscapes using the TRFA

method, the LE is underestimated and H is overesti-

mated because the pixels contain buildings that are still

reflected indistinctly by LST at 300 m as the detailed

temperature heterogeneity cannot be represented by the

TRFA method. These points are shown in green in

Fig. 12. However, if the pixel is categorized as buildup,

the building area within a pixel is exaggerated, which

causes G and H to be overestimated and LE to be un-

derestimated when using the IPUS method. This situa-

tion is similar to that illustrated by the green points as-

sociated with the TRFA results and is shown by the red

points in Fig. 12.

2. At the boundary of the oasis and uncultivated land,

the mixed pixels are divided into cropland, LE is over-
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Figure 12. Scatter plots between the TSFA and IPUS results: (a) Rn, (b) G, (c) H , and (d) LE; and TSFA and TRFA results: (e) Rn, (f) G,

(g) H , and (h) LE. MBD and RMSD are the mean bias deviation and root mean square deviation between the TSFA and IPUS results,

respectively.

estimated, G and H are underestimated in the IPUS

method, and vice versa. LE is also overestimated in the

pixels containing water and other types of land cover

(generally bare soil in our study area). These pixels are

categorized as water and are shown as blue points in

Fig. 12. Some of the blue LE points calculated by using

the TSFA method are slightly smaller than those calcu-

lated using the TRFA method for pixels containing veg-

etation. At noon, the temperature of vegetation in those

pixels is lower than that of water bodies.

3. In mixed pixels that contain various crops, such as

maize and vegetables, LE is underestimated if the area

of maize within the pixel is overestimated because the

canopy height of the maize is taller than that of vegeta-

bles. This relationship results in the overestimation of

H when using the IPUS and TRFA methods. In addi-

tion, G depends on the FVC values of the crops when

using the IPUS method. Moreover, G depends on Rn

when using the TRFA method and is nearly identical to

the values of G obtained using the TSFA method.

At the study area, we compared the TRFA and IPUS meth-

ods to quantify the ability of the TSFA method to simulate the

heterogeneities of the land surface on 13 September (see Ta-

ble 14). In pure pixels, the LE biases among the IPUS, TRFA,

and TSFA methods were small. In mixed pixels, the LE bias

between the TSFA and IPUS methods varied from 35.36 to
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65.66 W m−2, and the bias between the TSFA and TRFA

methods varied from 4.41 to 22.53 W m−2. More class types

in mixed pixels correspond to larger biases. Table 15 shows

the bias of the mixed pixels that contain buildings and bare

soil between the three methods. In mixed pixels with build-

ings, the IPUS and TRFA methods generally underestimated

LE and had large bias values compared to those of the TSFA

method. In mixed pixels without buildings and bare soil,

the bias between TRFA (or IPUS) and TSFA was relatively

small, which indicates that the landscape and temperature in-

homogeneity were accounted for by the TSFA method. The

aforementioned analyses demonstrate that the TSFA method

can consider the heterogeneous effects of mixed pixels.

Considering the landscapes and inhomogeneous distribu-

tion of LST, the TSFA method ensures that none of the end

members (30 m pixels) are ignored or exaggerated. Thus,

the distribution of LE calculated using the TSFA method is

smoother and more rational than the distributions of LE cal-

culated using the other methods. At the regional scale, the

TSFA method describes the heterogeneity of the land surface

more precisely. The degree of achievable estimation accuracy

is discussed hereafter.

4.4 Error analysis

Since LE is calculated as a residual term in the energy bal-

ance equations, the sensitivity of H was analyzed first. Land

surface variables (including LST, LAI, canopy height, and

FVC) and meteorological variables including wind speed,

air temperature, air pressure, and relative humidity are the

major factors for H sensitive analysis. Figure 13 presents a

case of sensitivity analysis results for H . In this case, LST is

303.9 K, and it ranges from 298.4–309.4 K with a step size

of 0.5 K, LAI is set to 1.4 and it ranges from 0.14–2.66 with

a step size of 0.14. Canopy height is 1 m and it ranges from

0.1–1.9 m with a step size of 0.1 m. Additionally, FVC = 0.5,

wind speed u = 2.48 m s−1, air temperature Ta = 297.9 K, air

pressure = 97.2 kPa, and RH = 40.29 %. In addition, the land

cover is maize, and the reference H is 230.2 W m−2.

The air pressure is stable over a short period and has lit-

tle effect on the ET results. Although excess resistance was

calculated from the friction velocity, the meteorological data

were provided by ground observations; thus, the meteorolog-

ical data are relatively accurate. As shown in Fig. 13, LAI,

canopy height, and LST are sensitive variables.

The parameterization of the momentum roughness length

indicates that H is sensitive to LAI, with decreasing sen-

sitivity when the LAI is greater than 1. When the LAI is

less than 1, the momentum roughness length increases as

the LAI increases, and turbulent exchange is enhanced. How-

ever, when the LAI is greater than 1, the plant canopy is re-

garded as a continuum that is not a sensitive variable. Be-

cause our study area is dominated by agriculture and the

study period extended from July to September, the crops in

the HRB middle stream grew quickly, thus, the LAI was usu-

ally greater than 1. Thus, LST and canopy height are the main

sources of error.

4.4.1 Errors in LST

As shown in Fig. 13, 1 K LST bias would result in 21 % error

of H while H is 230.2 W m−2. However, the sensitivity of

the LST is unstable and depends on the strength of the turbu-

lence. The strength of the turbulence determines the mass and

energy transport and the resistance of heat transfer, which in-

fluences the sensitivity to the LST. A weaker turbulence cor-

responds to a weaker LST sensitivity, and vice versa.

A sensitivity analysis of LE induced by LST was also per-

formed. In order to exclude the influence of other factors,

stations were chosen with homogeneous landscapes within

coarse pixels. These results are shown in Table 16. The LE

results obtained from the observed LST are consistent with

the in situ observations and have less bias. LE was overes-

timated when the LST was underestimated, and vice versa.

Because the magnitude of LE was greater than that of H ,

the relative error of LE was less than the relative error of H .

However, 1 K of LST bias resulted in an average LE error

of 30 W m−2, which is consistent with the sensitivity anal-

ysis of H shown in Fig. 13. Specifically, 1 K of LST bias

would result in an LE biases of 8.7 W m−2 (in desert, SSW)

to 84.4 W m−2 (in oasis, EC8), which indicates that the sen-

sitivity of LST is unstable.

4.4.2 Errors in canopy height

In this paper, canopy height was obtained from a phenophase

and classification map. Thus, the accuracy of the canopy

height was mainly dependent on the classification accuracy

and plant growth state. Even within the same region, the

canopy height of a crop can differ due to differences in seed-

ing times and soil attributes, such as soil moisture and fertil-

ization.

The land use type was orchard at EC17. However, in our

land classification map, the land use at EC17 was other crops,

which includes vegetables and orchards. Thus, it was diffi-

cult to set the canopy height. In our study area, most of the

other crops were vegetables (canopy height of 0.2 m), and the

height of the orchard was approximately 4 m; thus, a value of

0.2 m would overestimate the LE. The LE estimations with

incorrect canopy heights and correct orchard canopy height

at EC17 are shown in Table 17. The days of large LST bias

were removed, and the bias between the model and ground

observations decreased. The excess errors were caused by er-

rors in the LST and land use, such as buildings and maize in

the mixed pixels.

Except for the error source discussed previously, the fol-

lowing sources of error were unavoidable:

1. Although the remotely sensed turbulent heat flux is in-

stantaneous, the EC data are averaged over time. Thus,

the timescales do not match in the validation.

Hydrol. Earth Syst. Sci., 20, 4409–4438, 2016 www.hydrol-earth-syst-sci.net/20/4409/2016/



Z. Q. Peng et al.: Remote sensing algorithm for surface evapotranspiration 4431

Table 14. Comparison of the latent heat flux in pixels containing different numbers of class types.

Number IPUS (W m−2) TRFA (W m−2) Pixel

of class R2 MBD RMSD R2 MBD RMSD number

types in

pixels

1 1.00 0.21 0.21 1.00 0.05 0.61 11 398

2 0.85 −7.18 35.36 1.00 −0.35 4.41 8212

3 0.66 −2.32 52.55 0.98 −7.33 12.56 4762

4 0.49 1.88 65.66 0.96 −11.56 16.55 2824

5 0.98 −30.92 62.69 0.96 −16.90 22.53 4

Notes: the number of class types in mixed pixels represents the number of classification types that were

contained in the pixels. For example, 1 represents the pure pixels and 2 represents mixed pixels containing

two land use types. MBD and RMSD are the mean bias deviation and root mean square deviation,

respectively, between the TSFA results and the TRFA and IPUS results.

Table 15. Comparison of the latent heat fluxes of typical mixed pixels.

Types of mixed pixels IPUS (W m−2) TRFA (W m−2) Pixel

R2 MBD RMSD R2 MBD RMSD number

Mixed pixels containing buildings 0.58 −1.02 61.94 0.97 −9.64 14.66 4918

Mixed pixels not containing buildings 0.81 −5.49 39.21 0.99 −2.12 7.60 10 884

Mixed pixels containing bare soil 0.73 −1.52 49.04 0.98 −5.96 11.86 9049

Mixed pixels not containing bare soil 0.65 −7.55 45.28 0.98 −2.46 7.83 6753

Figure 13. Sensitivity analysis of the surface variables for sensible heat flux.

2. The calibration coefficients of the HJ-1B satellite’s

CCD and IRS drifts because of instruments aging.

3. Geometric correction causes half-pixel bias equal to or

less than the deviation of the artificially subjective inter-

pretation.

A one-source model and simplified parameterization

schemes were used in this paper to determine surface rough-

ness lengths and heat transfer coefficients. The one-source

model combines soil evaporation and plant transpiration and

assumes that SPAC is a one-source continuum. This assump-

tion is reasonable when the surface is densely covered by

vegetation but relies on the accuracy of the difference be-

tween the LST and air temperature, as previously mentioned.

When a one-source model is applied to an area covered by

sparse vegetation, such as semiarid or arid areas, this assump-

tion is irrational.

5 Discussions

The TSFA describes the surface heterogeneity much better

than the IPUS and TRFA. The IPUS aggregates the land sur-

face variables from 30 to 300 m, which results in the loss of

land surface details and leads to the scale effects. Although

the TRFA uses 30 m information from VNIR bands and par-

tially decreases the heterogeneity, it treats the pivotal variable

LST as homogeneous at 300 m resolution, which results in

considerable error. In summary, the advantages of the TSFA

method are described as follows:
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Table 16. The results of the LST error analyses at the stations with homogeneous landscapes.

Station Date Retrieved Observed LST EC-LE LE from LE from LE H

LST LST bias (W m−2) retrieved observed relative relative

(K) (K) (K) LST LST error error

(W m−2) (W m−2) (%) (%)

EC8 19 Jun 304.92 301.74 3.18 415.89 321.80 399.78 −22.62 68.58

EC7 30 Jun 302.5 299.35 3.15 611.22 453.59 557.97 −25.79 886.08

EC10 8 Jul 303.58 300.5 3.08 617.83 504.44 549.53 −18.35 390.24

EC15 8 Jul 303.55 300.13 3.42 620.95 425.71 603.73 −31.44 450.57

EC7 27 Jul 298.87 300.55 −1.68 577.59 643.56 566.62 11.42 −132.47

SSW 27 Jul 307.86 316.82 −8.96 119.35 238.07 78.43 99.48 −60.36

EC8 22 Aug 299.58 297.77 1.81 543.56 416.23 467.42 −23.42 88.59

EC10 22 Aug 301.61 298.04 3.57 503.82 398.82 513.67 −20.84 138.61

EC15 22 Aug 300.59 297.69 2.9 473.68 408.37 495.49 −13.79 129.60

EC8 29 Aug 301.54 300.44 1.1 514.31 402.93 428.78 −21.66 63.91

EC15 29 Aug 301.41 299.84 1.57 473.54 399.25 459.66 −15.69 182.34

SSW 2 Sep 304.9 303.42 1.48 226.88 127.96 149.83 −43.60 11.36

Notes: LST bias is calculated as the retrieved LST minus the observed LST; EC-LE is the in situ latent heat flux; LE relative error is the relative error

between the retrieved and observed LST and is expressed as ((LE from retrieved LST) − (LE from observed LST))/(LE from observed LST) × 100 %,

and H relative error is calculated in the same way.

Table 17. The results of the canopy height error analyses at EC17.

Date EC-LE LE from LE-I LE from LE-C

(W m−2) incorrect relative correct relative

canopy error canopy error

height (%) height (%)

(W m−2) (W m−2)

15 Aug 2012 499.62 562.06 12.50 521.83 4.45

2 Aug 2012 366.27 519.01 41.70 396.54 8.26

2 Sep 2012 377.96 471.68 24.80 336.52 −10.96

14 Sep 2012 465.38 352.78 −24.20 258.07 −44.55

Notes: LE-I relative error is the relative error between the LE from incorrect canopy height and

observed LE and is expressed as ((LE from incorrect canopy height) − (EC-LE))/(EC-LE) ×

100 %; LE-C relative error is the relative error between the LE from correct canopy height and

observed LE and is expressed as ((LE from correct canopy height) − (EC-LE))/(EC-LE) ×

100 %.

1. The temperature-sharpening algorithm in TSFA is capa-

ble of decreasing the influences of the heterogeneity of

the LST, which is consistent with results from previous

studies (Kustas et al., 2003; Bayala and Rivas, 2014;

Mukherjee et al., 2014). As analyzed in Sect. 4.3, the

non-consideration of the heterogeneity of LST in mixed

pixels is ill-founded and causes errors when estimating

ET.

2. In the one-source energy balance model, different pa-

rameterization schemes were employed for different

landscapes. In the IPUS, a single land cover is assigned

to a mixed pixel, which results in a large error. How-

ever, the TSFA method is used to calculate the surface

flux at 30 m and is aggregated to 300 m using the area-

weighting method, which considers all of the subpixel

landscapes and improves the accuracy.

Some problems exist in the temperature-sharpening algo-

rithms. The temperature-downscaling method used in this pa-

per caused “boxy” anomalies in parts of the sharpened tem-

perature fields in large pixels because of the constant resid-

ual term, 1T̂300, in Eq. (3) within large pixels. This situation

also occurred in the temperature-sharpening algorithm pro-

posed by Agam et al. (2007). In addition, our temperature-

sharpening algorithm tends to overestimate the subpixel LST

for cooler landscapes and underestimate the subpixel LST

for warmer areas (Kustas et al., 2003). This inaccurate esti-

mation causes errors that are difficult to evaluate when esti-

mating the turbulent heat flux. For example, the small turbu-

lent heat flux bias between TSFA and TRFA was caused by a

counterbalancing effect as analyzed in Sect. 4.3.1. Additional

temperature-sharpening algorithms under heterogeneous sur-

faces should be evaluated using real data sets when applied

in ET models (Ha et al., 2011).

The retrieval methods of land surface variables were vali-

dated in other areas. For example, the albedo algorithm was

previously applied to retrieve Global Land Surface Satel-

lite (GLASS) products (Liang et al., 2014), the LST retrieval

algorithm was validated in the Haihe River basin in northern

China (H. Li et al., 2011), and the soil heat flux correction al-

gorithm was validated in the GAME-Tibet campaign (Yang

and Wang, 2008). Since the surface of the Heihe River basin

is very heterogeneous, additional comparisons of our algo-

rithm in other areas would be helpful.

In addition, to correct the discrepancy between remotely

sensed radiative surface temperature and aerodynamic tem-

perature at the source of heat transport, a brief and well-

performed parameterization scheme (under uniformly flat

plant surface) of excess resistance was used to calculate the

aerodynamic resistance of heat transfer (Jiao et al., 2014).
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Since our study is based on mixed pixels, multiple parame-

terization methods should be compared to select the optimum

method.

Because of the sensitive variables of the one-source en-

ergy balance model used in this paper, the accuracies of

the LST and canopy height greatly influenced the turbulent

heat flux. HJ-1B IRS has a single thermal channel, and the

single-channel LST-retrieving algorithm may be unstable un-

der wet atmospheric conditions (water vapor contents higher

than 3 g cm−2) (H. Li et al., 2010), which may create a bot-

tleneck for ET estimations by HJ-1B. The canopy height is

a priori knowledge based on phenophase classifications and

would influence the accuracy of the surface roughness cal-

culation. Multi-source remote sensing data could be used to

improve the accuracy of calibrations and land surface vari-

able estimation. Active microwave and lidar data (Colin and

Faivre, 2010) could be used to obtain the canopy height,

which would decrease the dependence on the accuracy of the

classification.

The energy balance closure has a significant influence on

the evaluation of the model calculated heat flux results. In our

study area, the EC energy balance closure ratio was greater

than 0.75 (S. M. Liu et al., 2011). Studies have shown that

uncaptured low-frequency eddies (Von Randow et al., 2008),

extension of averaging time (Charuchittipan et al., 2014), and

lack of an accurate accounting of heat storage terms (Meyers

and Hollinger, 2004) are potential reasons for the energy im-

balance and so forth. The conserving Bowen ratio and resid-

ual closure technique are often used to force energy balance.

We chose the residual closure method at last because the con-

serving Bowen ratio method yields irrational sensible heat

flux due to small or negative Bowen ratios (large LEs due to

the oasis effect) in the oasis–desert system. Energy balance

closure was problematic at times for turbulent flux system

and tended to be associated with significant discrepancies in

LE (Prueger et al., 2005).

Since a footprint model was used in the validation, the

footprints’ discrepancies between in situ measurements and

remote sensing pixel may cause biases. For example, model

validation results were calculated based on the relative

weights of the footprint model and multiplied by the heat

flux results of the coarse pixels in the source area from the

upwind direction. However, the heat fluxes of coarse pix-

els included the contributions of non-overlapped subpixels

within the coarse pixel. These pixels are influenced by the

heterogeneity of underlying surface, and it would cause un-

certainties in the validation.

6 Conclusion

The effects of surface heterogeneity in ET estimation have

been studied here by employing the IPUS, TRFA, and TSFA

methods over heterogeneous surface. Compared to the IPUS

and TRFA methods, the TSFA method exhibits more con-

sistent agreement with in situ measurements (energy balance

forced by the residual closure method) based on the footprint

validation results. The IPUS approach does not consider sur-

face heterogeneity at all, which causes significant error in

the heat fluxes (i.e., 186 W m−2). The TRFA considers het-

erogeneity of landscapes besides LST heterogeneity, with a

heat flux error (i.e., 49 W m−2) that is less than that of IPUS.

However, this error is non-negligible. As a sensitive variable

of the ET model, canopy height is mainly determined by clas-

sification, and the application of classification at a 30 m res-

olution can improve the accuracy of the canopy height. Ad-

ditionally, the sharpened surface temperature at a resolution

of 30 m decreases the thermodynamic uncertainty caused by

the land surface. The TSFA method can capture the hetero-

geneities of the land surface and integrate the effects of land-

scapes in mixed pixels that are neglected at coarse spatial

resolutions.

HJ-1B satellite data have advantages because of their high

spatiotemporal resolution and free access. Because the satel-

lites are still in operation, the long-term data are promising

for applications of monitoring energy budgets.

7 Data availability

For this study we used the HJ-1B data in 2012, which

are accessible at CRESDA via http://218.247.138.121/

DSSPlatform/productSearch.html. The land cover maps

of Heihe River basin are available on the website

of CARD via http://card.westgis.ac.cn/hiwater/view/uuid/

6bbf9a3f-e7d8-4255-9ecb-131e1543316d. MOD05 data are

available at LP DAAC of NASA via https://lpdaac.usgs.

gov/data_access/data_pool. GDEM data are available from

Global Data Explorer via http://gdex.cr.usgs.gov/gdex/.

TOMS Level-3 data are available at the official TOMS

website via https://ozoneaq.gsfc.nasa.gov/data/ozone/. At-

mosphere profile data come from NECP at http://rda.ucar.

edu/datasets/ds083.2/. In situ observations are accessible

from CARD via http://card.westgis.ac.cn/hiwater/mso.
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Appendix A: Nomenclature

Notation Application

(for calculating)

6S radiation Second simulation of a satellite signal in the solar spectrum
Albedo, Sdtransfer mode radiation transfer mode

α Surface broadband albedo Sd, Rn

ABT At-nadir brightness temperature (K) Ld

AMS Automatic meteorological station

AOD Aerosol optical depth Sd

BRDF Bidirectional reflectance distribution function α

CCD Charge-coupled device

CV Coefficient of variation Sharpened LST

EC Eddy covariance

FVC Fractional vegetation coverage LSE, G, LAI

G Soil heat flux (W m−2)

G(θ) G function, foliage angle distribution LAI

H Sensible heat flux (W m−2)

HRB The Heihe River basin

IPUS Input parameter upscaling scheme

IRS Infrared scanner

Ld Downward atmospheric longwave radiation (W m−2) Rn

LSE/ε Land surface emissivity LST

εv/εg The vegetation/ground emissivity

LST/Trad Land surface temperature/surface radiation temperature (K) H

MBE/MBD Mean bias error (deviation)

NCEP National Centers for Environmental Prediction LST

NDVI/NDVI30 Normalized difference vegetation index FVC, sharpened LST

NDVI300 300 m NDVI aggregated from NDVI Sharpened LST

NDVIs/NDVIv Normalized difference vegetation index of bare soil/fully covered vegetation FVC

P(θ) Angular distribution of the canopy gap fraction LAI

ra Aerodynamic resistance (s m−1) H

rex Excess resistance (s m−1) Heat transfer resistance

Rn Net radiation (W m−2)

RMSE/RMSD Root mean square error (deviation)

Sd Downward shortwave radiation (W m−2) Rn

SPAC The soil–plant–atmosphere continuum

SZA Solar zenith angle Sd

Ta Air temperature (K) H

Taero
Aerodynamic surface temperature obtained by extrapolating the logarithmic

H
air-temperature profile to the roughness length for heat transport (K)

TOA Top of the atmosphere

TOMS Total ozone mapping spectrometer Sd

TRFA Temperature resampling and flux aggregation

TSFA Temperature sharpening and flux aggregation

ULR Upward longwave radiation (W m−2) Rn

USR Upward shortwave radiation (W m−2) Rn

VNIR Visible/near-infrared

VZA/θ View zenith angle Ld, LAI
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