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Abstract

Remote sensing describes the characterization of the status of objects and/or
the classification of their identity based on a combination of spectral features
extracted from reflectance or transmission profiles of radiometric energy.
Remote sensing can be benchtop based, and therefore acquired at a high
spatial resolution, or airborne at lower spatial resolution to cover large areas.
Despite important challenges, airborne remote sensing technologies will un-
doubtedly be of major importance in optimized management of agricultural
systems in the twenty-first century. Benchtop remote sensing applications
are becoming important in insect systematics and in phenomics studies of
insect behavior and physiology. This review highlights how remote sensing
influences entomological research by enabling scientists to nondestructively
monitor how individual insects respond to treatments and ambient condi-
tions. Furthermore, novel remote sensing technologies are creating intrigu-
ing interdisciplinary bridges between entomology and disciplines such as
informatics and electrical engineering.
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INTRODUCTION

To most people, remote sensing refers to imaging- and reflectance-based surveying mounted
on airborne devices and vehicles such as airplanes or satellites. Here, we follow a much broader
definition of remote sensing: “the measurement or acquisition of information of some property of
an object or phenomenon by a recording device that is not in physical or intimate contact with the
object or phenomenon under study” (60). Consequently, even imaging through a microscope may
be considered a type of remote sensing. In many remote sensing applications, the data are collected
in parts of the radiometric spectrum that are not detectable by the human eye. The common
denominator of most studies reviewed in this article is that arthropods were studied and one or
more types of remote sensing technologies were involved. Many aspects of remote sensing are not
covered here, but we attempt to cover what was considered of most relevance to a broad spectrum
of entomologists with interest in incorporating remote sensing into their research programs. We
wish to emphasize that entomological remote sensing is expanding in many directions and creating
intriguing opportunities for collaborative research between entomology and disciplines such as
informatics and electrical engineering.

Background and Context

Numerous important reviews (29, 71, 111, 117, 156) and textbooks (54, 60, 61, 124) describe the
theory and applications of remote sensing, and it has been an established research discipline for
about four decades (12, 147). It was Isaac Newton who discovered that light could be separated
into a spectrum of colors, and approximately 100 years later, James Clerk Maxwell discovered that
light as we see it is part of a very wide radiometric spectrum (113). Here, we review research on the
acquisition and analysis of surface reflectance profiles, as use of transmission-based remote sensing
applications has been limited. However, the same concepts, challenges, and assumptions are associ-
ated with successful use of reflectance and transmission profiles. Reflectance profiles represent the
radiometric energy reflected by an object in a series of spectral bands. If an image is acquired, then
each pixel is associated with a reflectance profile. An acquired reflectance profile is always relative
to and determined by the combination of (a) the radiometric energy source used to elicit a re-
flectance profile, (b) the spectral and spatial sensitivity of the sensor used to acquire the reflectance
data, and (c) calibration and processing steps involved in the photogrammetric process (46). The
fundamental objective in remote sensing is to differentiate objects on the basis of a combination of
spectral features extracted from reflectance profiles, and this endeavor is based on two fundamental
assumptions: (a) It is possible to control for environmental heterogeneity (i.e., through calibration)
so that spectrally repeatable reflectance profiles can be acquired from a given object over time and
space, and (b) a given object is associated with unique reflectance profile features, such that even
very similar objects (such as insect specimens of the same species) can be distinguished from all
other objects belonging to different categories (different species, or males and females, age classes,
and difference in mating status) or individuals exposed to different experimental treatments.

Spatial Resolution of Reflectance Data

An important aspect of remote sensing is the size of the area from which reflectance profiles are
acquired. This area is the same as the pixel size in an image, and it determines the spatial resolution.
Spatial resolution of pixels markedly influences the ability of scientists to accurately classify both
airborne and benchtop remote sensing data (32, 65, 137, 158). If the pixel size is considerably larger
than the size of target objects, then reflectance profiles are mixed (originating from more than
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one object), and that will likely compromise classification accuracies. Imaging software engineers
have developed numerous approaches to fragment pixels (1, 55) and to artificially increase the
spatial resolution of one imaging source through the use of a second type of imagery as part
of a process called image fusion (35, 128). Despite these classification solutions, it is generally
recommended that the spatial resolution be high enough to avoid mixed pixels and then averaged
as part of spatial binning (reducing the spatial and spectral resolutions of hyperspectral imaging
data) of input data (42, 65, 158). However, acquisition of reflectance data at a spatial resolution
high enough to avoid mixed pixels becomes a serious challenge when remote sensing data are
acquired from small plants, such as newly established crop plants, and from cereals or other plants
with partially vertical leaves (and therefore have a small footprint when imaged from above). Low
spatial resolution also becomes a serious challenge when large areas such as forests are monitored
with airborne remote sensing systems and the goal is to detect individual trees stressed by insect
activity (36).

Spectral Resolution of Reflectance Data

Intuitively, spectral resolution (defined as the number spectral bands in the reflectance profile)
is positively associated with the ability to differentiate objects, so that classifications based on
hyperspectral imagery (hundreds of spectral bands) generally outperform those derived from
multispectral imagery (3–12 spectral bands) (148). However, there are comparative studies in
which both multispectral and hyperspectral systems enabled investigators to accurately classify
and detect biotic stressors in crops (149). Furthermore, experimental benchtop remote sensing
studies suggest that both spatial and spectral binning may partially improve the ability to detect
stress responses (94, 158). Possible constraints associated with acquiring remote sensing data
at a high spectral resolution include increased equipment costs, data acquisition at lower spatial
resolution (see below), data storage constraints, and, in airborne remote sensing, a lack of powerful
airborne devices with higher pay load. So increasing the spectral resolution may have considerable
practical and logistical trade-offs. Despite these constraints, there seems to be a strong trend in
applied research toward increasing the use of hyperspectral imaging systems with several camera
systems commercialized by a growing number of companies, including Surface Optics Corp.,
Galileo Avionica, BAE Systems, Bodkin Design and Engineering, Headwall Photonics, NovaSol,
SphereOptics, and Resonon.

Spectral Repeatability of Reflectance Data

In airborne remote sensing applications, sunlight is almost exclusively the radiometric energy
source, and diurnal and seasonal variations in sun angle, cloud cover, and atmospheric compo-
sition impose considerable challenges and limitations on acquiring high-quality airborne remote
sensing data. Although a wide range of correction techniques partially account for nonconstant
light conditions during airborne remote sensing (30, 82), numerous studies highlight the chal-
lenges associated with a nonconstant radiometric energy source, and how it may lead to low
spectral repeatability (8, 107) and low input-data robustness (90) and therefore loss of classifica-
tion accuracy. Benchtop remote sensing data are acquired under controlled imaging conditions,
so the spectral repeatability and robustness of these data sets are comparatively higher. How-
ever, challenges associated with low spectral repeatability also apply to benchtop remote sensing
(90). A key challenge in successful applications of remote sensing technologies is to minimize
the variability in signal levels from the radiometric energy source and to include comprehensive
calibration methods as part of the initial data-processing steps. The importance of this problem
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was illustrated in an experimental study of potted maize (Zea mays) plants with and without sug-
arcane borer (Diatraea saccharalis) infestation, and with hyperspectral imaging data from the same
plants acquired under two light regimes, exposed to direct sunlight and under a greenhouse shade
cloth (94). Despite the use of individual white calibration of all hyperspectral images, a classifi-
cation model based on data acquired one day could not be used to successfully predict sugarcane
borer infestation levels on the same plants (a) eight days earlier and under the same light regime
or (b) on the same day but under a different light regime. Thus, the exact same plants were imaged
twice on the same day, and white calibration was performed for each hyperspectral image and
separately for the two light regimes. Despite thorough white calibration, the difference in light
conditions (outside versus inside a shaded greenhouse) was enough to significantly change the
acquired reflectance response from the potted maize plants, so that data from one regime could
not be used to describe data acquired under the other light regime.

Spatial resolution affects the repeatability of remote sensing data. That is, leaf reflectance pro-
files acquired with hand spectrometers or ground-based hyperspectral imaging cameras may vary
from those obtained with airborne remote sensing systems (24, 53, 130, 151). Such differences are
attributed to a range of factors, including atmosphere, shadow pattern, background composition,
and instrument noise (24). Thus, reflectance data are likely to be scale dependent and profiles
developed at one geographical scale may not transfer to larger or smaller scales. As a consequence
of the many factors affecting the quality of remote sensing data, development of reliable and ro-
bust radiometric calibration procedures to increase the repeatability of features extracted from
reflectance profiles is therefore one of the most important challenges associated with practical
adoption of remote sensing technologies for, for instance, detecting insect-induced stress in crops
(107). Challenges with low repeatability of features extracted from reflectance profiles are of par-
ticular importance when the objective is to accurately detect subtle levels of insect-induced stress as
part of an early-warning system. Thus, there is a great need for close research collaboration among
field entomologists, crop physiologists, electrical engineers, and computer scientists to develop
calibration and data-processing procedures to enable classifications with both high sensitivity and
robustness (90, 107).

Penetration Depth of Reflectance Data

Despite the considerable research effort among natural scientists on the use of remote sensing
technologies, only a limited number of studies have described the penetration depth of remote
sensing data acquired from different objects. Penetration depth may be defined as the depth needed
for the radiometric energy to be reduced by approximately 37% (145). Penetration depth is an
important aspect of remote sensing because it determines (a) which wavelength range would be
expected to show the strongest reflectance response (based on which tissue layers were most af-
fected by the given treatments) when acquiring surface reflectance data, and (b) how the reflectance
data should be interpreted. In general, penetration depth is a function of the wavelength in free
space, the radiometric energy source, and the refractive index (155). It is beyond the scope of this
review to dwell into the high-powered physics involved, but it has been shown that the penetration
depth of radiometric energy into fruits and vegetables is several millimeters, and that it varies with
wavelengths. For instance, the penetration depth of radiometric energy was up to 4 mm in spectral
bands from 700 to 900 nm, and it was 2–3 mm in spectral bands from 900 to 1,900 nm (68). A
specific study of penetration depth into fruit concluded that penetration depths reached 7.1 mm
at 535 nm in plums (Prunus sp.) and 13.8 mm at 720 nm for zucchini (Cucurbita pepo var. cylindrica)
(112). This study showed that maximum penetration depths may reach 18.3 mm (apple) (Malus sp.)
and 65.2 mm (zucchini). One potential implication of penetration depth in applications of remote
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sensing technologies is that if an object (such as a crop leaf or a small insect) is only a few mil-
limeters thick, then it becomes important to consider the possible effects of substrates or objects
below the surface from which reflectance data are acquired. This may be a serious challenge in
airborne remote sensing applications, as crop leaves are only a few millimeters thick, and it is
virtually impossible to control for superimposed leaves and/or effects of soil features underneath
the crop canopy.

Penetration depth has a profound impact on the spectral repeatability of both airborne and
benchtop applications of remote sensing technologies. In airborne applications, it is well known
that both soil background and layers of leaves within a canopy affect acquired reflectance data (60).
Although not studied extensively as part of benchtop applications, constant background materials
and colors, especially from small and/or thin target objects, may be important to the acquisition of
reflectance data. Finally, aspects associated with penetration depth imply that reflectance profiles
acquired from either plant tissues or insect bodies are not determined exclusively by the epicuticular
structure but also by the physiological and biochemical composition of internal tissues.

CLASSIFICATION OF REMOTE SENSING DATA

Numerous methods have been used to classify entomological remote sensing data, including anal-
ysis of reflectance values of single spectral bands (93, 98), spectral band indices (17, 24, 79, 85,
90, 95), partial least square (PLS) (2, 4, 63), principal component analysis (PCA) (90, 102), linear
discriminant analysis (LDA) (94), decision trees (37), neural network (73), support vector machine
(SVM) (111), variogram analysis (90–93, 95, 97, 100), and spatial pattern analysis (5–7). Some-
times reflectance values of spectral bands are transformed prior to classification, and the most
common transformations include conversions of reflectance profiles into first- or second-order
derivatives (26). Another conversion approach is to divide reflectance data from one treatment
with average reflectance data from controls to obtain a relative sensitivity estimate of difference or
treatment response (116). Regarding classification of remote sensing data, one of the simplest (and
widely used) approaches is to generate spectral band indices (8), in which the number denotes the
wavelength in nanometers and R denotes reflectance (so that 750R means reflectance at 750 nm).
NDVI [normalized difference vegetation index (750R − 705R)/(750R + 705R)], PRI [photochem-
ical reflectance index (531R − 570R)/(531R + 570R)], and SI [stress index (693R/759R)] are three
examples of commonly used spectral indices. Willers et al. (144) used NDVI maps derived from
multispectral data supplemented with knowledge of crop and soil conditions to define habits of
tarnished plant bug (Lygus lineolaris) in cotton (Gossypium hirsutum) and to optimize field scouting.
In addition, a wealth of simple two-spectra band indices are used to estimate chlorophyll content in
leaves, including 430R/680R (47), 672R/550R (25), 710R/760R (18), and 750R/550R (41). Finally,
a large body of research describes how spectral band indices are used to quantify nitrogen content
in leaves (89, 160). Such indices are convenient, but they do not take advantage of the detailed
reflectance information acquired with most spectral sensors with higher spectral resolution, and
the indices are quite sensitive to even minor levels of heterogeneity within target objects (97). In
addition, spectral band indices have been less accurate than other classification methods (90, 95).

Multispectral and hyperspectral data from entomological remote sensing research are
commonly classified on the basis of methods in which reflectance values of numerous spectral
bands are used (i.e., PLS, LDA, PCA, neural networks, and SVM). That is, it is inherently
assumed that subtle differences among classes are most accurately detected and classified when
they are based on changes in reflectance in a combination of spectral bands. In benchtop remote
sensing of individual insects, reflectance profiles acquired from insect bodies are considered
indicators of physiological, biochemical, or taxonomic differences among specimens. So if a
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particular treatment causes a significant change in the insect’s metabolism, it is assumed that
reflectance profiles change accordingly. This assumption is supported by the current knowledge
about penetration depth of radiometric energy in the spectral bands (see above).

In remote sensing studies of insect herbivory, a large body of research has demonstrated that the
overall physiological effects of insect herbivory (as well as the general effect of many other abiotic
and biotic plant stressors) adversely affect photosynthesis and therefore lead to an increase in leaf
reflectance (reduced light absorption by leaf pigments) (19, 111). Plant pigments have maximum
reflection peaks at particular wavelengths (34, 58): chlorophyll a (430 nm, 662 nm, and 680 nm),
chlorophyll b (448 nm and 642 nm), and carotenoids (448 nm and 471 nm). Increased reflectance
in these spectral bands may be considered indicative of insect herbivory adversely affecting the
plant’s ability to perform photosynthesis.

However, there are important exceptions to the general notion that insect herbivory increases
leaf reflectance. For instance, greenbug (Schizaphis graminum) infestations in wheat (Triticum
aestivum) caused a decrease in reflectance in the UV-light portion of the spectrum compared
with reflectance from noninfested control leaves, whereas stress induced by Russian wheat aphid
(Diuraphis noxia) herbivory caused an increase in reflectance (116). In a study of wheat plants
exposed to experimental frost stress, levels of reflectance decreased in response to the abiotic
stress, which was further associated with increased potassium content in wheat plants and increased
suitability of frosted wheat plants as host to bird cherry-oat aphids (Rhopalosiphum padi ) (66). These
examples highlight important nonlinear relationships between crop response to stressors and leaf
reflectance, and they may be associated with a range of (over-)compensatory mechanisms by plants
exposed to abiotic and biotic stressors (134). Our current understanding of direct relationships
between leaf reflectance and the physiological consequences of exposure to stressors is limited,
and we argue that more multidisciplinary collaboration among entomologists, crop physiologists,
and remote sensing specialists is needed to address this research gap.

Risks of Model Overfitting and the Importance of Independent Validation

In all commonly used multiband classification methods, a large number of spectral bands are used
initially to calculate factors (PLS), discriminant scores (discriminant analysis and PCA), or vectors
(SVM). In the initial phase of a multiband classification, preprocessing steps are often included
to develop a few relative axes of variation, encompassing the main variation captured by the
reflectance values of a large number of spectral bands. That is, many of the spectral bands within
the acquired reflectance profile may not contribute significantly to the given classification, so they
must be identified and excluded. It is important to reduce the number of spectral bands included in a
classification algorithm of remote sensing data because (a) developing classifications based on only a
subset of spectral bands often increases the classification accuracy (94); (b) developing classification
methods based on large numbers of spectral bands increases the risk of model overfitting due
to the Hughes phenomenon (43, 77) or violation of the principle of parsimony (45); and (c)
classification algorithms based on reflectance values of large numbers of spectral bands increase
computer processing requirements (158), which may be a restriction when the purpose is to develop
reflectance-based systems with high data throughput. If the reflectance data contain reflectance
values of a number of spectral bands, which are similar to the number of observations, then there is
a high risk of model overfitting (28, 62). As a hypothetical example, suppose remote sensing is used
to assess insect-induced stress responses in experimental field plots with a crop grown under three
irrigation regimes, “a,” “b,” and “c.” We assume that no pesticides are used and that all stressors
can be controlled. To study this, 30 experimental field plots could be established, in which 15
(five replications from each irrigation regime) are experimentally infested and the remaining 15
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are kept as non-infested control plots. Remote sensing data collected at four time points after
experimental infestation could be used to address how early the crop stress is detectable on the
basis of reflectance data and which spectral bands show the strongest response to insect-induced
stress. Insect infestation is the response variable and may be either dichotomous (yes/no) or on
ordination scale (if insect density estimates were conducted at each time point), and reflectance
values of the spectral bands are used as explanatory variables. In this example, 120 imaging data sets
(30 plots × 4 time points) are collected, so the data set would consist of 120 average reflectance
profiles across treatments and over time. If the spectral sensor used collects reflectance values from
much more than 100 spectral bands, then the number of explanatory variables (spectral bands)
would be either close to or higher than the number of observations, and that means a high risk
of model overfitting. One main consequence of model overfitting is that the given classification
model performs poorly and inconsistently when applied to independent validation data.

There are several ways to minimize the risk of model overfitting; one way is spectral binning,
which refers to averaging adjacent spectral bands (158). Spectral binning not only reduces the risk
of model overfitting, but it may also increase classification accuracy (94, 158). Overfitting is likely
to occur when the number of explanatory variables (in this case, spectral bands) is higher than
(N − G)/3, where N is the number of samples and G is the number of treatment classes (28). So
in the theoretical example above, the number of spectral bands should be reduced to 38 [(120 −
6)/3 = 38]. When developing methods to classify remote sensing data, it is paramount that the
acquired reflectance data are divided into two parts, a training data set (typically 67–80% of the
data) to develop the classification model and an independent validation data set (typically 20–33%
of the data), which are used to quantify the accuracy of the classification model. In the theoretical
example described above, randomly selecting 25% of the data for validation would mean that the
classification would be based on 90 average reflectance profiles (instead of 120), so the number of
spectral bands used in the classification model should not exceed 28 [(90 − 6)/3 = 28] (see 28).

Spatial-Based Classification Methods

Owing to concerns about spectral repeatability and the risk of model overfitting of multiband-
based classifications, we highlight classification methods in which the spatial structure of remote
sensing data sets is analyzed. In these classification approaches, spectral resolution is less impor-
tant; instead, the spatial association of reflectance values from one or a few spectral bands among
neighboring pixels is analyzed. Backoulou et al. (5–7) used spatial pattern analysis to distinguish
distributional patterns of an insect pest based on spatial variation in plant stress detected in mul-
tispectral imagery caused by the insect’s inherent patchy spatial distribution in the field. Insects
have species-specific spatial distributions within a particular ecological habitat (132), and their out-
breaks in crops are frequently spatially aggregated (64, 99, 121, 146). In addition, Russian wheat
aphid showed patchy spatial distributions in wheat fields (5, 6). Thus, the spatial resolution of the
remote sensing data must be high enough to detect pest-induced stress at the plant and ideally leaf
levels. Another spatial-structure classification method is based on variogram analysis of reflectance
values of individual spectral bands (57, 75), in which the parameters derived from regression fits
to variograms are used as indicators of the particular target object (90–93, 95, 97, 100).

A series of field-scale airborne remote sensing studies have described the use of spatial variation
NDVI maps to distinguish infestations of Russian wheat aphid and greenbug from other common
stressors in wheat plants (5–7). The approach does not depend on detailed spectral profiling;
instead, it relies on detecting stress in wheat from variation in NDVI within the field and using
spatial pattern metrics to differentiate stress caused by the aphids from other factors causing stress.
A similar feature-based classification approach has been applied to airborne multispectral data of
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forest trees, in which linear spectral mixture models are used to determine the spatial distribu-
tion of nonphotosynthetically active vegetation, shade, and soil, and pixels with high loadings of
these features are associated with insect-induced stress (74, 106). A potential drawback to this
feature-based approach is that NDVI imagery must be classified into stressed versus nonstressed
categories within a GIS, a process that does not lend itself to automation. Owing to the logistics
of coordinating crop management practices, and because of rapid growth rates of many pests,
near real-time data processing is a requirement for successful integration of remote sensing tech-
nologies into pest management systems. However, if robust and reliable classification algorithms
can be developed and successfully tested, then integration of remote sensing technologies into
pest management systems has considerable potential and may greatly decrease response time and
enable development of highly targeted and optimized management strategies.

FIELD-BASED REMOTE SENSING

A large and interesting body of research exists on the use of vertically projected radar systems
under field conditions (20). In these applications of remote sensing, the radar beam’s plane
of polarization is rotated and three embedded signals are used to identify and quantify insect
species (21): (a) maximum and minimum radar reflectivity, (b) estimates of body mass, and
(c) wingbeat frequency. These applications of radar-based remote sensing have provided
fascinating quantitative insight into the diurnal rhythms and long-term dynamics of migrating
and dispersing insects across a wide range of orders (10, 11, 22, 118, 127). However, most
field-based applications of remote sensing technologies concern detection and quantification of
plant responses to arthropod herbivory or quantification of potential host plant distributions. In
other words, features in reflectance data acquired from plants are used to indicate on the basis
of plant species composition where insects may already be feeding (causing stress to plants) or
where they may become established. The spatial mapping of emerging insect-induced stress
can be used to predict when and where economic loss of crops (including forest trees) may take
place.

Remote Sensing of Host Plant Responses to Arthropods

One of the main drivers for the implementation of airborne remote sensing technologies into
the agricultural sector is the potential time saved by automatizing crop monitoring (5, 16, 135).
With the recent surge in food commodity prices and the growing interest and concern about food
security and agricultural sustainability, technologies such as airborne remote sensing systems are
needed to improve the productivity of food production systems (9, 15). A large body of research
exists on the use of handheld spectrometers and ground-based multispectral and hyperspectral
imaging technologies to detect and quantify arthropod-induced stress in crops (85, 86, 91, 94,
95, 116, 150, 151). Airborne platforms include satellites, manned aircraft, and unmanned aerial
vehicles (UAVs) (also called unmanned aerial systems, UAS).

Three remote sensing technologies mounted on airborne devices have received considerable
attention: (a) lidar (light detection and ranging), (b) satellite imagery, and (c) multispectral and
hyperspectral systems. Lidar measures the distance between the sensor and a surface target, and
it has been used to characterize and estimate the three-dimensional structure and biomass of crop
plant canopies, respectively (72, 111). Lidar has been used to characterize defoliation by pine
sawflies (Neodiprion sertifer) of Scots pine (Pinus sylvestris), but lidar data correlated only weakly
with multispectral MODIS (moderate resolution imaging spectroradiometer) data (36). However,
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lidar data were used successfully to measure plant biodiversity and to identify correlations with
forest beetle biodiversity (88). Satellite imagery is well suited to automated mapping over large
geographic areas, such as monitoring insect defoliation in forests over multiple years and expansive
areas (36, 120). Even with the newest source of commercially available satellite imagery (e.g.,
Quickbird, Worldview-2, and GeoEye-1), practical constraints for use of satellite imagery in
agricultural insect pest management include slow data delivery time to end users, fixed orbital cycles
with generally low temporal resolution, generally low spatial resolution, and weather dependency
(challenges imposed by cloud cover) of image quality (111). Numerous studies describe the use of
airborne multispectral and hyperspectral reflectance data acquired from crop plants (17, 19, 86,
131, 150, 152, 156) and forests (130) under arthropod-induced stress.

The Future of Remote Sensing of Host Plant Responses

Increasingly miniaturized optical sensors and the recent technological advancements in UAV
technologies are expected to revolutionize spatial ecology, including arthropod-induced stress
detection in food production systems (3). Currently, widespread use of UAVs to acquire remote
sensing data is facing some practical constraints associated with payload limitations (weight of
imaging system), short flight duration (limited battery power), and flight stability (156). Zhang
et al. (157) highlighted equipment costs, operational logistics, and lack of experienced person-
nel as important limiting factors regarding the use and adoption of airborne remote sensing in
agriculture. Although the technical limitations to widespread applications and commercial use of
airborne remote sensing technologies are few and solvable, important regulatory hurdles must
be addressed (39). In addition, possible constraints are associated with reflectance data calibration
and accurate georeferencing of high spatial resolution imaging data. After acquisition of multispec-
tral and hyperspectral imaging data are acquired, there may be considerable challenges associated
with instrument calibration, calibration for sun angle and variability in cloud cover, atmospheric
correction, vignetting and line-shift correction, band-to-band registration, and frame mosaicking
(67, 156). It may be challenging to accurately classify remote sensing data under real-world con-
ditions due to simultaneous interactions among various abiotic and biotic stressors. For example,
upon analyzing spectral reflectance data, Yang et al. (150) experienced difficulties differentiating
stress to wheat induced by greenbugs from that induced by moisture deficit, and Reisig & Godfrey
(115) could not accurately detect nitrogen deficiency in cotton due to stress by cotton aphids (Aphis
gossypii ).

Despite important challenges, remote sensing technologies will undoubtedly be of major
importance in optimized management of agricultural systems in the twenty-first century; for ex-
ample, remote sensing–based crop management is being adopted to detect insect infestations, such
as fall armyworms (Spodoptera frugiperda) in wheat (157). As discussed by Patterson & Brescia (105),
two broadly defined developments will likely have far-reaching positive impacts: (a) on-board pro-
cessing in airborne remote sensing systems and (b) integration of individual sensors into networks.
On-board processing in airborne remote sensing systems broadly refers to the system’s ability to
make decisions while in flight and therefore obtain high-quality data (39). As an example, without
on-board processing the UAV is flying continuously at a predetermined altitude and flight path,
and the data are processed and classified after the device has landed. On-board processing may
enable the UAV to make immediate changes in both flight path and altitude (for instance, chang-
ing to a lower flight altitude to obtain reflectance data at a higher spatial resolution) if a certain
stress reflectance signal is detected. Regarding synchronization of sensors, flying multiple UAVs
simultaneously and in synchronized patterns can be used to acquire multispectral or hyperspectral
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data at a high spatial resolution and cover a large area during short periods of time. In addition,
future investigations may integrate stationary sensors of crop stress with data from weather
stations, soil probes, and automated insect traps so that researchers can carefully monitor crop
development and predict risks of pest infestations. And farmers and crop consultants may receive
this integrated and analyzed information on their smartphones, or it may upload directly to
unmanned tractors and trigger an automated pesticide spray application.

BENCHTOP REMOTE SENSING

High spatial and spectral resolution remote sensing data acquired under controlled conditions
(lighting, abiotics, projection angle, distance between objects and lens) are becoming increas-
ingly important within a wide range of entomological research disciplines, such as systematics,
toxicology, physiology, and behavior, but also new research disciplines such as photonics (153)
and phenomics (48). Photonics refers to research and technology involving emission, control,
and detection of light photons, so it relates to the hardware aspects of benchtop remote sensing.
Phenomics refers to biological research into phenotypic responses by organisms and involves both
detailed analyses of genetic and molecular data as well as in-depth characterization of physical traits
and responses to environmental conditions. Benchtop remote sensing is highly relevant to detailed
and quantitative characterizations of physical traits in organismal responses to environmental
conditions.

Arthropod Systematics

Awareness about biosecurity risks associated with invasive insect species continues to grow (108).
Risks of invasive insect species are increased by tourism and import/export of goods and machin-
ery, as well as climate change (109). Countries and trade organizations are therefore developing
appropriate quarantine and inspection policies and procedures. Insect identification is part of these
quarantine and inspection efforts, and benchtop remote sensing technologies to reduce processing
time and automate some aspects of inspection for invasive insect species are being developed. A
decision tree classification model based on simple (three spectral bands) digital imagery of wings
and aculei was used to classify three closely related species of fruit flies [Anastrepha fraterculus,
A. obliqua, and A. sororcula Zucchi] for which classification accuracy was approximately 98% (37).
Nguyen et al. (103) described a new imaging system that can be used to develop digitized three-
dimensional models of insect species. Such digitized models of insects are easy to share and store
and may therefore reduce the need to ship specimens among taxonomists and increase the availabil-
ity of insect reference collections. Different reflectance-based spectroscopy methods have enabled
researchers to classify a wide range of insects, including species of stored-grain insects (126),
two species of fruit flies (Drosophila melanogaster and D. simulans) (4), tobacco budworm (Heliothis
virescens), and corn earworm (Helicoverpa zea) (59), and Klarica et al. (63) used imaging spectroscopy
to discriminate cryptic species of ants (Tetramorium caespitum and T. impurum). Nansen et al. (93)
demonstrated that three species of minute juvenile egg parasitoids (Trichogramma spp.) develop-
ing inside moth host eggs could be accurately classified on the basis of the reflectance profiles
acquired from the host eggs. Using two types of radiometric energy sources (UV and white light),
Zschokke (161) analyzed the reflectance of 21 spider species and their corresponding webs and
suggested that the reflectance features of the species-specific webbing structures (stabilimenta) are
likely associated with predator defense. Finally, there is a study of how reflectance profiling has
been used in taxonomic studies of fossil insects (83).
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Cryptic Insect Infestations

As part of food safety and quality control in the food industry, there is a growing body of research
on use of hyperspectral imaging technologies acquiring reflectance data within the 400–1,000 nm
range. The approach has been used to detect damage and internal infestation in food products,
including field peas (Pisum sativum) (100, 158), wheat kernels (Triticum aestivum) (125, 126), soy
beans (Glycine max) (52), and jujubes (Ziziphus jujuba) (139, 140). In addition, thermal imaging
(reflectance in the 8–12 µm range) has been used to detect infestations by a stored grain beetle
(Cryptolestes ferrugineus) inside wheat kernels (80) and infestations by insects in a wide range of
other food products (136). A recent study of seven species of evacanthine leafhoppers (Hemiptera:
Cicadellidae) described integration of alpha taxonomy, mitochondrial DNA, and hyperspectral
reflectance profiling (37 spectral bands from 411 to 870 nm) (141). This study demonstrated that
species identified on the basis of alpha taxonomy and mitochondrial DNA could be distinguished
on the basis of hyperspectral reflectance profiling with a classification accuracy of approximately
91.3%. Thus, hyperspectral reflectance profiling is as a possible tool for rapid and nondestructive
identification of closely related and cryptic insect species (141).

Insect Physiology and Phenomics

Benchtop remote sensing enables nondestructive characterization of insects and quantifications of
how individual organisms perform based on their genetic code and in response to environmental
conditions (i.e., phenomics). Because phenotypic responses by insect individuals are often complex,
development of image-based systems to detect and quantify phenotypic responses are important
aspects of phenomics projects (13). Results from synchrotron X-ray imaging studies may increase
our current knowledge about the function of air sacs, hemolymph transport, pulsatile organs,
pharyngeal pumps, digestive systems, leg joints, and feeding mechanisms of biting and fluid-
feeding insects (see 143 for a review). Synchrotron X-ray imaging has also been used extensively
to determine the location, movement, and changes in chemical form of nutritional elements and
potential toxicants (Cl, K, Ca, Fe, and Zn) in urine and hemolymph samples of a hemipteran insect
model (Rhodnius prolixus) (81). Benchtop remote sensing technology has been used to study the
distribution and chemical forms of arsenic (As) in body portions of life stages of two aquatic insects
(the midge Chironomus riparius and the mosquito Culex tarsalis) (87). In addition, synchrotron X-ray
imaging has been used to study the physiology of insect flight muscles (31, 56, 138).

Mietchen et al. (84) studied cold adaptation in larvae of two gall-producing insects, Epiblema
scudderiana and Eurosta solidaginis. No staining or chemical preparation of the larvae was performed.
The authors exposed individual larvae to 0, −20, −35, and −70◦C, and for each temperature
treatment, they obtained magnetic resonance images and corresponding reflectance profiles. The
authors developed three-dimensional larval anatomy models and clearly visualized the difference
in quantities and distribution of liquid water and of the endogenous cryoprotectants across tem-
perature treatments. The three-dimensional larval anatomy models provided new and quantitative
insight into the mechanisms by which insect larvae adapt to cold temperature regimes, and are
therefore an excellent example of a remote sensing–based phenomics study.

As described above, the penetration depth of radiometric reflectance signals in spectral bands
from 400 to 1,000 nm appears to justify more conventional reflectance-based applications of
benchtop remote sensing. Moreover, near-infrared spectroscopy has been used to age-grade
laboratory-reared mosquito species (Anopheles spp.) (122, 123) and biting midges (Culicoides sonoren-
sis) (114). Aw et al. (4) found that near-infrared spectroscopy of two species of fruit flies (Drosophila
melanogaster and D. simulans) could be used to assess their gender, age them into two age-classes,
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and determine whether they were infected with Wolbachia (classification accuracies ranged from
62% to above 90%). Webster et al. (142) used near-infrared spectroscopy to successfully differ-
entiate mated and unmated honey bee queens on the basis of differences in reflectance profiles
acquired from the bee abdomen. Thus, they provided a noninvasive and rapid method for dis-
tinguishing between mated and unmated queens. Near-infrared spectroscopy has also been used
in physiological studies of vision in honey bees (Apis mellifera) and orb-weaving spiders (Nephila
pilipes) (23).

A recent study with adult beetles from two species, maize weevils (Sitophilus zeamais) and larger
black flour beetles (Cynaus angustus), described how temporal changes in body reflectance were
detected in response to two killing agents (entomopathogenic nematodes and an insecticidal plant
extract) (96). The detected changes in body reflectance occurred after exposure times, which
coincided with published exposure times and known physiological responses to each killing agent.
The results from this reflectance-based study underscore the potential of hyperspectral imaging of
the insect body as an approach to nondestructively and noninvasively quantify stress detection. The
role of epicuticular hydrocarbons in both intra- and interspecific communication among insects is
well established (50), as they tend to vary (a) among closely related species (33, 119), (b) in relative
(40) or actual (51) composition among males and females within a species, (c) among life stages and
age of adults (14, 49, 70, 119, 159), (d ) among eusocial individuals with different tasks (38, 104),
(e) according to mating behavior and status (49, 51, 129), and ( f ) in response to environmental
conditions (27, 49, 51). Owing to the intra- and interspecific variations in epicuticular hydrocarbon
profiles, it seems reasonable to assume that reflectance profiles acquired from insect surfaces may
be used to study physiological responses by insects and quantify differences among species.

Insect Behavior

To test a hypothesis describing Morpho butterfly mating behavior and predator avoidance behav-
ior, Young (154) examined wing coloration and reflectance across the visible light spectrum. In
salticid spiders, reflectance profiling has been widely used to describe mating behavior (76). Fur-
thermore, reflectance data from 280 to 750 nm were analyzed, and Land et al. (69) demonstrated
that a specific layering of chitin scales and an air gap created two specific reflectance peaks at
600 and 385 nm. These two reflectance peaks were found only in females and were considered
responsible for the initiation and maintenance of the male’s courtship display (69). Several studies
have described the importance and potential of using reflectance profiling to nondestructively
identify epicuticular hydrocarbons and combining this information with observational data within
and among colonies of weaver ants (Oecophylla smaragdina) (101, 102). In a recent study of cicada
sound production, hyperspectral imaging of forewing costae demonstrated significant differences
between mute cicadas and those producing sound by the tymbal (78). Finally, behavioral prefer-
ence studies with spider mites (Tetranychus cinnabarinus) (98) and aphids (R. padi ) (66) showed how
nutrient composition of crop leaves could explain host choices and that reflectance features could
be used to predict the choices made by these herbivores.

CONCLUDING REMARKS

Few examples exist of commercial applications of airborne remote sensing for detecting and
quantifying insect densities and distributions in large-scale anthropogenic and natural landscapes
(157). However, irrigation (44), fertilization (89), weed detection (110, 133), and yield mapping
(157) are just some crop management practices that are being transformed by remote sensing
technologies. As on-board processing in UAV-based technologies and sensor networking become
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more advanced (39), researchers will widely utilize remote sensing technologies to detect and
quantify insect densities and their distributions.

Remote sensing is highly suitable for integration into modern university teaching, as students
with a strong inclination toward computer technologies may find it attractive and relevant to
their future careers. Thus, remote sensing may not only directly affect and improve current crop
management practices, it may also be a platform to increase the interests of companies and research
institutions to develop commercial and innovative solutions for the agricultural sector. Challenges
associated with spatial resolution and spectral repeatability of airborne remote sensing data are
creating opportunities for intriguing collaborative research among scientists in the biological and
agricultural sciences and fellow researchers in informatics and electrical engineering.

Benchtop remote sensing complements a wide range of more established entomological disci-
plines, and a rapidly increasing number of studies exist in which reflectance profiling of arthropods
is used to quantify differences among closely related species. A range of imaging systems, such
as synchrotron X-ray imaging, have provided detailed insights into important aspects of physio-
logical studies and have proven to be valuable to phenomics studies of insects. Benchtop remote
sensing will likely play a growing role in basic insect taxonomy and in the development of diag-
nostic monitoring of invasive species. Finally, as imaging technologies continue to evolve in the
medical and military fields, which have access to large research budgets, there will undoubtedly
be many basic and applied remote sensing spin-offs with important implications and prospects for
entomological research.
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