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ABSTRACT 

Floods are among the most devastating hazards on Earth, posing great threats to a large 

amount of population in the world. As the severity and frequency of flood events have 

noticeably increased, there is a growing need to improve the flood awareness and exposure 

analysis to assist flood mitigation. Fortunately, the Era of Big Data has fostered many 

innovative spatial data sources as well as spatial data analytics. This dissertation advances 

the existing flood monitoring studies by obtaining enhanced flood awareness via the 

development of a data fusion enable and deep learning supported flood monitoring 

framework that systematically integrates remotely sensed observation with in situ 

documentation from crowdsourcing platforms. In addition, this dissertation advances flood 

exposure studies via the application of long-term nighttime remote sensing series for the 

estimation of hurricane exposure in U.S Atlantic/Gulf coasts and the development of a 

spatially explicit population disaggregation method for comparative assessment of the 

exposed population within 100-year floodplains in the entire Conterminous United States 

(CONUS). In the Big Data Era, the important theoretical, methodological, and contextual 

knowledge gained in this study could greatly benefit local authorities and federal agencies 

for better preparedness of flood as well as other types of natural disasters in a geospatial 

framework. 
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CHAPTER 1 

INTRODUCTION

Flood is one of the most powerful forces on Earth, posing devastating threats to all 

population in the world. Despite the advances in flood-related studies and the 

implementation of national hazard reduction policies, the flood-induced damages follow 

an increasing trend (Pielke and Downton, 2000). Globally, one-third of annual natural 

disasters and economic losses and more than half of all victims are flood-induced (Douben, 

2006). In the United States, extreme rainfalls and floods have accounted for an annual loss 

of 82 lives and economic damage averaging $7.96 billion each year in 1984-2013, 

according to NOAA’s National Weather Service (NWS, 2018). In 2005 alone, direct flood 

damage claimed 43 lives and a total of $55.33 billion, approximately 8 times of the thirty-

year average. As the severity and frequency of flood events have noticeably increased, 

there is a growing need of a rapid flood mapping approach for better understanding of flood 

exposure via the means of Big Data techniques to reduce flood-related fatalities and 

economic losses. 

Among all the flood-related mitigation activities, flood mapping is critical for flood 

mitigation (Tran et al., 2008), emergency response (Levy et al., 2007), and post-event 

damage assessment (van der Sande et al., 2003). Flood mapping is able to provide 

situational awareness for the public and quickly draws attention to certain areas where 

immediate actions are needed. As it is often difficult and dangerous to conduct 

simultaneous field surveys during the disaster event, the non-contact techniques have often 
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been used to collect information and contribute to flood mapping. Big Earth Data, i.e., 

satellite observations, have long been used to monitor flood coverage and its dynamic 

development. Although remote sensing imagery is able to provide a synoptic view over a 

large area, the limited temporal resolution due to a satellite’s long revisit cycle and heavy 

cloud cover (especially for optical remote sensing) during a flood event have hindered its 

application in real-time flooding analysis. Social sensing has witnessed increasing attention 

due to the popularity of crowdsourcing approaches. Volunteered geographical information 

(VGI), a crowdsourcing approach, provides an alternative approach to reporting a flood in 

real-time (Triglav-Čekada and Radovan, 2013; McDougall and Temple-Watts, 2012). With 

increasing numbers of sound crowdsourcing platforms being built, there is an up-surging 

interest of utilizing VGI to aid the rapid flood mapping process and to gain a better flooding 

situation awareness (Li et al., 2018; Horita et al., 2015; Schnebele et al., 2014). However, 

the challenge of extracting useful information from a massive VGI pool in an automated 

manner still remains. Recently, the rapid development of deep learning (DL) makes the 

automation of rapid VGI classification possible by showing great potential in classifying 

both pictures (Krizhevsky et al., 2012) and texts (Kim, 2014). Those state-of-the-art 

machine learning algorithms have significantly boosted the efficiency in terms of handling 

user-generated big data. 

A better understanding of flood exposure is also essential for authorities to reduce 

flood-related losses. Hurricane induced floods have posed significant threats to people 

residing in the U.S Atlantic and Gulf Coasts (Landsea et al., 2010). In these hurricane-

prone areas, a better understanding of the temporal and spatial dynamics of human 

settlement is needed for improved damage assessment and sustainable urban planning. 
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Fortunately, satellite-derived nighttime light (NTL) data provides a unique and direct 

observation of human settlement via night lights (Ceola et al., 2014; Ceola et al., 2015) and 

can reflect the human settlement dynamics in the coastal regions for a long time. For the 

flood exposure nationwide, the 100-year floodplain (1% of annual exceedance probability), 

produced by the Federal Emergency Management Agency (FEMA), has been commonly 

used as the longstanding marker for analyzing flood exposure (Blessing et al., 2017). 

Numerous estimations have been conducted based on the boundary of FEMA 100-year 

floodplain to estimate the exposure of floods and how this exposure is distributed 

nationwide (Crowell et al., 2010; Qiang et al., 2017; Yager et al., 2018). Those estimations, 

however, usually failed to capture the great heterogeneity of population distribution and 

failed to compare the results from multiple floodplain products. Thus, a comparative 

assessment of the flood exposure considering the heterogeneous distribution of the 

population is in great need. 

This dissertation is organized into six chapters. The objectives of the remaining 

chapters are described as follows: 

• Chapter 2: designing an advanced data fusion flood model that integrates remote 

sensing imagery, water gauges, and social media for near real-time flood mapping. 

• Chapter 3: automating the retrieval of flood relevant social media posts using state-

of-the-art deep learning algorithms considering both textual and visual information. 

• Chapter 4: exploring the hurricane-induced disaster exposure in the Atlantic/Gulf 

Coasts using historical storm tracks and nighttime remote sensing imagery. 
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• Chapter 5: benchmarking the population exposure of flood risks in the CONUS 

via national building footprint dataset and comparing its assessment from multiple 

floodplain products. 

• Chapter 6:  summarizing previous chapters and presenting concluding remarks 

for this dissertation. 
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CHAPTER 2 

REMOTE SENSING-SOCIAL SENSING INTEGRATED FLOOD 

MODELING1

2.1 INTRODUCTION 

Intensive studies on flood mapping have been conducted, which could be generally 

categorized into three major groups based on the timing of data acquisition and analysis: 

1) real-time (RT) flood mapping, i.e., utilizing real-time data from water gauge sensors, 

timely official flooding reports or crowdsourcing; 2) near real-time (NRT) mapping, i.e., 

utilizing data shortly after the flooding event, usually with a lag of several days; and 3) 

post-event flood mapping, i.e., utilizing data long after the flooding event, mostly for long-

term damage assessment after a severe flood.  

The RT flood mapping has witnessed increasing attention due to the ubiquity of 

stream gauge implementation and the popularity of crowdsourcing approaches. Real-time 

mapping techniques have the ability to produce a relatively coarse but timely flood 

assessment that is crucial for rapid flood mitigation and response. Water height readings 

collected from the installed stream gauges, commonly applied along with the local Digital 

 

1 Huang, X., Wang, C., & Li, Z. (2018b). Reconstructing flood inundation probability by 

enhancing near real-time imagery with real-time gauges and tweets. IEEE 

Transactions on Geoscience and Remote Sensing, 56(8), 4691-4701. Reprinted with 

permission from the publisher. 
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Elevation Model (DEM), is one of the most commonly used real-time data for rapid flood 

mapping (Sanders, 2007). The U. S. Geological Survey (USGS), for example, provides 

water height information at each stream gauge at 15-min intervals. However, limitations 

do exist because 1) those gauges are dispersedly distributed, resulting in insufficient 

information acquisition and when 2) water levels rise beyond the measuring limits, 

resulting in no water height records (Li et al., 2018). Volunteered geographical information 

(VGI), a type of crowdsourcing approaches, provides an alternative approach to reporting 

a flood at the exact time of its occurrence (Triglav-Čekada and Radovan, 2013; McDougall 

and Temple-Watts, 2012). Defined by Goodchild (2007), VGI describes the concept of 

citizens as sensors, allowing rich voluntary information to be provided in the form of text, 

images, and videos to aid geospatial and temporal analysis. With increasingly sound 

crowdsourcing platforms becoming available, there is an up-surging interest of utilizing 

VGI to aid the rapid flood mapping process and to gain a better flooding situation 

awareness (Li et al., 2018; Horita et al., 2015; Echnebele et al., 2014; Fohringer et al., 2015; 

Wang et al., 2018). However, compared to authoritative information, the largely untrained 

VGI providers and its built-in assertive characteristics strongly restrict its functional utility 

(Jackson et al., 2013; Feick and Roch, 2013; Haworth and Bruce, 2015). Bearing this 

limitation, VGI is often expected to take a supplemental role and to act as an augmentative 

source for traditional datasets.  

The NRT flood mapping deals with data within a few days of delay, an invaluable 

data source for disaster monitoring and relief efforts (Smith, 1997). As a major component 

of NRT data source, remotely sensed (RS) imagery can provide significant mapping 

capabilities that have been widely used to monitor flooding extent and to assess its damages 
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(Wang et al., 2002; Brivio et al., 2002; Joyce et al., 2009). Compared to the real-time data, 

RS images render a synoptic view in a large geographic area, significantly contributes to a 

holistic understanding of flooding situations. Among all flood-related indicators derived 

from RS images, the Normalized Difference Water Index (NDWI) has been extensively 

used as an indicator of land surface wetness (Mallinis et al., 2011). A broad range of 

applications leveraging NDWI for flooding related purposes have been conducted, 

including water coverage delineating (McFeeters, 1996), flood hazard mapping (Jain et al., 

2006) and flood prone area identification (Jain et al., 2005). The NDWI provides rich 

wetness information that is more valuable in flooding analysis than traditional water 

delineation approaches. However, the inherent restrictions within the near real-time RS 

imagery somehow hamper its utility. For example, the coarse temporal resolution (i.e., long 

revisit cycle) and extreme weather conditions (i.e., cloud cover during a storm) heavily 

prevent RS sensors from acquiring timely images (Fazeli et al., 2015). For images acquired 

after a flood event, the information in the temporal gap between flooding peaks and image 

acquisitions is lost.  

These inherent limitations from both RT and NRT sources can be reciprocally 

compensated. The spatially isolated RT data can be used to enhance the delayed image 

observations, thus compensating for the information loss in both spatial and temporal 

dimensions. Data obtained from RS sensors, though in a delayed manner, provides a 

spatially continuous view that is superior to the isolated stream gauge records and the 

uncertain posts from social media. The combined information leads to the reconstruction 

of flood extent and flood risks during an event. Guided by this idea, attempts have been 

made to integrate the NRT images with RT sources. Wang et al. (2002) found that the 
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integration of Landsat TM images and river gauge readings overcame the flooding 

underestimation issue due to the lack of penetration of RS sensors in vegetation canopies. 

Schnebele and Cervone (2013) improved the RS flood assessment by combining satellite 

imagery with high temporal-resolution ground data. More fusion of NRT and RT data can 

be found in a number of flood studies (Schnebele et al., 2014; Cervone et al., 2015; Musser 

et al., 2016). As part of this dissertation research, Huang et al. (2018) found that surface 

wetness derived from NRT remote sensing images serves as a great weighting factor for 

RT flood-related tweets. 

This chapter designs a method that reconstructs flood inundation probability by 

fusing the real-time stream gauge data and social media (tweets) to enhance the near real-

time NDWI layer derived from RS imagery. The 2015 SC Flood event in Columbia, SC is 

explored here as a case study. The flood inundation probability is reconstructed by 

offsetting the information loss in the time gap while preserving the distributions of land 

surface wetness. A global enhancement module is first developed by combining the NDWI 

surface and stream gauge data to gain a general flood inundation probability distribution. 

Then a novel morphological operator-based local enhancement module is presented by 

considering the verified tweets as a local source of real-time flooding. The model output is 

validated via the USGS survey points and USGS inundation map released four months 

after the event (Musser et al., 2016). The term “flooding probability” (FP) refers to flood 

inundation probability, a probability of a certain area being inundated during a flood event.   
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2.2 RESEARCH AREA AND DATASETS 

2.2.1 Hurricane Joaquin and the 2015 SC Flood in Columbia, SC 

Hurricane Joaquin is the strongest Atlantic hurricane of non-tropical origin in the satellite 

era (Berg, 2016). Started as a tropical storm on September 29, it continued to strengthen 

and evolve into a hurricane on September 30. Figure 2.1a shows the path of Hurricane 

Joaquin released by the National Hurricane Center (NHC), National Oceanic and 

Atmospheric Administration (NOAA) (Figure 2.1a). 

 

Figure 2.1 (a) Hurricane Joaquin; (b) Rainfall status in SC and the research area of this 
chapter. 

Hurricane Joaquin contributed to record rainfall in SC from October 1 to 6 with 

some areas received more than 20 inches of rainfall. The widespread record-breaking 

rainfall caused catastrophic floods from the central part of the SC to the coast, resulting in 

19 fatalities and approximately $1.5 billion damage losses in the state (Feaster et al., 2015). 

Around 410 roads and bridges were closed, at least 17 dams were damaged, and more than 

50,000 residents experienced a massive power failure (Feaster et al., 2015; Murphy, 2015). 

The capital city in SC, Columbia, also experienced widespread and devastating 

floods led by the storm. This densely populated area covers Richland County and 

Lexington County in the central part of SC (Fig 2.1b). Congaree River, joined by Broad 
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River and Saluda River in the north, is the major flowing waterbody across its metropolitan 

area. During this 5-day lasting flood, Columbia was significantly impacted in all aspects. 

In this chapter, The City of Columbia and its nearby surroundings were chosen as the 

research area. 

2.2.2 Datasets and preprocessing 

The datasets used in this study can be roughly broken into four categories based on the 

data acquisition period, which include real-time data, near real-time data, post-event data, 

and accessory data.  

Real-time dataset 

Water height readings of five stream gauges located in the research area were downloaded. 

The five gauges are numbered u02162093, u02169000, u02169500, u02169506 and 

u02169570. The USGS provides water height data for those gauges at a 15-min interval. 

Their spatial locations are marked in Figure 2.2a. 

To evaluate the rainfall effects, the highest existing water height reading at each 

gauge was extracted. The reference water height was assumed the water height reading at 

9:00 AM, October 1 (a stable stage before the flooding event) in this study (Table 2.1). It 

should be noted that the maximum water height readings in Table 2.1 do not necessarily 

represent the maximum water level in streams. Sensors in some gauges failed to record 

water height due to a variety of reasons, leading to the missing records for a certain period 

of time (as shown in Figure 2.2b). Given the incomplete height readings, the maximum 

water height readings in Table 1 denote the highest readings available for each gauge. Both 

the maximum and reference water height readings are later translated to the elevation based 

on their base height (a datum conversion process is involved). 
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Table 2.1 Detailed statistics of five gauges. 
Gauge 

Number 
Gauge 
base 

height 
(𝑓𝑡) 

Datum 
shift 
(𝑓𝑡) Maximum 

water 
height 
reading 

(𝑓𝑡) 
Maximum water 

height Reached time 
Reference 

water height 
reading 

(𝑓𝑡)a 

# 02162093 199.10 -0.794 18.93 Oct 4th 5:07:00 AM 0.56 

# 02169000 149.46 -0.787 8.33 Oct 3rd 7:45:00 AM 2.91 

# 02169500 113.02 -0.787 31.83 Oct 4th 5:52:00 PM 3.91 

# 02169506 165.55 -0.781 12.40 Oct 4th 2:22:00 AM 0.98 

# 02169570 137.38 -0.778 8.34 Oct 6th 0:00:00 AM 3.17 

Note. The datum for gauge base height is NGVD 29 while the datum for DEM used in 
this study is NAVD 88. A conversion tool in VERTCON 
(https://beta.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl) is used to convert them to a 
uniform datum (NAVD 88). 
a Reference water height readings from all five gauges were obtained at Oct 1st 9:00 
AM  
 

The tweets pool used in this study has been generated using the Twitter Stream API 

and REST API in the previous study (Li et al., 2018). All geotagged tweets within the 

research area between October 3 and 6 were downloaded, then manually checked to make 

sure that their information was coordinates-relevant and flood-relevant. After the spatial 

restraint and keywords restraint, a total of 49 flood-related tweets with content covering 

text, photo, or both were selected within the research area (Figure 2.2a). Their contents are 

flood-related and matched well with their intrinsic longitude and latitude. Tweets labeled 

“law enforcement” are official flash flood warnings issued by local authorities.  
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Figure 2.2 (a) The ALI image (panchromatic), locations of the verified tweets, and 
stream gauges; (b) Water height readings at the five stream gauges. 

Near real-time satellite image 

The near real-time satellite image used in this study was acquired from the EO-1 Advanced 

Land Imager (ALI) on Oct 8th 14:40 PM, the earliest cloud-free satellite multispectral 

image available in this flood event to my best knowledge. The EO-1 renders 30-m 

resolution in multispectral bands and 10-m in a panchromatic band covering the research 

area (Fig 2a). Given the slight haze existence and atmosphere interference, an atmospheric 

correction together with haze removal function was applied in the ATCOR2 module of 

ERDAS/IMAGINE. The corrected surface reflectance image was converted to a NDWI 

image to represent land surface wetness, using the formula proposed by Gao (1996): NDWI = 𝜌𝑔𝑟𝑒𝑒𝑛− 𝜌𝑆𝑊𝐼𝑅𝜌𝑔𝑟𝑒𝑒𝑛+ 𝜌𝑆𝑊𝐼𝑅                                                   (2.1) 

where 𝜌𝑔𝑟𝑒𝑒𝑛 and 𝜌𝑆𝑊𝐼𝑅 represent the green and short-wave infrared band, respectively. 

Google earth provides several high-res scenes on Oct 7th, two days after the flooding peak. 

However, due to their small coverage, they were used for visual comparison and 

verification purposes. 
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Post-event dataset 

After the 2015 SC Flood, the USGS surveyors conducted field surveys to collect water 

height marks to aid in documenting the high-water events. The USGS survey points for the 

2015 flood event in SC were downloaded through USGS Short-Term Network (STN) 

Portal (https://stn.wim.usgs.gov/STNDataPortal/#). The dataset contains a total of 574 

water height marks (HWM) in SC, and 337 within the research area. To ensure the data 

quality, we only selected HWMs with quality remarks “Good” and “Excellent”. After the 

spatial and quality restriction, a total of 277 good-quality HWMs were extracted within the 

research area.  

The official inundation map was acquired from USGS Flood Inundation Mapping 

(FIM) Program (https://water.usgs.gov/osw/flood_inundation), an authoritative flood 

inundation source. It should be noted that USGS only surveyed the area within the flood 

zone.  Although not covering the whole research area, the valuable binary flood extent and 

field surveyed HWMs provided by USGS are the only official post-event data available at 

the time of writing.  

Accessory dataset 

The DEM elevation data at 3-meter resolution was obtained from the South Carolina 

Department Natural Resources (http://www.dnr.sc.gov/GIS/lidar.html). The high-res 

Google Earth images acquired soon after the flood was later available in the research area. 

They were visually compared with the modeled results for comparative analysis. Other 

spatial datasets (Shapefiles), including city, county, and state boundaries, were retrieved 

from local authorities.  
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2.3 METHODS 

In this chapter, the proposed flood reconstruction model consists of three modules: 1) 

generating an initial flooding probability (IFP) merely based on water height readings at 

five gauges and DEM (Water Height Module); 2) generating an enhanced flooding 

probability (EFP) by globally enhancing the NDWI surface derived from the RS image 

with the IFP (Global Enhancement Module) via kernel smoothing, standardization and 

aggregation functions; and 3) generating reconstructed flooding probability (RFP) by 

locally enhancing the EFP with the verified tweet points via a morphological operation 

(Local Enhancement Module). A detailed flowchart is outlined in Figure 2.3.  

 

Figure 2.3 Methodology overview. 

 
2.3.1 Water height module 

This module integrates the DEM and water height points to generate an Initial Flooding 

Probability (IFP) layer by building an initial flood water surface. The maximum readings 

of water height at stream gauges represented this point’s real-time water height during the 
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flood event. Data from all five gauges were used in the model to compensate for the 

uncertainty from local topological unevenness. 

With the readings at a given gauge, the elevation at each pixel of the research area 

is compared against the reference water height and maximum water height (listed in Table 

2.1) and is classified as one of the three categories: water body, flooded areas, and non-

flooded areas. If the elevation of a pixel below the reference water height, it is more likely 

natural water body. If its evaluation is above the maximum height, it is not likely to be 

flooded (non-flooded). If the elevation is in between, we assume that it is flooded. Different 

elevation thresholds are applied when compared with readings at different gauges (Table 

2.2). Different weights are given to the three categories to approximate their proneness to 

flooding. Natural water bodies are assigned a weight of 2. The Non-flooded areas have a 

weight of 0 because areas higher than the maximum water height are not likely to be 

flooded. Areas in between are assigned a weight of 1.  

Table 2.2 The three DEM-reclassified categories in the research area based on the 
reference water height and maximum water height at each gauge.  

 
Gauge Number 

DEM range (𝑓𝑡) 
Water Body     Flooded areas Non-flooded areas 

# 02162093 <198.866 [198.866, 217.236)      ≥217.236 
# 02169000 <151.583 [151.583, 157.003)      ≥ 157.003 
# 02169500 <116.143 [116.143, 144.063)       ≥ 144.063 
# 02169506 <165.749 [165.749, 177.169)       ≥ 177.169 
# 02169570 <139.772 [139.772, 144.942)       ≥ 144.942 
 

Five weight layers (𝑊_𝐿𝑎𝑦𝑒𝑟) are extracted since we have five gauges in the 

research area. An aggregation function was applied to extract the Initial Flooding 

Probability (IFP) layer: 𝐼𝐹𝑃 =  ∑ 𝑊_𝐿𝑎𝑦𝑒𝑟𝑖 𝑛𝑖=1                                                     (2.2) 
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where 𝑛=5, denoting five separate layers from five gauges within the research area. The 

resulted IFP has a weight range of [0,10].  

2.3.2 Global enhancement module 

This module incorporates both land surface wetness and topographic characteristics by 

integrating the NDWI surface with the IFP from the water height module. The integration 

of wetness analysis and DEM-based analysis aids in 1) compensating the information lost 

between the NRT RS image and RT water height readings; and 2) providing additional 

flooding awareness for areas with high elevation where the DEM-based IFP fails to cover. 

Even the NDWI layer represents the wetness conditions a few days after the flood event, 

areas with high wetness indicates that they are prone to flooding during the event. 

Integrating the spatially dynamic distributions of wetness into the IFP, a comprehensive 

situational awareness of the flooding probabilities is achieved. 

The Global Enhancement Module begins with a quartic kernel smoothing function, 

which places a moving 2-D kernel over the data layer to achieve an estimation of the 

density at the kernel center. In this module, a kernel smoothing function is applied to both 

NDWI and IFP layers. The kernel smoothed IFP layer, namely 𝐼𝐹𝑃𝑠, is mathematically 

defined as:  𝐼𝐹𝑃𝑠(𝑥,𝑦)  =  1𝑛ℎ2∑ 𝐾 (𝐼𝐹𝑃𝑥−𝑥𝑖ℎ )𝐾 (𝐼𝐹𝑃𝑦−𝑦𝑖ℎ )                                 𝑛𝑖=0 (2.3) 

where ℎ  and 𝑛  denote the bandwidth and sample size of the kernel, respectively. The 𝐼𝐹𝑃𝑠(𝑥,𝑦) represents the density estimation at location (𝑥, 𝑦). The bandwidth ℎ of kernel K 

is initially set to 1000 meters for calculational convenience. The kernel function K used in 

this chapter is the quartic kernel, which is calculated as: 
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K(𝑢) =  1516 (1 − 𝑢2)2                                                   (2.4) 

where variable 𝑢 has to meet a cut-off requirement: |𝑢| ≤ 1. 

Similarly, the ALI-derived NDWI is smoothed using the same kernel function and 

parameter settings. The result is named 𝑁𝐷𝑊𝐼𝑠. Both 𝑁𝐷𝑊𝐼𝑠 and 𝐼𝐹𝑃𝑠 is then normalized 

to the [0, 1] using a max-min normalization, namely 𝐼𝐹𝑆𝑛 and 𝑁𝐷𝑊𝐼𝑛, respectively. The 

normalization process makes these layers mathematically comparable, greatly facilitating 

the calculation and interpretation.  

After the normalization, we notice that the 𝐼𝐹𝑆𝑛  is distributed consistently and 

distinguishably in its value range. However, the  𝑁𝐷𝑊𝐼𝑛 values are mostly clustered in its 

middle range (around 0.5). To better spread out these most frequent values, a modified 

logistic stretch function is applied to 𝑁𝐷𝑊𝐼𝑛 . The contrast enhancement function is 

defined as follows: 𝑆_𝑁𝐷𝑊𝐼𝑛 = 𝐿1+𝑒−𝑘(𝑁𝐷𝑊𝐼𝑛+𝑎)                                               (2.5) 

where 𝑆_𝑁𝐷𝑊𝐼𝑛  represents 𝑁𝐷𝑊𝐼𝑛  after the logistic stretch, 𝑘  is the coefficient that 

controls the steepness of the curve, 𝑎  is the x-value of midpoint and L measures the 

maximum value of the curve. The constants 𝐿 , 𝑎  and 𝑘  are set as 1, 0.5 and 10, 

respectively. 

Finally, an Enhanced Flooding Probability (EFP) is produced by aggregating the 𝐼𝐹𝑆𝑛 and 𝑆_𝑁𝐷𝑊𝐼𝑛 as bellow: 𝐸𝐹𝑃 =  𝐼𝐹𝑆𝑛 +  𝑆_𝑁𝐷𝑊𝐼𝑛                                          (2.6) 

2.3.3 Local enhancement module 

The EFP layer could be locally enhanced around the verified flood-related tweets locations, 

which are the local areas that were actually flooded during the 2015 SC Flood event. The 
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local enhancement around these locations involves a morphological dilation process that 

significantly boosts the flood probability of the local areas around a flood tweet point. 

According to Tobler’s law, areas closer to a verified tweet point are more likely to be 

flooded. Therefore, pixels surrounding the tweet point could be locally enhanced for their 

flooding probability, and those closer to the tweet point receive stronger enhancement. 

It is reasonable to assume that this local enhancement follows a morphological 

dilation pattern centered at this tweet point. Assigning a domain of areas with a search 

radius centered at a tweet point, at a pixel (x, y), the dilation process is mathematically 

defined as:  𝑔(𝑥, 𝑦) = (𝐸𝐹𝑃⊕ 𝑒)(𝑥, 𝑦) = 𝑚𝑎𝑥{𝐸𝐹𝑃(𝑥 − 𝑎, 𝑦 − 𝑏)|(𝑥 − 𝑎, 𝑦 − 𝑏) ∈ 𝐷𝑠; (𝑎, 𝑏) ∈ 𝐷𝑒}  (2.7) 

where 𝐷𝑠  denotes the domain of areas within a search radius from the tweet point. 𝐷𝑒 

denotes the domain of a structuring element 𝑒.  Term 𝑔 represent the dilated output at (x, y). 
To take the distance-decay effect into consideration, a distance-related coefficient 𝑐 is introduced to the function:  𝑅𝐹𝑃(𝑥, 𝑦) = 𝑔(𝑥,𝑦) − 𝐸𝐹𝑃(𝑥,𝑦)𝑐 +  𝐸𝐹𝑃(𝑥, 𝑦)                                      (2.8) 

where 𝑅𝐹𝑃(𝑥, 𝑦) denotes the final result of the modified dilation process which takes 

distance decaying into account at location (𝑥, 𝑦). The coefficient 𝑐 is defined as 𝑐 =  𝑟𝑟−𝑑. 

Where 𝑟 denotes the radius of the search area and 𝑑 denotes the distance from (𝑥, 𝑦) to the 

tweet point. 

Within the search area of a tweet, the dilation process selects the maximal value 

and adjusts the enhancement strength based on the distance of a pixel towards the tweet 
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point. Initially, a square-shaped structuring element with a length of 10 pixels (300 meters) 

was chosen and a search radius was set to be 1000 meters. 

2.4 RESULTS AND DISCUSSION 

2.4.1 The Initial Flooding Probability (IFP) 

The integration of DEM and water height readings at five river gauges generated the IFP 

for the entire research area. The individual weight layers based on different gauges could 

vary due to the uncertainty induced by local DEM variance. Each layer provides its own 

estimation based on a single gauge reading, rendering a local flooding probability 

prediction. Fig 4a1-4a5 demonstrate five individual flood extent weight layer extracted 

from their river gauges. The flood extents they measured are different from each other due 

to the unevenness of local terrain. Exceptionally, the weight layer based on Gauge 

02169500 varies significantly from other gauges (Figure 2.4 (a4)).  The integration of all 

gauges greatly reduces the uncertainties induce by local DEM variations and provides an 

overall representation of flooding probability in the research area (Figure 2.4 (b1)). DEM 

is an important topological characteristic of flooding morphology. By taking it into 

consideration, the IFP serves as a valuable initial layer for the integration of other data 

sources.  
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Figure 2.4 The IFP derived from DEM and gauges. The background is the black-and-
white display of the ALI image. 

The aggregated IFP layer in Figure 2.4 (b1) has integer values ranging from 0 to 

10, indicating different levels of flood proneness. The IFP value with 0 represents the areas 

at elevations higher than the maximum recorded water height of all gauges, therefore, is 

not possibly flooded. IFP value with a maximum 10 represents areas lower than the 

maximum water height of all gauges and, therefore, has the highest potential of being 

flooded. Areas with 0 IFP are left transparent to show the background image in the figure. 

Fig 4b1 reveals a massive flood occurrence in the south of the research area (IFP value = 

10), and high flooding probabilities following the Congaree River (Figure 2.4 (b2)) and 

Gills Creek (Figure 2.4 (b3)) in downtown Columbia. 

2.4.2 The Globally Enhanced Flooding Probability (EFP) 

EFP takes wetness into consideration by Enhancing DEM based measurement (𝐼𝐹𝑃𝑛) with 

soil wetness derived from remote sensing imagery (𝑆_𝑁𝐷𝑊𝐼𝑛). Figure 2.5 compares the 
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distributions of the flooding probabilities before and after the NDWI-implemented global 

enhancement. 

 
Figure 2.5 Comparison of the flood probability before and after integrating the NDWI. 

In Figure 2.5a, the 𝐼𝐹𝑃𝑛  successfully identifies the low-elevation flooded areas 

along the major stream channels. The extensive area of high flooding probability in the 

south of the research area was actually flooded due to its low elevation during the event. 

The flooded areas in the south end of Figure 2.5a are not well identified in Figure 2.5b due 

primarily to the time lag of image acquisition. The image was taken three days after the 

flooding peak, and floods in local areas have retreated. Therefore, the 𝐼𝐹𝑃𝑛 has a distinctive 

real-time advantage over 𝑆_𝑁𝐷𝑊𝐼𝑛. 

On the other hand, with the spatially continuous NDWI, Fig 5b reveals the hot spots 

of high wetness in high elevation zones (highlighted by circles). Areas in high elevations 

are also likely to be flood-prone due to its local topographic unevenness and land use types. 

In Figure 2.5b, these local areas are fairly identified by their high land surface wetness. 

Therefore, the 𝑆_𝑁𝐷𝑊𝐼𝑛  renders holistic wetness information, largely contributing to 

identifying areas at higher elevations where 𝐼𝐹𝑃𝑛 fails to cover. 

As integration of 𝐼𝐹𝑃𝑛  and 𝑆_𝑁𝐷𝑊𝐼𝑛 , the EFP obviously provides a better 

estimation by taking advantage of both aspects (Figure 2.5c). In a spatial perspective, it not 
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only keeps high flooding probability in lower elevations and alongside river channels 

demonstrated by 𝐼𝐹𝑃𝑛 , but also highlights the potentially flooded regions in higher 

elevations as suggested by the high wetness in 𝑆_𝑁𝐷𝑊𝐼𝑛. In a temporal perspective, EFP 

compensates the time lag from remote sensing imagery by incorporating real-time rive 

gauge readings. Figure 2.5 demonstrates that, by considering DEM/gauges and wetness 

together, a more comprehensive, global flooding probability estimation is achieved. 

2.4.3 The Reconstructed Flooding Probability (RFP) 

RFP is a result of a local enhancement from EFP via a morphological dilation process. It 

utilizes the spatial and temporal advantage provided by verified flood-related tweets. 

(Figure 2.6). The in-situ information provided by verified flood-related tweets aids in 

higher accuracy of local flooding probability adjustment. Their inherent real-time 

characteristic reconstructs the flood surface by enhancing the flooding probabilities of their 

surrounding pixels and expending the projected inundation. From EFP to RFP, the local 

enhancement module considers tweets as input and significantly adjusts the EFP layer 

using additional verified information provided by Twitter users. Several comparisons of 

EFP and RFP are shown in the subsets marked in Figure 2.6 Subset b1, c1, and d1 represent 

the flooding probabilities in EFP. Subset b2, c2, and d2 represent the flooding probabilities 

after the local enhancement in RFP. Significant modifications can be observed as flooding 

probabilities around the tweets (black dots) in subset b2, c2, and d2 are much higher than 

those in subset b1, c1 and d1 respectively. Those modifications indicate that supplemental 

real-time data sources like tweets can greatly aid in identifying locations ignored in EFP. 
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Figure 2.6 Final RFP and subset comparisons with the EFP. 

In Figure 2.7, a more detailed comparison before and after the tweet-implemented 

flood probability (EFP vs. RFP) is performed by visually checking with the high-res 

Google Earth images (a1 and b1 in Figure 2.7) acquired on Oct. 7th, two days after the 

flooding. Figure 2.7 (a2) and (b2) are the EFP in the imaged subsets, and Figure 2.7 (a3) 

and (b3) are the locally enhanced RFP from (a2) and (b2), respectively, using those tweets 

(black dots) in each subset.  
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Figure 2.7 Tweet examples and visual comparison of EFP and RFP with high-res Google 
Earth images acquired on Oct 7. 

It is obvious that EFP (Figure 7 (a2) and Fig 2.7 (b2)) can actually reveal the local 

floods as shown in the corresponding Google Earth images (Figure 2.7 (a1) and Figure 2.7 

(b1)). However, some flooded areas indicated by the verified tweets are not well spotted 

either on Google Earth images or the EFP, for instance, the four tweets marked in b1. This 

is partly due to the time discrepancy between the tweets and images as those high-res 

images were taken on Oct 7th while the flood reached its peak around Oct 5th. Compared to 

the EFP, the RFP (a3 and b3) boosts the flooding probabilities surrounding a certain tweet, 

resulting in a reasonable probability adjustment via the crowdsourcing data. Examples in 

Figure 7 illustrate that even a small amount of real-time supplemental VGI from social 

media can significantly adjust the flooding probability at the local scale, thus improving 

the reconstruction of the flood probability distributions during a flood event.  
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2.4.4 Comparison with the USGS HWMs and inundation map 

The RFP was compared with two major post-event flooding data sources, the USGS 

surveyed HWMs, and the officially released inundation map (Figure 2.8). In general, the 

USGS inundation area (Figure 2.8b) shows a similar pattern as the RFP (Figure 2.8a). In 

the results, areas with higher probability match well with the USGS-mapped inundated 

area. Beyond the USGS survey boundary, the results extracted the areas with high 

probabilities all over the research area. For example, in the subset along Gills Creek (Figure 

2.8c), it is obvious that more areas closer to the creek with relatively high flooding potential 

were successfully identified beyond the existing boundary.  

 

Figure 2.8 The RFP compared with USGS HWMs and USGS Inundation map 

An RFP histogram comparison was conducted between the whole research area and 

those within the USGS inundated boundary (Figure 2.9). The result suggests a “U” shape 

histogram for the flooding probability within the research area where the histogram peaks 

occur in both low and high end, suggesting a bimodal distribution pattern with a mean 

flood probability of 0.34 (Figure 2.9a). After confining RFP within the USGS inundation 

boundary, it reveals a mono-modal pattern with a peak in high flooding probabilities with 

a mean of 0.83, a dramatic increase from 0.34. Detailed statistics can be seen in Table 2.3, 

where 62.41% of pixels constrained within the boundary have the flooding probabilities 
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larger than 80%. This indicates that areas within the USGS inundation boundary tend to 

have significantly higher flooding potentials than areas beyond the boundary. 

We also extracted the flooding probability at the HWMs, the post-event manually 

surveyed ground truth points provided by USGS field surveyors. It is suggested that 

67.15% of the HWMs have the flooding probabilities higher than 0.6 (Table 2.3). Given 

the fact that those HWMs are not likely to be distributed inside water bodies where highest 

flooding probabilities exist, but rather mostly alongside river channels and lake boundaries, 

the RFP in this chapter matches well with the HWMs. 

 

Figure 2.9 The EFP in the whole research area and in area within USGS inundation area. 

Table 2.3 The RFP and HWMs within USGS inundation area. 
 RFP Number of pixels (%)   Number of HWMs (%) 
       0 ~ 0.2        1153 (01.84%)               20 (7.22%) 
    0.2 ~ 0.4        4905 (07.80%)               27 (9.75%) 
    0.4 ~ 0.6        7406 (11.78%)               44 (15.88%) 
    0.6 ~ 0.8      10167 (16.17%)               69 (24.91%) 
    0.8 ~ 1.0      39236 (62.41%)             117 (42.24%) 
         Total      62876 (100.00%)             277 (100.00%)  

 
In short, this chapter develops a flood reconstruction model that logistically 

combines the DEM, gauge readings, RS images, and social media, achieving a near real-

time flooding probability estimation. The flooding surface derived from real-time 

DEM/gauge readings successfully identified the low-elevation flooded areas. The satellite-
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derived NDWI contributes to identifying areas in high-elevation zone where DEM/gauge 

readings fail to cover. Further integration of real-time social media indicates that even a 

small amount of real-time Tweets data can significantly enhance the prediction of local 

floods. Superior to the official USGS map that has a delay of four months, the resulted RFP 

in this study is much less time- and labor-consuming and is not limited to the survey 

boundary. Its ability to provide continuous flooding probabilities largely contributes to a 

rapid and more accurate understanding of areas in need of urgent attention. 

2.5 CONCLUDING REMARKS 

As the severity of flood events has apparently increased, a comprehensive and rapid flood 

probability map is needed for local authorities to identify areas in need of attention and to 

mitigate flood-related damage. Taking the 2015 SC Flood as the study case, this chapter 

built a flooding reconstruction model to enhance the delayed remote sensed observation 

with spatially isolated real-time river gauges and Twitter data. 

The primary findings of this chapter are: 1) the inclusion of multiple gauges 

compensates the uncertainties from local topological unevenness and the flaws of gauge 

data itself, and successfully identifies the low-elevation flooded areas; 2) Satellite-derived 

wetness contributes to identifying the high-elevation flooded areas, and its information loss 

due to delayed observation is compensated by integrating with the gauge and DEM-based 

flood layer; 3) Local enhancement with RT tweets proves that even a small amount of 

crowdsourcing data can largely improve the identification of high flood probability areas 

during a flood event. 

The methodology designed in this chapter provides a spatially continuous 

probability surface that measures the likeliness of a certain area being inundated during a 
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flood event in a near real-time manner. The results in this chapter can greatly benefit local 

authorities and first responders for a rapid and comprehensive understanding of flooding 

situations. In addition, the proposed model could be generalized to other flooding cases. 

Other crowdsourcing databases could also be involved to provide supplemental 

information, aiding in a more robust local awareness. The methodology used in this chapter 

could seed a wide range of future flood studies for rapid and improved flood situational 

awareness in a city as well as at a regional level.  

Although crowdsourcing platforms significantly improve the flood awareness 

acquisition, evidenced by promising results in this chapter, retrieving flood relevant posts 

remains a great challenge. On-topic social media posts (e.g., flood) only comprise a small 

proportion of the enormous volume of information in social media space. The 49 geotagged 

flood tweets used in this study were derived via the traditional keyword-matching approach 

and manual verification, a rather time/labor-consuming process. Given the characteristics 

of large volume and high streaming velocity of social media data, an automatic approach 

to retrieving on-topic social media posts is in great need. The following chapter (Chapter 

3) designs a deep learning supported approach, aiming to automate the retrieval of on-topic 

social media posts. 
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CHAPTER 3 

DEEP LEARNING SUPPORTED AUTOMATIC FLOOD RELEVANT 

VGI RETRIEVAL FROM SOCIAL MEDIA SOURCES2

3.1 INTRODUCTION 

The rising of microblogging platforms renders us an important way to share information 

online, especially during severe disaster events. Social media, including Twitter, Facebook, 

and Flickr, empower millions of private citizens, as eyewitnesses, to voluntarily document 

their observations and thoughts in a highly up-to-date manner (Crampton, 2009; Ashktorab 

et al., 2014). Guided by the idea “citizen as sensors” proposed by Goodchild (2007), 

volunteers may contribute useful information regarding the intensity, severity as well as 

the extent of a disaster, providing time-critical situational awareness before authoritative 

information becomes available. Given the importance of on-topic (i.e., disaster-related) 

social media, extensive studies have attempted to harness useful volunteered information 

within social media for understanding and mitigating disasters, both natural and human-

induced. Studies have demonstrated the utility of social media in mitigating a wide range 

of disasters including wildfire (Sutton et al., 2008; Slavkovikj et al., 2014; Ken and 

Capello, 2013; Vieweg et al., 2010), flood (Li et al., 2018; Huang et al., 2018a; Huang et 

 

2 Huang, X., Li, Z., Wang, C., & Ning, H. (2019a). Identifying disaster related social 

media for rapid response: a visual-textual fused CNN architecture. International 

Journal of Digital Earth, 1-23. Reprinted with permission from the publisher. 
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al., 2018b; Fohringer et al., 2015; Schnebele and Cervone, 2013; Schnebele et al., 2014; 

Avvenuti et al., 2016), earthquake (Yates and Paquette, 2010; Sakaki et al., 2010; 

Muralidharan et al., 2011; Yin et al., 2012; Resch et al., 2018; Avvenuti et al., 2018; 

Avvenuti et al., 2014; Earle et al., 2012), extreme precipitation and droughts (Tang et al., 

2015; Ruiz Sinoga and León Gross, 2013; Hannak et al., 2012) and flu outbreak (Dredze, 

2012; Schmidt, 2012; Gao et al., 2018; Lampos and Cristianini, 2012). The timely, 

individual-level characteristic coupled with their spatial context makes disaster-related 

social media a distinct source of ambient geospatial information (Stefanidis et al., 2013; 

Middleton et al., 2014; Verma et al., 2011) and a proxy to enhance disaster awareness (Gao 

et al. 2018; Imran et al., 2015). 

Given the fact that on-topic social media only comprises a small proportion of the 

enormous volume of information in social media space, the practicality of social media has 

been greatly hampered by the limited approaches of automatic on-topic social media 

retrieval. The automation remains challenging because 1) the enormousness of social 

media pool that requires great computational power (Xu et al., 2016; Zikopoulos and Eaton 

2011); 2) the complexity of the visual (picture) and textual (text) information that impedes 

the efficiency of traditional classification methods (Lew et al., 2006); and 3) the lack of 

integrated approach that considers fused characteristics from both visual and textual 

information (Gao et al., 2013). The first challenge has been addressed by the development 

of cloud computing, parallel computing, and the popular application of GPU (graphics 

processing unit) acceleration. The second challenge is being addressed with the advance of 

machine learning algorithms that greatly improve the classification accuracy of complex 

visual and textual information. For example, the state-of-the-art convolutional neural 
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network (CNN) techniques have achieved great performance on both picture labeling 

(Simonyan and Zisserman, 2014; Szegedy et al., 2017) and text classification (Kim, 2014). 

The third challenge, however, has not been thoroughly explored in the current literature. 

As two major components of a social media post, text and picture are both important when 

classifying on-topic social media posts. It is believed that the classification approach using 

a fused feature from visual and textual information allows cross-validation of each source, 

thus leading to better classification results (You et al., 2016). Therefore, the third challenge 

relies on an advanced visual-textual fused classification approach and merits further 

investigation. 

This chapter presents an approach to automatically identifying on-topic social 

media posts by integrating their visual and textual information via a fused CNN 

architecture. Specifically, two CNN architectures are employed targeting on visual and 

textual posts of social media, respectively. The outputs of the two CNNs are further 

concatenated to form a fused representation, participating in the final classification step. 

Taking the 2015 SC flood and 2017 Houston flood as study cases, this chapter assesses the 

practicality of using visual-textual fused representation to label on-topic social media posts 

during a flood event. It also evaluates the performances of popular machine learning 

algorithms on the training of visual-textual fused vector. More importantly, it provides 

direct evidence on how much labeling accuracy can be achieved with the involvement of 

visual information.   
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3.2 RELATED WORK 

3.2.1 Visual information labeling 

The development of machine learning techniques enables the automation of labeling 

pictures via their visual characteristics. The traditional approaches have proven relatively 

efficient (Ofli et al., 2016; Gupta et al., 2013), including Random Forests that learns 

features via a multitude of decisive structures (Bosch et al., 2007); Support Vector 

Machines (SVM) that constructs one or multiple hyperplanes (Chapelle et al., 1999); and 

Naïve Bayes that learns probabilistically by assuming strong independence between 

features (McCann and Lowe, 2012). These baseline models have been outperformed by the 

rapidly evolving convolutional neural networks (CNNs) (Krizhevsky et al., 2012; Ciresan 

et al., 2011). Inspired by biological processes, CNN is a hierarchical neural network 

composed of input, output, and multiple hidden layers. Its form varies upon how those 

hidden layers are organized and realized. Since its proposal, CNN has been widely applied 

in various of fields that require advanced image processing technique, including remote 

sensing (Hu et al., 2015), social media analysis (Nguyen et al., 2017; ), medical imaging 

processing (Bar et al., 2015), signal processing (Hershey et al., 2017) and video recognition 

(Yue-Hei Ng et al., 2015).  

The great potential of CNN and the advance in high-performance computing 

markedly flourish the development of CNN architecture in picture recognition. AlexNet by 

Krizhevsky et al. (2012), for instance, consists of only 8 layers but was able to achieve a 

top 5 test error rate of 15.4% on ILSVRC (ImageNet Large-Scale Visual Recognition 

Challenge). VGG Net by Simonyan and Zisserman (2014) significantly improved the 

performance by utilizing a simpler but much deeper convolutional structure. Diverging 
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from the mainstream of stacking layers following a sequential structure, GoogleLeNet 

(Szegedy et al., 2015) used a composition of multiple inception modules and achieved 

improved performance (5.6% top-5 error) as well as computational efficiency. With a depth 

of up to 152 layers, the ResNet proposed by He et al. (2016) further improved the 

classification performance above human-level (3.57% top-5 error) by going deeper and 

leveraging residual networks.   

In this chapter, the CNN architecture used to label visual information from social 

media is a transfer-learned and find-tuned Inception-V3 architecture. More details about 

the architecture design and transfer leaning phrase are presented in Section 3.3.1. 

3.2.2 Textual information labeling 

Apart from the success in picture labeling, CNN models have also shown a great potential 

in natural language process (NLP) and achieved excellent performances in sematic parsing 

(Yih et al., 2014), sentimental analysis (Ouyang et al., 2015), sentence modeling 

(Kalchbrenner et al., 2014), sentence labeling (Wang et al., 2012; Kim ,2014) and other 

NLP tasks (Sutskever et al., 2014). Within the NLP tasks, CNN models are able to 

capitalize on distributed word representations by first learning word vectors through neural 

language models, then forming a matrix to be used for classification (Zhang and Wallace, 

2015; Collobert et al., 2011). Extensive studies have explored the capability of CNN in 

labeling texts to a certain topic. Kim (2014), for example, designed a simple one-layer 

CNN architecture for sentence classification utilizing word vectors trained by Mikolov et 

al. (2013) and achieved a remarkable classification accuracy across several datasets. 

Kalchbrenner et al. (2014) designed a CNN architecture by applying a dynamic K-Max 

Pooling strategy over linear sequences and found that it outperformed the baseline models, 
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including SVM and neural bag-of-words (NBOW). Feng and Sester (2018) found that CNN 

coupling with word vector representations performed better in flood-related text 

classification than traditional machine learning algorithms, including SVM, Random 

Forest, Logistic Regression, and Naïve Bayes. Lin et al. (2016) adopted Kim’s network 

(Kim 2014) and tested on Weibo, a Chinese microblogging service, to extract information 

related to earthquakes and achieved accuracy up to 90.7% in labeling on-topic posts. 

The strong performance achieved with those relatively simple CNN architectures 

suggests their great potentials in text labeling. The study in this chapter modifies the 

architecture proposed by Kim (2014) for text classification. More details can be found in 

Section 3.3.2. 

3.2.3 Towards a fused labeling 

The outstanding performances of CNN in picture and text classification have raised a 

tendency to merging visual and textual information towards a fused classification 

approach. Under the assumption that a visual-textual fused classification allows self-

correction of intrinsic errors from a single source (You et al., 2016; Laura et al., 2017; 

Huang et al., 2019b), a fused classification method combines the features extracted from 

both pictures and texts and therefore leads to a more robust classification. This is especially 

the case when dealing with disaster-related social media posts where both their visual and 

textual information may contain important information. A few attempts have been made to 

combine visual and textual information. Huang et al. (2018c) proposed a visual-textual 

fused approach in labeling flood-related tweets by integrating flood sensitive words to 

remove wrongly classified pictures by CNN. However, it only proves that textual 

information (flood sensitive words) can be applied to refine the result from picture labeling. 
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You et al. (2016) designed a cross-modality regression for joint visual-textual sentimental 

analysis of social multimedia and achieved a great performance. Avgerinakis et al. (2017) 

proposed a visual and textual analysis by fusing the results from two modalities using non-

linear graph-based techniques. Bischke et al. (2017) proposed a fused framework that 

combined both features to a single vector for final classification.  

The visual-textual approach proposed in this chapter integrates a transfer-learned 

Inception-V3 architecture (extracting visual features) and modified word embedded CNN 

architecture (extracting textual features). More details can be found in Section 3.3.3. 

3.3 METHODS 

The conceptual workflow of the proposed methodology is presented in Figure 3.1. Texts 

and pictures from a social media post are refined in the pre-processing process and fed to 

visual CNN and textual CNN respectively for feature extraction. Well-trained on designed 

training datasets, both CNN architectures have the capability of providing feature vectors 

that describe the characteristics of texts and pictures. By concatenating the visual vectors 

and textual vectors, a fused feature vector is developed and input to the final classification 

architecture. The final output is a binary class (on-topic or off-topic) of any given social 

media post.  
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Figure 3.1 Conceptual workflow. 

3.3.1 Transfer-learned and fine-tuned CNN architecture (Visual CNN) 

Transfer learning is the technique that transfers the network weights on a previous task to 

a new task, under the assumption that features extracted from the previous dataset are 

generic enough to be useful in the context of a new dataset (Yosinski et al., 2014). The 

base model to tackle the visual classification problem in this chapter is Inception-V3 

architecture with a 3.6 % top-5 error (Szegedy et al., 2016). To transfer this network to a 

binary classifier (on-topic or off-topic), several top layers specific to ILSVRC problems 

are removed. New layers are added to the model in the following order: AvgPool, FC (1024 

features), Dropout, and Softmax (2 classes), as shown in Figure 3.2. 
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Figure 3.2 Transfer learned model from Inception-v3. 

To retrain the newly composed model, a two-stage transfer learning strategy is 

applied: 

Stage 1: freeze all but the penultimate layer and re-train the last FC layer; 

Stage 2: unfreeze lower convolutional layers and fine-tune their weights. 

In stage 1, the main body of the model is selected to be non-trainable (weights are 

not updating themselves), and only the newly added FC layer is trainable. The rationale is 

that the main body of Inception-v3 is capable of providing rich and generic feature 

representations of the data provided, and the newly added FC layers (associated with the 

following Dropout and Softmax layer) are only treated as a classifier trained on the on-

topic and off-topic visual training set (described in Section 3.4.2). 

After the completion of stage 1, lower convolutional layers are further released to 

be trainable on the same training dataset in stage 1 through the backpropagation process. 

This stage is motivated by the idea that the earlier features in a CNN model contain more 

generic features that can be generalized to other tasks (no need to be fine-tuned), but the 

later features in the model become more specific to previous designated classes (need to 

be fine-tuned). In this stage, the top 2 inception blocks in the main body inception-v3 are 
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further released to be trainable while other low-level layers are still kept frozen to prevent 

the model from being overfitted.  

The functionality of various layers in Figure 3.2 is summarized in Table 3.1. 

Table 3.1 Layer functionality summary 

Layer type Functionality 

Convolution Learning features by applying a convolution operation to the input: 𝑥𝑖𝑗𝑙 = ∑ ∑ 𝑤𝑎𝑏𝑥(𝑖+𝑎)(𝑗+𝑏)𝑙−1𝑚−1
𝑏=0

𝑚−1
𝑎=0  

where a 𝑚 ×𝑚 filter 𝑤 is applied to a previous layer 𝑥𝑙−1, convoluting 
it down to the current layer 𝑥𝑙. 

AvePool An extreme type of dimensionality reduction where a ℎ × 𝜔 × 𝑑 feature 
map is further reduced to 1× 1 × 𝑑 by averaging values in 𝑅ℎ×𝜔. 

MaxPool Reducing the spatial size of the representation by selecting the max 
value as representative: 𝑥𝑖𝑗𝑙 = 𝑀𝑎𝑥(𝑖+𝑒),(𝑗+𝑓)∈𝑅𝑝  𝑥(𝑖+𝑒)(𝑗+𝑓)𝑙−1  

where 𝑅𝑝 denotes the pooling filter domain. 

Concat A concatenating function that merge shorter vectors to form a single 
long vector: 𝑋 = 𝑥1⊕𝑥1⊕𝑥2⊕⋯⊕𝑥𝑛 
where 𝑋 denotes concatenated vector and 𝑥𝑖 denotes short vectors. 

Dropout A regulation function that prevents the co-adaption of hidden units by 
randomly setting a proportion to 0 in forward propagation, thus 
significantly reducing the chance of network being overfitted 
(Srivastava et al. 2014). I.e., replace 𝑦 = 𝑊 ∙ 𝑧 + 𝑏  with 𝑦 = 𝑊 ∙(𝑧 ∘ 𝑟) + 𝑏 where “∘” represents element-wise multiplication and 𝑊, 𝑧, 𝑏, and  𝑟 to be weight matrix, feature vector, bias term and ‘masking’ 
vector, respectively (Kim 2014) 

FC Flattening high dimensional features by connecting every neuron in the 
prior layer to the next layer. 

Softmax A function that classifies mutually exclusive labels and makes predicted 
probabilities to each label add up to 1. A binary Softmax function, in 
this case, can be simplified to a logistic function: 𝑦 =  11 + 𝑒−(𝑊∙(𝑧∘𝑟)+𝑏) 
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3.3.2 Word embedded CNN architecture (Textual CNN) 

The construction of a word embedded CNN consists of two steps: 

• High-dimensional word representation (word vector) acquisition; 

• Application of CNN in sentence matrix formed by word vectors.  

Given the fact that textual patterns differ a lot in short-text posts in social media 

compared to formal sources, including news and formal articles, it is necessary to train 

word vectors specifically for social media posts.  To acquire word vectors, the technique 

used in this chapter is Word2Vec, a shallow neural network with a single hidden layer, but 

proved to be powerful in providing 300-dimension vectors representing the word 

characteristics (Mikolov et al., 2013). A word vector database is then built to enable the 

formation of a sentence matrix, which is the input for a CNN architecture designed based 

on the work by Kim (2014) (Figure 3.3).  
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Figure 3.3 Word embedded CNN architecture. 

The input sentence is described by multiple 300-dimension vectors, which form an 

image-like matrix that can be processed by convolutional algorithms. Suppose that the 

maximum word length in a sentence is 𝑚 and the dimension of a word vector is K, the 

sentence matrix that serves as the input to the CNN model can be represented by X ∈𝑅𝑚×𝐾 . Let 𝑥𝑖 ∈ 𝑅𝐾  be the K-dimensional word vector to the 𝑖 -th word in the input 

sentence. Each sentence can be represented as: X = 𝑥1⊕𝑥2⊕𝑥3⊕⋯⊕𝑥𝑚                                  (3.1) 

where ⊕ is the concatenation operator. 

Given that not every sentence reaches the maximum length (𝑚), 0 padding strategy 

is applied when necessary. Suppose that a sentence has a length of 𝑛 (𝑛 < 𝑚), the input 

sentence can be rewritten as: 
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X = 𝑥1⊕𝑥2⊕⋯⊕𝑥𝑛⏟            𝑛 ⊕ 𝑥𝑛+1(0) ⊕⋯⊕ 𝑥𝑚(0)⏞                              𝑚
                       (3.2) 

where 𝑥𝑖(0) denotes a vector padded with 0.  

Let 𝑥𝑖:𝑗 refer to the subset of concatenation words from word 𝑥𝑖 to word 𝑥𝑗. Let 𝑤 ∈ 𝑅𝑠𝐾 to be the domain of a certain filter with a vertical size of ℎ words. When this 2D 

filter is applied to a window of word from 𝑥𝑖:𝑖+𝑠−1, a new feature 𝑜𝑖 is generated: 𝑜𝑖 = 𝑓(𝑤 ∙ 𝑥𝑖:𝑖+𝑠−1 + 𝑏)                                           (3.3) 

where 𝑏 is the bias term, 𝑓 is an activation function (following the work of Kim (2014), a 

hyperbolic tangent function is applied) and " ∙ " is the dot product from the filter and the 

word matrix from 𝑥𝑖 to 𝑥𝑖+𝑠−1. When this filter is moving in a stride of 1, it generates a 

feature map 𝑪𝜖𝑅𝑚−𝑠+1 as: 𝑪 = [𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚−𝑠+1]                                         (3.4) 

After the generation of feature map 𝐶 for a certain filter 𝑤, a pooling function is 

applied to induce a fixed-length vector (Lin et al., 2016). A commonly used max pooling 

strategy (Collobert et al., 2011) is applied, taking the maximum value from each feature 

map 𝑪: �̂� = 𝑚𝑎𝑥(𝑪)                                                   (3.5) 

where �̂� represents the maximum value in its elements.  

The application of this max pooling strategy provides a single feature ( �̂� ) 

corresponding with its filter (𝑤). In this study, given a certain filter size 𝑠, a total number 

of N filters are used to obtain a comprehensive understanding of the input sentence, 

resulting in a dense N-dimensional vector z: 𝑧 = [𝑪�̂�, 𝑪�̂�, … , 𝑪�̂�]                                            (3.6) 
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Those z vectors are further concatenated to a long dense vector. Let 𝑡 be the total 

number of filter size. The final concatenated vector 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙 ∈ 𝑅𝑇𝑁 can be represented as: 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙 = [𝑧1, 𝑧1, … , 𝑧𝑇]                                            (3.7) 

The concatenated textual vector 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙  is further processed by Softmax 

regression to generate two neurons with binary labels. 

3.3.3 Fusing visual and textual information 

The fusion of visual and textual information in this section utilizes the penultimate layer in 

word embedded CNN architecture and a transfer-learned and fine-tuned Inception-V3 

architecture. Both CNN models are well trained with on-topic and off-topic disaster social 

media (Figure 3.4).  

When a social media post is fed to the fused architecture, its textual and visual 

information is simultaneously and respectively passed through a well-trained word 

embedded CNN for generating textual features and a transfer-learned Inception-V3 for 

generating visual features. Each model returns a 1024-dimension vector characterizing the 

visual and textual information of a social media post separately. The concatenated vector 

with 2048 dimensions, therefore, represents a fused feature describing visual-textual 

information integrally: 𝑍𝑓𝑢𝑠𝑒𝑑 = 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙⊕𝑍𝑣𝑖𝑠𝑢𝑎𝑙                                          (3.8) 

where 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙 and 𝑍𝑣𝑖𝑠𝑢𝑎𝑙 denote textual vector and visual vector, respectively, both with 

1024 dimensions. 𝑍𝑓𝑢𝑠𝑒𝑑 denotes the concatenated vector with 2048 dimensions, 

describing a fused characteristic from both text and picture of a social media post. Noted 

that the proposed approach doesn’t require the coexistence of visual and textual input. The 

corresponding feature in the fused 2048-dimension vector is automatically padded with 0 
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if the input lacks an information source, either visual or textual. In this study, almost all 

social media posts contain textual information, but only a proportion of them contain visual 

information. Therefore, I targeted on the influence of 𝑍𝑣𝑖𝑠𝑢𝑎𝑙 , the additional visual 

information input, on the classification merely based on 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙. 

 

Figure 3.4 Fusion of visual and textual information. 

The fused vector is further trained using popular machine learning algorithms to 

derive binary labels: on-topic and off-topic. Those machine learning algorithms used in 

this study include Logistic Regression (LogR), Linear Discriminant Analysis (LDA), 

Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF) and Naïve 

Bayes (NB). To train the algorithms above, a training set is developed, containing labeled 

social media posts with text only and with both text and pictures. This training phrase 

enables the algorithms to handle a variety of inputs and make classification decisions 

accordingly.  
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3.4 DATASETS 

Two specific floods, 2015 SC flood and 2017 Houston flood (Figure 3.5), are selected as 

study cases. Geotagged tweets containing verified texts derived from the 2015 SC flood 

(Figure 3.5b) and flood pictures from various sources (Table 3.2) are applied to train the 

textual CNN and visual CNN, respectively. Their concatenated feature extracted from well-

trained CNNs is further evaluated using geotagged tweets derived from the 2017 Houston 

flood (Figure 3.5c).  

 

Figure 3.5 Research area for two flooding cases with their geotagged tweets; (a) 
Continental U.S; (b) South Carolina flood in 2015 with 934,896 geotagged tweets from 
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Oct 2nd to Oct 9th; (c) Houston flood in 2017 with 501,516 geotagged tweets from Aug 
25th to Sep 1st.  

3.4.1 Visual training set 

To transfer-learn and fine-tune the CNN architecture, a balanced visual training set from 

popular searching engines and social media platforms is first developed. The multi-source 

characteristic of the training set allows better generalization that reduces model overfitting. 

The dataset contains 5500 flood pictures (positive samples) and 5500 non-flood pictures 

(negative samples), as summarized in Table 3.2. A stratified k-fold (k = 5) cross-validation 

rule is followed to split the training set. It is a commonly used estimation approach that 

partitions the dataset randomly into k equal-size subsamples, where one single subsample 

is retained for validation and the remaining k-1 subsamples are used for training.  

Table 3.2 Visual training set. 

Sources Method 
number 

of 
pictures 

Flood pictures  

(positive) 
  

Google Pictures with keyword “flooding” 500 

Baidu 
Pictures with keyword “flooding” and “Hongshui” 
(“flooding” translated to Chinese Pinyi) 500 

Flickr Pictures tagged by “flooding” 500 

Twitter  
&  

Instagram 

Pictures from tweets with keyword “flood*” or 
hashtag “flood*” from Dec 1st 2015 to Dec 1st 2016 
in U.S and manually verified. 

4000 

Positive total   5500 

 

Non-flood pictures 

(negative) 

 
 
 

Twitter 
& 

 Instagram 

Pictures extracted from tweets in U.S from Dec 1st 
2015 to Dec 1st 2016 and manually verified. 

5500 

Negative total  5500 
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3.4.2 Textual training set 

The textual training set in this study contains two subsets: 1) word embedding training set, 

aiming train the embedding model, Word2Vec (Mikolov et al., 2013), to learn high-

dimensional word representation (word vector); 2) Textual feature training, aiming to train 

the textual CNN to provide textual feature (1024-dimension vector) that characterizes the 

textual information (Table 3.3). 

Table 3.3 Textual training set. 

Subsets 
Sample 

size 
Duration Purpose 

Word embedding 
training set 
(embedding 

model) 

13,830,023 
Jan 1st, 2017 to 
Dec 31st, 2017 

To train the embedding model, 
Word2Vec, to learn high-
dimensional word 
representations, providing 300-
dimension vector for each word 
before feeding sentences to the 
neural network. 

Textual feature 
training set 

5706 
Oct 2nd, 2015 to 

Oct 9th, 2015 
(SC Flood) 

To train the textual CNN to learn 
the meaning of textual 
information of a post, providing 
textual features (1024-dimension 
vector) that well characterize the 
given textual information 

 

The word embedding training set contains a total of 13,830,023 selected sample 

tweets in 2017. They were downloaded using the Twitter Stream API and are stored in a 

Hadoop computer cluster. The usage of a large corpus of tweets to train the word 

embedding model contributes to well-summarized word vectors that are specifically for 

short-text social media posts. 

After training the word embedding model, the textual CNN architecture was further 

trained (described in Section 3.3.2) to provide textual features (1024-dimension vector) 

that characterize the textual information posts. In this textual feature training set, a total of 
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5,706 tweets were manually labeled during the 2015 SC flood (Oct 2nd to Oct 9th) based 

on their textual content only. This balanced dataset contains 2852 positive samples (flood-

related) and 2852 negative samples (non-flood related). 

3.4.3 Fused feature training set 

The fused feature training set aims to train the visual-textual feature (2048-dimension 

vector) classifier (described in Section 3.3.3) to generate on-topic or off-topic labels. The 

dataset used in this training phase was developed during the 2017 Houston Flood period 

(Aug 25th to Sep 1st). 2,092 positive tweets were manually verified based on the content 

of their texts, pictures, or both, among which 825 are picture included tweets. The same 

amount of negative tweets (2,092) during the event were randomly selected and verified as 

non-flood related, among which 1,042 were picture included tweets. The fused feature 

training set enables the visual-textual classifier to produce binary labels given both 

sufficient inputs (a tweet contains both text and picture) and insufficient inputs (a tweet 

contains text but lacks picture).  

 Tweeted texts are noisy and messy, and therefore, a textual pre-processing is 

necessary to trim and formalize the inputs before feeding to the Word2Vec and word 

embedded CNN. During the pre-processing, punctuation marks, emoticons and numbers 

were removed from the text. Stemming and lemmatization techniques were also applied in 

the process. Stemming identifies the common root form of a word by removing or replacing 

word suffixes (e.g., “flooding” is stemmed as “flood”), while lemmatization identifies the 

inflected forms of a word and returns its base form (e.g., “better” is lemmatized as “good”). 

For tweets that contain URLs, a regular expression is used to match and remove URLs in 

their texts. Stopwords represent the most common words in a language, hardly contributing 
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to the meaning of a sentence. In this pre-processing step, a list of stopwords was retrieved 

from Natural Language Toolkit (NLTK) library (http://www.nltk.org/) and words in the 

list are further removed. I also applied some basic transformations, for example, “’ve” to 

“have”, “’ll” to “will”, “n’t” to “not”, “’re” to “are” and etc, to enhance the comprehension 

of the algorithm.  

All pictures are resampled to 299×299 via bilinear interpolation algorithm before 

feeding to the visual CNN. 

3.5 RESULTS AND DISCUSSION 

3.5.1 Visual CNN 

The visual CNN architecture was trained on the visual training set described in Section 

3.4.2 using a 5-fold cross-validation strategy. The training phase (2 stages) took 24 mins 

41 seconds for a single fold using NVIDIA GeForce GTX 1080Ti GPU for acceleration. 

Table 3.4 Visual CNN performance. 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average SD 

Accuracy 93.32% 92.98% 94.50% 91.96% 91.95% 92.94% 0.95% 

AUC 0.983 0.987 0.989 0.978 0.971 0.982 0.006 

 

The model reached a stable performance for all folds with an average accuracy of 

92.94% and a standard deviation (SD) of 0.95% (Table 3.4). The AUCs (Area Under the 

Curve) for all ROC (Receiver Operating Characteristic) curves in Figure 3.6a were 

summarized in Table 3.4. The average AUC for all five folds is 0.982 out of 1 (perfect 

classifier), also indicating the high performance and high stability of the visual CNN. 

The accuracy curves for fold three are demonstrated in Figure 3.6b. After 200 

epochs, it reached an accuracy higher than 90% in both training and validation sets. The 

gradual convergence of the training accuracy curve and validation accuracy curve indicates 
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that the two-stage learning strategy successfully prevents overfitting. The significant 

validation improvement at the beginning of Stage 2 is due to the fine-tuning of the newly 

released inception-v3 blocks. Given the unique characteristics of flood pictures and the 

popularity of pictures with similar patterns (Feng and Sester, 2018), an accuracy over 90% 

with AUC curve over 0.95 is considered acceptable compared with other flood picture 

classification results (Avgerinakis et al., 2017; Bischke et al., 2017). 

The good performance of visual CNN in classifying flood and non-flood pictures 

guarantees that the intermediate penultimate layer (1024-dimension vector) effectively 

summaries the characteristics of flood pictures. The vector thus can be used to represent a 

visual feature of a social media post. 

 

Figure 3.6 Model performance of the visual CNN. 
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3.5.2 Textual CNN 

Given the fact that well-trained word vectors are the prerequisite for a robust textual CNN, 

I first evaluated the 300-dimension word vectors generated by Word2Vec, specifically 

trained on a developed social media pool. The cosine-similarity distance was applied to 

examine the similarity of word vectors to a target vector in hyper-dimensional space. A 

cosine distance ranges from -1 meaning exactly opposite, to 1 meaning exactly the same, 

with 0 meaning unrelated.  

Table 3.5 demonstrates some common words and the Word2Vec-generated top 5 

words with similar meanings ranked in the cosine-similarity distance. For example, the 

closest word vector to “bad” is the word vector of “terrible” with a cosine distance of 0.635, 

followed by “horrible” (0.610), “shitty” (0.553), “awful” (0.524) and “crappy” (0.469). A 

similar pattern is also found for “good”, whose close word vectors include “great”, 

“decent”, etc., all with the same sentimental preference. For disaster-related keywords like 

“flood” and “hurricane”, word vectors with high similarity tend to have either high 

sentence structure relevance (“hurricane” and “Harvey”), high synonymousness 

(“hurricane” and “storm”) or strong causal relationship (“flood” and “damage”, “hurricane” 

and “flood”).  

The linear relationship between different vectors was maintained throughout the 

training phase. For example, the vector “flood” minus vector “water” (flood-induced) was 

similar to that of “thunderstorm”, “storm” and “tornado” minus “wind” (storm-induced). 

Similarly, the vector pattern of “earthquake – quake” is most similar to “flood − water”, 

and that of “father − son” is most similar to “mother − daughter” (Table 3.5). Trained from 
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a massive social media training pool, the Word2Vec model not only extracted meaningful 

vector representations but preserved linear relations among different word vectors.  

Table 3.5 Word2Vec training results (top 5 neighboring words with their cosine-
similarity distances). 

Example words Top 1 Top 2 Top 3 Top 4 Top 5 

bad terrible 
(0.635) 

horrible 
(0.610) 

shitty 
(0.553) 

awful 
(0.524) 

crappy 
(0.469) 

good great 
(0.639) 

decent 
(0.563) 

nice 
(0.489) 

amazing 
(0.469) 

interestin
g 
(0.461) 

flood hurricane 
(0.596) 

damage 
(0.581) 

evacuate 
(0.560) 

storm 
(0.534) 

underwat
er 
(0.496) 

hurricane storm 
(0.702) 

Harvey 
(0.642) 

flood 
(0.596) 

tornado 
(0.477) 

disaster 
(0.463) 

father – son 

+ daughter 

mother  
(0.561) 

grandmoth
er 
(0.533) 

wife 
(0.531) 

woman 
(0.404) 

beloved 
(0.403) 

earthquake – 
quake 

+ water 

flood 
(0.523) 

pouring 
(0.492) 

underwater 
(0.444) 

rain 
(0.418) 

evacuate
d 
(0.413) 

flood – water 

+ wind 

thunderstor
m 
(0.512) 

storm 
(0.498) 

tornado 
(0.484) 

rainfall 
(0.464) 

gust 
(0.447) 

Note. Cosine-similarity distance is calculated as∑ 𝐴𝑖𝐵𝑖𝑛𝑖=1 /(√∑ 𝐴𝑖2𝑛𝑖=1 √∑ 𝐴𝑖2𝑛𝑖=1 ) where 𝐴𝑖 and 𝐵𝑖  represent components of vector A and B. The idea of a word vector 𝛿 similar 
to a vector resulting from a linear function: 𝛼 − 𝛽 + 𝛾 can be interpreted as word vector 𝛿 − 𝛾 similar to vector 𝛼 − 𝛽. 

 

The classification performance of textual CNN using the sentence matrix build 

from these word vectors was then evaluated.  

 

Table 3.6 Textual CNN performance. 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average SD 

Accuracy 94.17% 93.13% 92.54% 93.64% 93.79% 93.45% 0.63% 

AUC 0.970 0.963 0.960 0.967 0.966 0.965 0.004 
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Accelerated by GPU and CUDA architecture, the designed CNN finished the 

training in 21 seconds through 200 epochs for a single fold. The results indicate a high 

performance with stability. The average accuracy for all five folds reaches 93.45% with a 

SD of 0.63% and the average AUC reaches 0.965 with a SD of 0.004 (Table 3.6). Detailed 

ROC curves for all five folds and training curve for fold 1 (best performance) are presented 

in Figure 7. After the 75th epoch, both of the training accuracy curve and the validation 

accuracy curve started to level and stabled above 90%, indicating no significant overfitting 

problem (Figure 3.7b). Consecutive and stable training loss was also observed throughout 

the training phase (Figure 3.7c).  

In general, the designed textual CNN performs remarkably well in classifying 

flood-related and non-flood related tweets based on their textual information. It is partly 

due to the uniqueness of word patterns in social media during a flood event. For instance, 

we found that the majority of texts in flood-related tweets in the training pool contain high 

flood-relevant keywords like “flood”, “rain”, “underwater”, etc. This pattern can be easily 

recognized and adopted as a classification strategy by the designed textual CNN 

architecture, thus resulting in high classification accuracy. That being said, with the same 

keyword distribution patterns noticed in other disasters like hurricanes (Bakillah et al., 

2015), earthquakes (Gao et al., 2013), and wildfires (Slavkovikj et al., 2014), this method 

could be easily generalized to other disaster cases given a proper training set. 
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Figure 3.7 (a) Textual CNN ROC curve for all five folds; (b) Training accuracy curve for 
fold one; (b) Training loss curve for fold one. 

3.5.3 Visual-textual fused classification 

The high performance of the designed visual CNN and textual CNN proves the 

functionality of their extracted feature vectors. In this section, I evaluated the performance 

of various machine learning algorithms in giving binary labels based on  𝑍𝑓𝑢𝑠𝑒𝑑 , the 

concatenated fused vector with 2048 dimensions. Similar to training the visual and textual 

CNN, the 5-fold cross-validation was applied to test LogR, DT, RF, NB (Gaussian), NB 

(Multinomial), NB (Bernoulli), DA (LDA), DA (QDA), SVM (Linear), SVM 

(Polynomial), SVM (RBF) and SVM (Sigmoid). As shown in Table 3.7, LogR achieved 

the best performance with an average accuracy of 96.5%, followed by SVM (Linear) with 
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96.3%, SVM (RBF) with 94.4%, and SVM (Sigmoid) with 94.1%. RF and DT also 

performed well with average accuracy reaching over 90%. Significant overfitting was 

observed in SVM (Polynomial) as it has a low average accuracy (69.7%) and the highest 

SD (4.87%). 

Table 3.7 Visual-textual fused classification accuracy. 
Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average SD 

    LogR 96.3% 95.5% 97.1% 97.6% 96.2% 96.5% 0.73% 

    DT 91.5% 89.9% 92.5% 91.0% 90.6% 91.1% 0.87% 

    RF 93.1% 93.2% 93.7% 94.7% 92.9% 93.5% 0.64% 

NB:        
    Gaussian 88.1% 87.0% 88.5% 90.3% 89.1% 88.6% 1.09% 

    Multinomial 76.4% 75.3% 77.6% 79.2% 76.7% 77.0% 1.31% 

    Bernoulli 67.8% 68.1% 70.7% 69.6% 68.3% 68.9% 1.09% 

DA:        

    LDA 86.3% 87.2% 86.6% 88.5% 88.3% 87.4% 0.88% 

    QDA 72.2% 73.6% 75.2% 73.9% 73.7% 73.7% 0.95% 

SVM:        
    Linear 96.2% 95.6% 96.2% 96.9% 96.4% 96.3% 0.42% 

    Polynomial 74.1% 62.2% 75.4% 66.5% 70.2% 69.7% 4.87% 

    RBF 94.7% 93.7% 95.0% 94.9% 93.9% 94.4% 0.54% 

    Sigmoid 94.5% 93.4% 94.3% 94.4% 93.7% 94.1% 0.43% 
Note. LogR, DT, RF, NB, and DA denote Logistic Regression, Decision Tree, Random 
Forest, Naïve Bayes, and Discriminant Analysis, respectively. LDA and QDA denote 
Linear Discriminant Analysis and Quadratic discriminant analysis, respectively. 
Linear, Polynomial, RBF (Radial Basis Function) and Sigmoid are kernel functions 
utilized in the SVM classifier. Classification method with an average accuracy over 
90% for all five folds is highlighted in bold.  

 
To examine whether classification using visual-textual fused vector (𝑍𝑓𝑢𝑠𝑒𝑑) is 

better than using textual vector alone (𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙 ), I tested the algorithms with average 

accuracy over 90% in Table 3.7 using 𝑍𝑓𝑢𝑠𝑒𝑑 and 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙 as input, respectively. Those 

algorithms include LogR, DT, RF, SVM (Linear), SVM(RBF), and SVM (Sigmoid). The 

whole dataset was randomly divided into a training set (70%) and a testing set (30%). The 
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results suggest that all the algorithms benefited from the additional input of visual 

information (Table 3.8). For instance, LogR achieved a classification accuracy of 95.2% 

using 𝑍𝑓𝑢𝑠𝑒𝑑, a 12.6% increase from using 𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙. Similar improvements were found for 

DT with a 12.1% increase, RF with a 11.6% increase, and SVM (Sigmoid) with a 14.4% 

increase (Table 3.8).  

Table 3.8 Visual-textual fused classification compared with textual only. 
 

Method 
Accuracy 

Textual only Visual-textual fused 
LogR 82.6% 95.2% 
DT 77.6% 89.7% 
RF 80.5% 92.1% 
SVM (Linear) 82.9% 92.7% 
SVM (RBF) 79.5% 90.2% 
SVM (Sigmoid) 79.2% 93.6% 

 
Adding visual inputs from social media, better classification performance for those 

algorithms above was also reflected in their ROC curves (Figure 3.8). AUC improvements 

were observed, especially for LogR (AUC improved from 0.887 to 0.945), DT (AUC 

improved from 0.808 to 0.881), and SVM (Linear) (AUC improved from 0.861 to 0.931). 

The AUC improvement for all six algorithms suggests that the visual-textual fused feature 

exhibits more robustness in extracting on-topic posts.  
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Figure 3.8 ROC curves of the six algorithms using visual-textual fused vector (𝑍𝑓𝑢𝑠𝑒𝑑) 

and using textual vector (𝑍𝑡𝑒𝑥𝑡𝑢𝑎𝑙) alone. 

3.5.4 Uncertainties 

After the evaluation of general performance, individual cases were investigated to 

understand the uncertainties that the fusion mechanism might cause. Figure 3.9 presents 

some comparisons of classification results when textual features are used and when visual-

textual fused features are used. In general, when textual information and visual information 

of a certain post were both flood relevant, the fused feature tended to boost the probability 

(Figure 3.9b, Figure 3.9c, Figure 3.9e, and figure 3.9f). When textual information and 

visual information were contradictory, however, the probability that a fused feature 
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indicated tended to favor the opposite direction of that a textual feature indicated (Figure 

3.9a, Figure 3.9d, Figure 3.9f, and Figure 3.9g). 

In some cases, a visual-textual feature leads to the correction of wrongly classified 

textual information. For instance, the textual information in Figure 9a was classified as 

non-flood relevant (𝑃𝑓𝑙𝑜𝑜𝑑 for textual = 0.35) due to the lack of flood relevant word 

vectors in its texts. When coupled with the visual information, however, its visual-textual 

fused feature was successfully classified as flood relevant (𝑃𝑓𝑙𝑜𝑜𝑑 for fused = 0.82 ). 

Another example is Figure 9g, where its textual information was classified as flood relevant 

( 𝑃𝑓𝑙𝑜𝑜𝑑 for textual = 0.93 ) and its visual-textual fused feature indicated otherwise 

(𝑃𝑓𝑙𝑜𝑜𝑑 for fused = 0.38). A similar example can also be found in Figure 3.9f.  

During the case study, the biggest challenge in visual-textual fusion is the 

association between text and image a post contains. As observed in Vadicamo et al. (2017), 

the linkage between text content and image content is uncertain and sometimes rather 

weak. Moreover, it is still unclear how this linkage might change during a disaster event. 

Although this chapter proves that visual-textual fused feature is more robust in classifying 

flood tweets, the foundation of the proposed fusion mechanism still relies on the strong 

linkage between them, meaning that a weak linkage between texts and images could 

potentially cause unmeasurable uncertainties to the model. To better utilize both visual and 

textual information from social media, more studies are needed to understand the linkage, 

especially how this linkage will change during different disaster events. 
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Figure 3.9 Eight Examples of classification results. 

This study provides direct evidence that coupling visual and textual information 

aids in better classification accuracy. The fact that visual-textual representation 

outperforms textual representation alone demonstrates the importance of incorporating 

visual information into social media post labeling.   

Derived in an automatic manner, the robustness of visual-textual fused 

classification guarantees a flood-related VGI pool with high quality. The water height 

information from those geotagged social media distributed in a large region could provide 

valuable local flooding awareness in a timely manner, significantly assisting rapid flood 

response by local authorities and first responders. In addition, the proposed visual-textual 

labeling approach can be applied to other disasters such as fire and earthquake given proper 

textual and visual training samples. The on-topic posts classified by their texts and pictures 

represent timely individual-level disaster documentation, coupling with rich spatial 
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contexts when geotagged. Those posts extracted in an automatic manner can be utilized to 

aid in a variety of disaster mitigation approaches including urban system recovery, public 

sentimental analysis, damage assessment, evacuation investigation, first responder 

dispatch, recovery management, etc.  

3.6 LIMITATIONS AND FUTURE DIRECTIONS 

3.6.1 Limitations 

One limitation of the proposed approach is that the performance of on-topic social media 

retrieval is highly reliant on the quantity and quality of training samples. This being said, 

any deficiency in numbers or defect in quality will potentially undermine the classification 

result. This limitation, the necessity of large training samples with high quality, widely 

exists in most of the deep learning algorithms. Besides, developing such high-quality 

training samples in a large quantity is time- and labor-consuming. It might not be feasible 

to provide real-time retrieval unless all the training samples are pre-prepared. 

Another limitation is the fundamental assumption of the fusion algorithm. The 

better performance of visual-textual features compared to textual features alone relies on a 

rather strong association of textual and visual content in a social media post. The study in 

this chapter only examined one specific social media platform (Twitter) during one specific 

event (flood). The strength of this linkage, however, may not hold the same for other social 

media platforms or for other events. Caution is advised when the proposed fusion algorithm 

is applied in a cross-media or cross-event manner.  

Thirdly, the integration is based on a vector fusion mechanism where visual vector 

and textual vector are concatenated to form a visual-textual vector, participating in the final 

classification task. This fusion method implies equal weights on both visual and textual 
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information a social media post contains. In some cases, however, this assumption might 

not be true.  

Fourthly, the study in this chapter only considers the textual content and visual 

content, while the spatiotemporal dimension is neglected. Study by Li et al. (2018) has 

proved that people who are close to the disaster location spatially tend to produce more 

disaster-related information on social media. More disaster-related social media are usually 

found when a disaster reaches its peak (Sakaki et al., 2010). The prior probability derived 

from the spatiotemporal information of social media could contribute to better on-topic 

classification accuracy.  

Finally, only tweets that have been geotagged serve as training samples in this study, 

which inevitably cause certain biases as many studies have proved that geotagged tweets 

only consist of a small proportion. Sloan and Morgan (2015) reported that 96.9% of their 

tweeters have no geotagged tweets in the study site of the UK. Globally, Sloan et al. (2013) 

concluded that only 0.85% of tweets were geotagged with longitude and latitude 

information. The small training datasets derived from only geotagged tweets in this study 

potentially undermine the robustness of the proposed classification model. 

3.6.2 Future directions 

This study has proved that, during a flood event, the proposed visual-textual fused approach 

contributes to an improved on-topic retrieval accuracy by taking advantage of both textual 

content and visual content a tweet contains. More studies, however, are needed to test the 

validity of visual-textual features during other disaster events as the association between 

texts and pictures may not hold the same. A weak association can potentially undermine 

the fundamental assumption. More explorations are necessary to investigate how this 
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association changes in different events so that useful guidance can be given on which 

source is more reliable, single, or fused.    

From a technical perspective, this study can be modified and improved in many 

ways. Firstly, this study combines the visual feature and textual feature extracted 

respectively from two specific architectures: Inception-V3 and word embedded CNN. With 

the rapid development of deep learning, however, more advanced networks have been 

proposed. Resnet (He et al., 2016) and Inception-V4 (Szegedy et al., 2017), for instance, 

have demonstrated their better image labeling capability and are widely used in many 

image recognition applications. Recurrent Neural Network (RNN), a neural network 

architecture that exhibits temporal dynamic behavior, has been proved rather efficient in 

handling sequential textual data (Hochreiter et al., 1997; Mikolov et al., 2010; Tai et al., 

2015). The integration of the aforementioned networks potentially leads to more robust 

visual-textual features, consequently resulting in better disaster-related social media 

retrieval. In terms of the embedding method, this study used Word2Vec embedding trained 

from a self-designed social media corpus. Other embedding methods, including ELMo 

(Peters et al., 2018), FastText (Bojanowski et al., 2017), and GloVe (Pennington et al., 

2014) are becoming more popular recently. Whether the word vectors derived from those 

embedding methods improve the proposed fusion algorithm deserves further exploration.  

In addition, the spatiotemporal dimension of social media should be considered in 

future studies as previous studies have concluded the strong linkage between the content 

and spatiotemporal characteristics of social media posts. By analyzing the spatiotemporal 

distribution of extracted disaster-related posts, a better understanding of the relationship 
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between their spatiotemporal characteristics and their content can be achieved, which in 

turn contributes to better utilization of those characteristics in retrieving on-topic posts. 

Finally, the training dataset can be expended by using geoparsing, a process of 

converting text description of places to unambiguous geographic identifiers (Cheng et al., 

2010; Avvenuti et al., 2018). The additional training samples rendered by geoparsing 

techniques contribute to the better generalization of proposal CNN architecture and largely 

facilitate follow-up analyses that require geo-information within social media data.  

3.7 CONCLUDING REMARKS 

Social media platforms have played a critical role in situation awareness and mitigation for 

a wide range of disasters. Bearing the enormous volume of social media posts during a 

disaster event, disaster-related social media posts only consist of a small proportion. An 

automatic approach to on-topic social media retrieval is, therefore, developed in this 

chapter for rapid flood awareness. Texts and pictures are two major components of a social 

media post that are both essential in retrieving on-topic posts. This chapter presents a 

visual-textual fused CNN architecture for labeling on-topic social media posts in an 

automatic manner. Two CNNs specifically for visual and textual information labeling, 

transfer-learned Inception-V3 and word embedded CNN, are adopted. A fused feature 

vector is then formed by concatenating the extracted visual and textual vectors, which is 

further utilized to retrieve the final binary labels (on-topic vs. off-topic) of the post. Taking 

flood as a disaster case and Twitter as the targeted social media platform, the experimental 

results suggest that the visual CNN and textual CNN perform remarkably well with 

classification accuracies of 92.92% and 93.45%, respectively. During the fused 

classification phrase, all selected machine learning algorithms (including LogR, DT, RF, 
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SVM-Linear, SVM-RBF, and SVM-Sigmoid) have confirmed the positive effect of 

additional visual information in classifying on-topic tweets, which are justified by the 

improvement of their classification accuracy and corresponding ROC curves. The visual-

textual fused feature proves that an additional visual vector leads to more robustness in on-

topic social media retrieval, presumably due to the self-correction of uncertainties from 

single-source information. Incorporating both texts and pictures in social media posts, the 

proposed visual-textual CNN architecture significantly automates the on-topic social 

media retrieval, largely expending searching scope, ensuring more robustness of 

classification, and seeding a wide range of social media based disaster studies. The direct 

evidence in this chapter that visual-textual representation outperforms textual 

representation alone urges future research regarding social media labeling towards a visual-

textual fusion direction. 

The automated social media retrieval algorithm proposed in this chapter, together 

with the data fusion flood model designed in Chapter 2, greatly benefits the acquisition of 

improved flood awareness, thus largely facilitating rapid flood mapping. Besides improved 

inundation mapping of a specific flood event in a local area, flood exposure and awareness 

of flood risk in hurricane-prove zones also provide important information for sustainable 

development at a large geographic scale. Across the CONUS region, the U.S. east coast is 

exposed to the most frequent storms that are predominantly originated from the North 

Atlantic Basin (much stronger than the west coast with storms from the Eastern Pacific 

Basin). The following chapter (Chapter 4) explores the long-term spatiotemporal dynamics 

of human settlement on the U.S Atlantic/Gulf Coast that has been suffered from frequent 

hurricane hits. 
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CHAPTER 4 

HURRICANE-INDUCED DISASTER EXPOSURE IN THE U.S. 

ATLANTIC/GULF COASTS3

4.1 INTRODUCTION 

Hurricanes threating the conterminous United States have two primary originating sources: 

the North Atlantic Basin that includes the North Atlantic Ocean, the Caribbean Sea and the 

Gulf of Mexico; and Eastern Pacific Basin that covers Northeastern Pacific (east of 140oW 

and north of the equator) (Goldenberg et al., 2001). Historically, more hurricanes from the 

North Atlantic Basin made landfalls on the U.S territories, dramatically affecting people 

living in the Gulf coasts and Atlantic coasts. While the Eastern Pacific Basin originated 

storms occasionally visited the southwestern conterminous U.S, by the time they landed, 

they usually degraded to tropical cyclones due to the long travel distance and cold water in 

coastal California (Chenoweth and Landsea, 2004).  

Atlantic hurricane season usually runs from June 1st to November 30th, during 

which the North Atlantic Basin exhibits significantly intensified tropical cyclone activity 

and gives rise to many devastating hurricanes landing the coasts. In 2016, Hurricane 

 

3 Huang, X., Wang, C., & Lu, J. (2019c). Understanding the spatiotemporal development 

of human settlement in hurricane-prone areas on the US Atlantic and Gulf coasts using 

nighttime remote sensing. Natural Hazards and Earth System Sciences, 19(10), 2141-

2155. Reprinted with permission from the publisher. 
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Mathew, a Category 5 (the highest category) hurricane, claimed a total of 34 direct deaths 

in the U.S. In 2017, Hurricane Harvey in the Gulf coast caused a total of 125 billion dollars 

of damage, ranking the second-costliest hurricanes in the U.S. In the same year, Hurricane 

Irma in the Atlantic coast caused a total of 50 billion dollars of damage, ranking the fifth 

costliest hurricanes in the U.S. In 2018, the third year in a consecutive series (2016-2018) 

of above-average damaging Atlantic hurricanes, there were 15 named tropical storms, eight 

of which became hurricanes, including two major hurricanes. Hurricane Florence, for 

example, as a major hurricane in 2018, caused a severe economic loss of $22 billion to 

North Carolina, $5.5 billion to South Carolina) and $1 billion to Virginia (Krupa, 2018). 

The widespread storm surge and extensive floods from extreme rainfall largely crippled 

public infrastructures and impacted all segments of society. A noticeable increase in the 

number of hurricanes from the North Atlantic Basin since the late 1980s has been observed 

(Vecchi and Knutson, 2018). Even though it is partly due to improved monitoring (Villarini 

et al., 2011), the increased intensity and duration of these hazards have posed great threats 

to people residing in the U.S. Atlantic and Gulf Coasts (Landsea et al., 2010).  

Despite these threats, the U.S. southeastern region has experienced significant 

population growth in recent decades. The population in Florida, North Carolina, and South 

Carolina, for instance, has increased by 61.2%, 43.6%, and 54.3%, respectively, since 1990 

(U.S Census Bureau, 2018). The densely populated coastal areas are receiving higher 

threats than ever (Crosset, 2004). In these hurricane-prone areas, a better understanding of 

the temporal and spatial dynamics of human settlement is needed to assist damage 

assessment and sustainable urban planning. 
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    Satellite observations have been widely applied in investigating urban dynamics 

as remote sensing provides spatially explicit information of the urbanization process. 

Extensive application has been made utilizing multispectral sensors that record the 

reflectance of ground features to categorize different land covers, thus allowing the 

delineation of urban extent (Xu, 2008; Zha, 2003). This type of remotely sensed imagery, 

however, relies on the reflective characteristics of all land objects on the ground, thus 

lacking the perspective on human activities. In comparison, satellite-derived nighttime 

light (NTL) data provides a unique and direct observation of human settlement via night 

lights (Ceola et al., 2014; Ceola et al., 2015). Natural land covers are distinctively dark in 

NTL imagery. Nighttime remote sensing has been increasingly used for analyzing 

socioeconomic dynamics and urbanization process at national and regional levels (Elvidge 

et al., 1997; Ghosh et al., 2010), thanks to their light-only sensitivity, large spatial coverage 

(Imhoff et al., 1997; Huang et al., 2019d), easiness to acquire (Lu et al., 2008) and 

consistency over a long term (Elvidge et al., 1999). 

Among all the satellite-derived NTL products, the NTL data obtained by 

Operational Linescan System (OLS) via the U.S. Air Force Defense Meteorological 

Satellite Program (DMSP), hereafter referred to as DMSP/OLS NTL, is the most 

commonly used due to its long-time span (more details in next section). Extensive attempts 

have been made to harvest the NTL observations from DMSP/OLS in applications 

including urban expansion and decay (Lu et al., 2018), settlement dynamics (Elvidge et al., 

1999; Yu et al., 2014), socioeconomic development (Doll et al., 2000) and energy 

consumption (Chand et al., 2009). Recent studies enhanced the NTL products by fusing 

DMSP/OLS NTL data with natural land cover characteristics such as the Normalized 
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Difference Vegetation Index (NDVI) to reduce the light saturation problem. This fusion 

greatly increased the potential of DMSP/OLS in discriminating against the human 

settlement structures (Lin et al., 2014; Liu et al., 2015). The improved DMSP/OLS NTL 

product serves as a valuable resource for monitoring large-coverage and long-term 

urbanization dynamics. 

    The goal of this chapter is to illustrate the usage of DMSP/OLS NTL data to 

monitor the urbanization process and hurricane impacts on the U.S. Atlantic and Gulf 

coasts using nighttime artificial lights as a proxy. Hurricane-prone areas were first derived 

by calculating the track density from historical storm tracks in the North Atlantic Basin. 

An intercalibrated DMSP/OLS NTL time series was built in a yearly interval. Assisted 

with the NDVI data, the Vegetation Adjusted NTL Urban Index (VANUI) was used to 

characterize human settlement intensity in the study area. After that, a trend analysis was 

conducted to identify areas with a significant increase in human settlement intensity in 

different zones, in which the potential hurricane impacts were statistically evaluated. The 

spatiotemporal changes of human settlement revealed from nighttime remote sensing in 

hurricane-prone zones provide valuable information to evaluate the damage and to support 

the decision making of urban development. 

4.2 INTERCALIBRATION AND DESATURATION OF DMSP/OLS NTL SERIES 

Due to the absence of on-board calibration and intercalibration, the annual DMSP/OLS 

NTL composites derived from multiple satellites in a span of 22 years were not comparable 

directly (Li and Zhou, 2017; Liu et al., 2012). This lack of continuity and comparability 

has posed great challenges in DMSP/OLS NTL based trend analysis (Tan, 2016). Elvidge 

et al. (2009) designed a three-step framework to intercalibrate the DMSP/OLS NTL 
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composites. Those three steps are: 1) selecting a reference region; 2) selecting a reference 

satellite year; 3) performing a 2nd-order polynomial regression against the NTL reference 

data. This simple framework has been proven efficient in reducing discrepancies in digital 

number (DN) values of the DMSP/OLS NTL time series (Pandey et al., 2013) and has been 

adopted in many studies (Liu and Leung, 2015; Huang et al., 2016).  

Another notable limitation of DMSP/OLS NTL is the saturation of luminosity in 

the 6-bit (DN in a range of 0-63) imagery (Letu et al., 2010). To retrieve the heterogeneity 

in areas with high intensity of human settlement, numerous attempts have been made to 

mitigate the saturation effect. A commonly used vegetation index, NDVI, is a useful 

indicator to reduce the saturation effect in DMSP/OLS data. Its practicality has been 

confirmed by many studies (Zhou et al., 2014; Liu et al., 2015). Lu et al. (2008) proposed 

a human settlement index (HSI) by merging normalized DMSP/OLS NTL data with the 

maximum NDVI in growing season derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS). HSI has been proved rather efficient for settlement mapping 

in several testing sites in southeastern China. Zhang et al. (2013) develop a vegetation-

adjusted NTL urban index (VANUI), which captures the inverse correlation between 

vegetation and luminosity. This simple index efficiently reveals the heterogeneity in 

regions with saturated DN values, which has been recognized by Shao and Liu (2014). 

Following the original design of NDVI that characterizes the inverse relationship between 

the near-infrared band and red band in vegetation, Zhang et al. (2015) designed a 

normalized difference urban index (NDUI) that characterizes the inverse relationship 

between vegetation and luminosity in a similar way. NDUI was evaluated in five testing 

sites in the U.S and proved to be effective in desaturating DN values in DMSP/OLS. 
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In this chapter, the intercalibration of DMSP/OLS data follows the method 

proposed by Elvidge et al. (2009), and the desaturation of DMSP/OLS data is achieved by 

using VANUI (Zhang et al., 2013).  

4.3 DATASETS 

4.3.1 Historical storm tracks 

The historical storm tracks were retrieved from International Best Track Archive for 

Climate Stewardship (IBTrACS) hosted by NOAA (https://www.ncdc.noaa.gov/ibtracs/). 

The IBTrACS provides a globally best track dataset by merging storm information from 

multiple centers into one product. As the majority of the storms around on the conterminous 

U.S are formed in the North Atlantic Basin (Figure 4.1), we only examined the storms from 

the North Atlantic Basin along the U.S. Atlantic and Gulf Coasts. A total of 655 storm 

tracks containing 18,929 line segments (with an attribute of wind speed) were used in this 

study.  

 

Figure 4.1 Historical storm tracks from the North Atlantic Basin (in red) and from the 
Eastern Pacific Basin (in green). 

https://www.ncdc.noaa.gov/ibtracs/
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4.3.2 DMSP/OLS NTL series and NDVI series 

The DMSP/OLS satellites are operated by U.S Air Force (USAF) and are composed of six 

satellites (F10, F12, F14, F15, F16, and F18) in the period of 1992-2013. With a 3,000 km 

orbit swath, they acquired the OLS imagery from −65°  to 65°  in latitude at a nominal 

resolution of 30 arc-second (around 1 km at the Equator) (NOAA Earth Observation 

Group, 2018). The temporal coverages of the six satellites are summarized in Table 4.1. 

Table 4.1 DMSP/OLS Satellites and overlays in corresponding years. 
 Satellites 

Year F10 F12 F14 F15 F16 F18 
1992 F101992      
1993 F101993      
1994 F101994 F121994     
1995  F121995     
1996  F121996     
1997  F121997 F141997    
1998  F121998 F141998    
1999  F121999 F141999    
2000   F142000 F152000   
2001   F142001 F152001   
2002   F142002 F152002   
2003   F142003 F152003   
2004    F152004 F162004  
2005    F152005 F162005  
2006    F152006 F162006  
2007    F152007 F162007  
2008     F162008  
2009     F162009  
2010      F182010 
2011      F182011 
2012      F182012 
2013      F182013 
Note. Bold terms indicate the years with two satellites available in a given year. 

 

The DMSP/OLS NTL products used in this study are the version 4 Stable Lights 

series in a 22-year span (1992-2013). The DMSP/OLS NTL data were obtained from the 

National Centers for Environmental Information website (https://ngdc.noaa.gov/eog/dmsp/ 
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downloadV4composites.html). The version 4 DMSP/OLS Stable Lights product has 

already excluded sunlit, glare, moonlit, cloud coverage, and lighting. Ephemeral events 

such as wildfires also have been discarded. In this study, one composite each year in the 

conterminous U.S was produced from each satellite. When two satellites were available in 

certain years, a combined composite in this year was derived using the method described 

in Section 4.4.2. All DMSP/OLS NTL images were resampled to the 1 km pixel size.  

In the same period of 1992-2013, the NDVI products in the conterminous U.S from 

two satellite sensors were used in this study: Advanced Very High Resolution Radiometer 

(AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). NDVI series 

from AVHRR and MODIS span from 1992-2005 and 2003-2013, respectively. These two 

products were further calibrated in three overlaying years: 2003, 2004, and 2005 to increase 

data comparability. AVHRR NDVI series is the annual maximum value composite (MVC) 

with 1 km pixel size, provided by United States Geological Survey Earth Resources 

Observation and Science (USGS/EROS) (https://phenology.cr.usgs.gov/ 

get_data_1km.php). A number of preprocessing steps have been performed in this product 

to remove noises, which includes removal of spurious spikes, temporal smoothing, and 

interpolation. MODIS NDVI series was derived from Oak Ridge National Laboratory 

Distributed Active Archive Center (ORNL DAAC) (https://daac.ornl.gov/). The data were 

generated from Terra MOD13Q1 and Aqua MYD13Q1 products and have been smoothed 

and gap-filled with 250 m spatial resolution (Spruce et al., 2016). To be comparable with 

AVHRR NDVI, the annual MVC product a  from the MODIS NDVI series by selecting 

the maximum NDVI value in each year. It was also resampled to 1 km pixel size. Water 

bodies contained in both datasets were masked out using MODIS MOD44W product. 
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4.4 METHODS 

4.4.1 Delineation of hurricane-prone zones 

The delineation of hurricane-prone zones is based on the retrieved 655 storms from the 

North Atlantic Basin landed on the conterminous U.S. An area with higher hits of historical 

storms is expected to be more hurricane-prone. We also assume a generally positive 

relationship between wind intensity of a storm and its impact. At a given location (i,j), a 

circular neighborhood (R), centered at this location was assigned. For all line segments of 

storm tracks falling in this neighborhood, the storm track density was calculated as a line 

density of all segments weighted by their wind speeds: 

𝜌𝑖,𝑗 = ∑𝐿𝑖,𝑗𝑟 ×𝑊𝑖,𝑗𝑟𝑟∈𝑅 ,                                                            (4.1) 
where 𝜌𝑖,𝑗 denotes the weighted line density at the location (𝑖, 𝑗).  𝐿𝑖,𝑗𝑟  and 𝑊𝑖,𝑗𝑟  denote the 

length of a line segment r and corresponding wind speed, respectively. The radius of R is 

set as 100 km in this study. 

    The storm track density was then normalized to a range of [0,1], with a higher 

value indicating higher hurricane proneness.  To simplify the process for zonal analysis, 

we categorized the normalized storm track density into four zones from low to high 

hurricane proneness: Zone 4 (0-0.2), Zone 3 (0.2-0.5), Zone 2 (0.5-0.7) and Zone 1 (0.7-

1.0).  

4.4.2 Intercalibration (DMSP/OLS NTL series; NDVI series) and VANUI calculation 

The procedure from Elvidge et al. (2009) was adopted to intercalibrate the DMSP/OLS 

NTL time series. Serving as the reference site (Figure 4.3a), the geographic area of 

metropolitan Los Angeles and City of San Diego, CA maintains high conformity of NTL 

values throughout the 22-year period (Kyba et al., 2017; Hsu et al., 2015), which satisfies 
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the “pseudo-invariant” rule for calibration site selection (Elvidge et al., 2009). The year 

2007 (satellite F16) has been commonly selected as the reference year in many studies (Yi 

et al., 2014; Ma et al., 2014). Therefore, we extracted the DMSP/OLS NTL data this year 

at the same site as the reference. With all lit pixels (DN >0) in the reference site, a second-

order regression model was performed to calibrate the NTL data in each year: 𝐷𝑁𝑛,𝑐𝑎𝑙 = 𝑐 + 𝑏 × 𝐷𝑁𝑛 + 𝑎 × 𝐷𝑁𝑛2,                                      (4.2) 
where 𝐷𝑁𝑛,𝑐𝑎𝑙 is the calibrated DN value in year 𝑛, 𝐷𝑁𝑛 is the original DN value in year 𝑛 and 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are the coefficients. The non-lit pixels (DN=0) are not calibrated.  

    As shown in Table 4.1, two DMSP/OLS NTL data layers are available in 

overlapping years. For lit pixels (DN>0 in both years), the calibrated DN values in this 

year are calculated as the average of two calibrated data sets. The value of a pixel remains 

0 if its original DN value in any year is 0. Finally, the calibrated DMSP/OLS NTL images 

were normalized (𝐷𝑁𝑛𝑜𝑟) to [0,1]. 

Similarly, the annual maximal NDVI ( 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 ) products from AVHRR 

(𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅𝑀𝑉𝐶  from 1992 to 2005) and MODIS (𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆𝑀𝑉𝐶  from 2003 to 2013) were 

intercalibrated to maintain the continuity and comparability in 𝑁𝐷𝑉𝐼𝑀𝑉𝐶  annual series. 

Stratified sampling was applied to pixels with NDVI value above 0.1 to ensure that land 

covers in different NDVI ranges were equally sampled. Thirty thousand samples were 

collected within four hurricane-prone zones in the years 2003, 2004, and 2005, 

respectively. It has been reported that MODIS maintains higher spectral sensitivity than 

AVHRR (Tucker et al., 2005).  

Here, a linear regression was applied to correct AVHRR 𝑁𝐷𝑉𝐼𝑀𝑉𝐶  to MODIS 𝑁𝐷𝑉𝐼𝑀𝑉𝐶: 
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𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆𝑀𝑉𝐶 = 𝛼 × 𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅𝑀𝑉𝐶 + 𝛽,                                      (4.3) 
where 𝛼 and 𝛽 are regression coefficients.   

The calibrated 𝑁𝐷𝑉𝐼𝐴𝑉𝐻𝑅𝑅𝑀𝑉𝐶  series from 1992-2002 was merged with 𝑁𝐷𝑉𝐼𝑀𝑂𝐷𝐼𝑆𝑀𝑉𝐶  

from 2003-2013 to form a 22-year NDVI MVC series (𝑁𝐷𝑉𝐼𝑐𝑎𝑙𝑀𝑉𝐶). Negative NDVI values 

are usually associated with non-living environments such as water bodies and NDVI values 

above 1 are not meaningful. Therefore, we limited all NDVI values in the 𝑁𝐷𝑉𝐼𝑐𝑎𝑙𝑀𝑉𝐶 series 

to a range of 0 to 1.  

Finally, with the normalized DMSP/OLS NTL and the calibrated NDVI data series, 

the VANUI series was extracted (Zhang et al. 2013): VANUI = (1 − 𝑁𝐷𝑉𝐼𝑐𝑎𝑙𝑀𝑉𝐶) × 𝐷𝑁𝑛𝑜𝑟,                                         (4.4) 
where 𝐷𝑁𝑛𝑜𝑟 denotes the normalized DMSP/OLS NTL value and 𝑁𝐷𝑉𝐼𝑐𝑎𝑙𝑀𝑉𝐶 denotes the 

calibrated 𝑁𝐷𝑉𝐼𝑀𝑉𝐶  value. The VANUI has a range of [0,1]. In general, a higher 

proportion of human settlements in a pixel leads to higher NTL and lower NDVI, both 

contributing to a higher VANUI. Therefore, the VANUI serves as a proxy of the intensity 

of human settlement.  

4.4.3 Trend analysis of human settlement 

The VANUI series in a 22-year span shed light on the spatiotemporal development of the 

human settlement. We performed the trend analysis by applying the Mann-Kendall test 

(Mann, 1945) coupled with the Theil-Sen slope estimator (Sen, 1968). The Mann-Kendall 

test statistically assesses if there is a significant monotonic upward or downward trend in 

the time series. Given the 22-year VANUI series, the Mann-Kendall test first computes 𝑆 

statistics (Mann, 1945): 
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𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1                                             (4.5) 

where 𝑛 denotes the total number of observations (22 in this study) in a series, 𝑥𝑗 and 𝑥𝑘 

are the data values at different points, i.e., the VANUI in different years in this study. 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)  denotes an indicator that takes on the values 1, 0, or -1 respectively 

according to the signs of (𝑥𝑗 − 𝑥𝑘). The variance of 𝑆 (𝑉𝑎𝑟𝑆) is further computed as: 

𝑉𝑎𝑟𝑆 = 118 [𝑛(𝑛 − 1)(2𝑛 + 5) −∑ 𝑡𝑝𝑔
𝑝=1 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)]                  (4.6) 

where 𝑔 denotes the number of tied groups and 𝑡𝑝 denotes the number of observations in 

the 𝑝th group. Finally, a 𝑍 value is calculated as: 

𝑍 =
{  
  𝑆 − 1√𝑉𝑎𝑟𝑆 ,                𝑆 > 00,                          𝑆 = 0𝑆 + 1√𝑉𝑎𝑟𝑆 ,               𝑆 < 0

                                                (4.7) 
The 𝑍 value in Equation 4.7 represents the monotonic tendency of a time series. A 

positive 𝑍 indicates an increasing trend, while a negative 𝑍 indicates a decreasing one. A 

stable trend exists when the value of Z equals 0. The absolute value of 𝑍 indicates the 

intensity of the trend.  

The significance of 𝑍  was further examined through a two-tail test with a 

significance level 𝛼 = 0.05. If a significant trend exists, the Theil-Sen slope estimator was 

further applied to estimate its slope. As a non-parametric indicator, it has low sensitiveness 

to outliers and high robustness in short-term series and has been widely applied in remote 
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sensing fields (de Jong et al., 2011; Fernandes and Leblanc, 2005). Given a VANUI time 

series, the slope at any point 𝑖 (𝑄𝑖) can be calculated as: 

𝑄𝑖 = 𝑥𝑗 − 𝑥𝑘𝑗 − 𝑘 , 𝑖 = 1,2,3, …𝑁, 𝑗 > 𝑘                                   (4.8) 
The Theil-Sen slope (𝑄𝑚𝑒𝑑) is the median of all 𝑄𝑖  values in the time series. It 

indicates the steepness (change rate) of a certain trend. Therefore, pixels with high 𝑄𝑚𝑒𝑑 

values represent a rapid increase in human settlement intensity during the investigated time 

period.  

With the 22-year VANUI image series, clusters of geographic areas in the study 

region with a significant increase of human settlement were extracted. The summed slope 

per unit in a cluster represented the rapidness of human settlement growth in the 22 years. 

The spatiotemporal patterns of this growth in different hurricane-prone zones were finally 

analyzed.  

4.5 RESULTS AND DISCUSSION 

4.5.1 Hurricane-prone zones 

The 655 storms from the North Atlantic Basin landed on the conterminous U.S (mostly 

along Atlantic and Gulf coasts) are presented in Figure 4.2a. The derived wind speed-

weighted track density in the study area is presented in Figure 4.2b. Based on the density 

levels, we divided the track density map into four hurricane-prone zones that represent 

different levels of hurricane impacts: the highest impacts in Zone 1 and lowest in Zone4. 

The study area contains all U.S. states covered in the hurricane-prone zones (Figure 4.2c): 

Maine, Massachusetts, New Jersey, New York, North Carolina, New Hampshire, 

Pennsylvania, Rhode Island, Tennessee, Texas, Maryland, Alabama, Arkansas, 

Connecticut, Delaware, DC, Florida, Georgia, Kentucky, Louisiana, Mississippi, South 
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Carolina, Vermont, Virginia, and West Virginia. Some of these states, such as Florida, 

Texas, and North Carolina are well recognized as fast-growing in both population and 

economy in recent years (Milesi et al., 2003; Klotzbach et al., 2018), leading to higher 

threats and recovery costs from hurricanes. 

 

Figure 4.2 (a) Historical storm tracks from the North Atlantic Basin; (b) Normalized 
storm track density weighted by wind speed; (c) Hurricane-prone zones. 

4.5.2 Intercalibration results of DMSP/OLS NTL series and NDVI series 

The reference site for intercalibration is composed of an urban stripe from Los Angeles to 

San Diego, CA, in the southwest end of the United States (Figure 4.3a). Agreeing with 

Elvidge et al. (2009), the histograms of all NTL images in this area exhibit a sharp, bimodal 

distribution (urban vs. non-urban) with limited temporal variations. This confirms that it is 

a valid reference site for the intercalibration of NTL images. Among the three example 
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scatterplots between the NTL data in three years and the F162007 reference, the F162006 

data show the highest agreement with the reference as they were acquired by the same 

satellite (Figure 4.3 (b1)). The F101992 data (Figure 4.3 (b2)) exhibit less agreement due 

to its different satellite origin and a long time interval from 2007. However, an 𝑅2 of 0.949 

still warrants a decent agreement for calibration. Figure 4.3 (b3) demonstrates the necessity 

of a second-order regression instead of a linear one. The regression equations and 

intercalibration coefficients for all years are listed in Table 4.2. 

 

Figure 4.3 (a) DMSP/OLS NTL intercalibration in L.A. metropolitan and City of San 
Diego; (b1) Correlation between F162006 and reference year F162007; (b2) Correlation 
between F101992 and reference year F162007; (b3) Correlation between F152003 and 

reference year F162007. 

Table 4.2 DMSP/OLS NTL intercalibration coefficients. 
Satellite Year 𝑐 𝑏 𝑎 𝑅2 

F10 1992 -0.3712 1.0953 -0.0015 0.949 
F10 1993 -1.4938 1.4753 -0.0072 0.955 
F10 1994 -0.9394 1.4923 -0.0077 0.951 
F12 1994 -0.0430 1.2057 -0.0033 0.954 
F12 1995 -0.6145 1.2354 -0.0037 0.955 
F12 1996 -0.3298 1.2840 -0.0045 0.945 
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F12 1997 0.0253 1.1669 -0.0029 0.934 
F12 1998 0.2550 1.0688 -0.0013 0.949 
F12 1999 -0.3859 0.9984 -0.0001 0.967 
F14 1997 0.1852 1.5516 -0.0090 0.936 
F14 1998 -0.1074 1.4379 -0.0071 0.959 
F14 1999 -0.5429 1.4508 -0.0070 0.967 
F14 2000 -0.4461 1.3396 -0.0053 0.969 
F14 2001 -0.2633 1.4454 -0.0071 0.974 
F14 2002 0.3598 1.3926 -0.0065 0.961 
F14 2003 -0.0390 1.3677 -0.0059 0.979 
F15 2000 -1.0303 1.1837 -0.0027 0.967 
F15 2001 -0.8264 1.1821 -0.0027 0.977 
F15 2002 -0.6087 1.1485 -0.0022 0.981 
F15 2003 -1.2553 1.6417 -0.0099 0.978 
F15 2004 -0.6269 1.6067 -0.0095 0.981 
F15 2005 -0.8131 1.5621 -0.0086 0.980 
F15 2006 -0.4824 1.3515 -0.0054 0.989 
F15 2007 -0.4583 1.4299 -0.0066 0.983 
F16 2004 -0.0440 1.3285 -0.0053 0.968 
F16 2005 -1.0392 1.5749 -0.0088 0.986 
F16 2006 -0.6923 1.2201 -0.0033 0.988 
F16 2007 0.0000 1.0000 0.0000 1.000 

F16 2008 -0.0982 0.9931 0.0002 0.989 
F16 2009 -0.1023 1.1478 -0.0024 0.979 
F18 2010 0.1369 0.7924 0.0030 0.972 
F18 2011 0.0081 1.0310 -0.0006 0.980 
F18 2012 0.5943 0.8498 0.0021 0.988 
F18 2013 0.5167 0.8549 0.0021 0.991 

Note. Bold indicates the reference satellite in 2007. 
 

The inter-calibration of 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 in the three overlaying years is shown in Figure 

4.4a (AVHRR) and Figure 4.4b (MODIS). Via visual interpretation, the MODIS product 

has higher peak NDVI than AVHHR. The regression shows a linear relationship between 

the two 𝑁𝐷𝑉𝐼𝑀𝑉𝐶  products (𝑅2 = 0.934) with 𝛼 = 1.1835  and 𝛽 = −0.1037  (Figure 

4.4c). The histograms (Figure 4.4d) demonstrate that the calibration process has shifted the 

AVHRR histogram to the right, making it more comparable with MODIS.  
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Figure 4.4 (a) 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 series from AVHRR in the overlaying years; (b) 𝑁𝐷𝑉𝐼𝑀𝑉𝐶 
series from MODIS in the overlaying years; (c) linear regression between AVHRR and 
MODIS using stratified sampling; (d) comparison of histograms between MODIS and 

AVHRR. 

4.5.3 The VANUI time series 

An example VANUI map (1992) for the entire study area is shown in Figure 4.5a, in which 

red color represents high VANUI value (high human settlement intensity), while blue color 

means the opposite. Several subsets of the VANUI maps in years 1992, 2002, and 2013 are 

displayed to demonstrate more details in densely populated urban clusters:  Philadelphia 

(Figure 4.5b), Charlotte (Figure 4.5c), Atlanta (Figure 4.5d), Houston (Figure 4.5e) and 

Orlando (Figure 4.5f). Interestingly, the city of Philadelphia (Figure 4.5b) experienced a 

slightly decreased human settlement intensity, especially in the 1992-2002 period. This 

observation agrees with the population dynamics of Philadelphia in the past decades: 1990-

2000 (-4.3%), 2000-2010 (+0.6%). Similar trends of population decrease have been 
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observed in other big northeastern cities such as Pittsburgh, in which its population 

dramatically decrease by -9.5% during 1990-2000 and -8.6% during 2000-2010 (U.S 

Census Bureau, 2018). The population loss is also recorded in a large number of small 

cities in the northeast region, including Johnstown and Rochester in NY, Weirton in WV, 

and Harrisburg in PA (U.S Census Bureau, 2018). 

Oppositely, the southern and southeastern cites have experienced intensified human 

settlements characterized by expanded city perimeters and intensified urban cores. Houston 

(Figure 4.5e), for instance, has dramatically increased its human settlement. Again, this 

observation is well supported by the population boost per the census records, with an 

increasing rate of 19.8% in 1990-2000 and 7.5% in 2000-2010. Other cities, including 

Charlotte (Figure 4.5c), Atlanta (Figure 4.5d), and Orlando (Figure 4.5f), also have seen 

significantly intensified human settlement supported by their increasing population 

records. In general, the opposite trends of human settlement between north and south of 

the study area match well with the “Snow Belt-to-Sun Belt” population shift trend 

documented in past studies in the last decades (Hogan, 1987; Iceland et al., 2013). 

It could be noted that the VANUI maps in 2013 provide much finer details than 

those in 1992 and 2002. Given the unaltered spatial resolution of DMSP/OLS sensors, it 

can be explained by the different resolutions of the raw NDVI products from AVHRR 

(1km) and MODIS (250m). Although images have been resampled to the same pixel size 

(1km) and carefully calibrated in their time series, the intrinsic sensitivity of those two 

sensors still affects the VANUI outputs. 
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Figure 4.5 The VANUI distribution in the study area in 1992 (a); The subfigures 
demonstrate the VANUI variations in 1992, 2002, and 2013 in five selected urban cities: 

Philadelphia (b), Charlotte (c), Atlanta (d), Houston (e), and Orlando (f). 

4.5.4 Spatiotemporal patterns of human settlement and hurricane impacts 

In each hurricane-prone zone, the yearly percentage lit pixels (VANUI> 0) sheds light on 

land development yearly, leading to a better understanding of the process of human 

settlement facing different degrees of hurricane impacts. The inter-annual fluctuation of 

total lit-pixel numbers exists in all zones, presumably due to the uncertainties introduced 

from the calibration of the DMSP/OLS NTL series and NDVI series. Bearing these noises, 

Figure 4.6 presents the general trends of the lit pixel percentage in each zone. The lit pixel 

percentage varies in different zones, revealing a rank of Zone 1 (48.5%) followed by Zone 

2 (45.4%), Zone 3 (41.6%), and Zone 4 (31.6%). Urban development was favored and 

prioritized in coastal regions, which were also the zones facing higher hurricane impacts.  
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As Figure 4.6a (Zone 1) and Figure 4.6b (Zone 2) suggest, the extent of human 

settlement in both zones increased significantly from 1992 to 2013, indicating consecutive 

land development in these highly hurricane-prone zones. The trends in both zones follow 

a logarithmic relationship that increased sharply in earlier years then slowed down. Located 

on the frontmost land-sea border, Zone 1 receives the most frequent and intense hurricane 

hits, yet its degree of fitness (coefficient of determination 𝑅2 = 0.898) was higher than 

that of Zone 2 (𝑅2 = 0.791) in logarithmic regressions. With increased land development, 

we can conclude that the hurricane impacts on human settlement in these two zones are 

becoming more severe due to their higher hurricane-exposure. Zone 3 and Zone 4 are 

located further away from the coastal front. Although a slight increase lit pixel percentage 

could be visually observed for Zone 3 (Figure 4.6c) and Zone 4 (Figure 4.6d), their 

logarithmic trends are not statistically significant at confidence level 𝛼 = 0.05, therefore, 

the regression lines are not marked in these figures. Fig.6 reveals a more significant 

increase in human settlement in areas closer to the coast front than inland during the 22-

year period. The finding coincides with current literature in which studies reported the 

ever-growing population in coastal counties since the 1990s (Crosset, 2004; Stewart et al., 

2003).  
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Figure 4.6 Yearly statistics of percent area with VANUI larger than 0 in Zone 1 (a), Zone 
2 (b), Zone 3 (c), and Zone 4 (d). 

The Mann-Kendall trend test, coupled with Theil-Sen slope estimator, extracted the 

areas with significant change (increase or decrease) of human settlement in the 22-year 

period (Figure 4.7). Zonal statistics were also summarized for the four hurricane-prone 

zones (Table 4.3). The net increase area is defined as the area difference between pixels 

with a significant increasing and decreasing trend. The net increase zonal percentage 

represents the percentage of net increase area in each predefined hurricane-prone zone. As 

Table 4.3 suggests, 4.22% of the area in Zone 1 experienced a significant increase in human 

settlement, followed by 2.34% in Zone 2, 2.08% in Zone 3, and 1.65% in Zone 4. The 

statistics above suggest a noticeably positive relationship between the hurricane proneness 

of each zone and the percent area with a significant increase in settlement. The sum of 

Theil-Sen slope, on the other hand, established the relationship between hurricane 
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proneness and the increase rate of settlement in each zone. Zone 1 receives the most 

hurricane hits but has the strongest increase of settlement intensity, followed by Zone 2, 

Zone 3, and Zone 4.  

Table 4.3 Hurricane-prone zonal summary of Mann-Kendall and Theil-Sen test. 

Hurricane-prone 
zones 

Zone size 
(𝑘𝑚2) 

Net increase 
area (𝑘𝑚2)a 

Net increase 
zonal 

percentage 
(%) 

Sum of Theil-
Sen slope  

(per 100,000 𝑘𝑚2) 

Zone 1 312,453 13,178 4.22 9.02 

Zone 2 507,285 11,889 2.34 6.11 

Zone 3 620,108 12,907 2.08 5.42 

Zone 4 1,047,424 17,255 1.65 4.16 

study area 2,487,270 55,229 2.22 5.48 
aNet increase area in each hurricane-prone zone denotes the area difference in this 
zone between pixels with significant increasing trend and pixels with a significant 
decreasing trend in their VANUI series.  

 

Figure 4.7a demonstrates the Mann-Kendall trend map in the study area where red, 

blue, and yellow in the figure represent pixel with a significant increasing trend, a 

significant decreasing trend, and an insignificant trend, respectively. Urban expansion of 

major cities in the south (the U.S. Southeast region), for example, Atlanta, Houston, and 

Dallas, can be clearly observed as their city cores are surrounded by extensive areas with 

a significant increasing trend. A decrease in human settlement intensity was observed 

mostly in the north (the U.S. Northeast region; blue ellipse in Figure 4.7a), where several 

cities in the state of New York stand out, including Albany, Troy, and Johnstown.  

Two city clusters were selected to demonstrate the spatial distributions of the 

Mann-Kendall trend and Theil-Sen slope: Metro Atlanta, Georgia (Figure 4.7 (b1) – (b2)), 

and Metro Dallas, Texas (Figure 4.7 (c1) – (c2)). For both cities, urban areas in 1992 were 

extracted from the Enhanced National Land Cover Data 1992 (NLCDe 92) released by 
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U.S. Geological Survey (USGS) (https://water.usgs.gov/GIS/metadata/ 

usgswrd/XML/nlcde92.xml), in which all classes including low intensity residential; high 

intensity residential; commercial/industrial/transportation and forest residential were 

counted as urban areas. Significant urban expansion can be observed for both cities but 

with different spatial patterns. Metro Atlanta expanded in a ring form while Metro Dallas 

expanded in all directions except the southwest. The growth of human settlement was also 

observed for small towns surrounding urban clusters.  

For areas with a significant Mann-Kendall trend, the Theil-Sen slope indicates the 

change rate of human settlement (either upwards or downwards). In Figure 4.7 (b2) and 

Figure 4.7 (c2), the development of Metro Atlanta and Metro Dallas followed obvious 

radial patterns: areas close to the urban core showing a high increase rate of settlement 

(higher Theil-Sen slope) while areas away from urban core showing low increase rate. 

Since the VANUI has been normalized to [0,1] and the temporal period covers 22 years 

(1992-2013), a pixel would have a Theil-Sen slope of 0.045 (1/22), under the assumption 

that its settlement intensity had steadily increased from 0 in 1992 to 1 in 2013. The 

maximum Theil-Sen slope reached 0.037 in both cities, indicating a significant boost of 

human settlement intensity during the investigated period. 
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Figure 4.7 Maps of the 22-year Mann-Kendall trend and Theil-Sen slope in the study 
area. 

Metropolitan Statistical Areas (MSA) in the study area were selected for further 

analysis. Defined by the U.S Office of Management and Budget (OMB), MSA represents 

a contiguous area of relatively high population density. From a total of 383 predefined 

MSAs in the study area, the top 5 most populated MSAs in each part were selected. The lit 

pixel counts within the administrative boundary of each MSA in 1992, 2002, and 2013 

were extracted. As Table 4.4 suggests, all selected MSAs in the north have decreased 

settlement intensities in two temporal periods (1992-2002 and 2002-2013). The only 

exception is the Washington-Arlington-Alexandria MSA in 2002-2013, during which its 

settlement intensity slightly increased by 2.5%. On the contrary, all of the top 5 most 

populated MSAs in the south witnessed a significant increase in settlement intensity. MSA 

of Dallas-Fort Worth-Arlington, for instance, has experienced a 23.8% increase of 

settlement intensity in 1992-2002 and the increase rate has slowed down to 4.6% in the 

next period (2002-2013). MSA of Miami-Fort Lauderdale-West Palm Beach, however, is 

believed to have a continuous boost of human settlement as its sum of VANUI has 

increased 12.6% in 1992-2002 and 11.3% in 2002-2013. Although four out of the five 
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biggest MSAs in the south saw reduced growth rate in 2002 -2013 period (Table 4.4), Frey 

(2016) pointed that southern metropolitans have picked up their population increasing rate 

since 2015 and this could be a sign that southern metropolitans are heading back to the 

growth levels they experienced prior to the U.S recession in 2007 to 2009. 

Table 4.4 Sum of VANUI value and change percentage in the top 5 most populated 
MSAs in the north and south of the study area. 

MSAsa 
Sum of 

VANUI in 
1992 

Sum of 
VANUI in 

2002 

Sum of 
VANUI in 

2013 

% change 
(1992-2002) 

% of change  
(2002-2013) 

North      

New York-
Newark-Jersey 

City 

3744.0 3307.2 3217.2 -11.67% -2.7% 

Washington-
Arlington-
Alexandria 

1673.5 1611.4 1651.6 -3.7% +2.5% 

Philadelphia-
Camden-

Wilmington 

2279.2 2068.1 1928.5 -9.3% -6.8% 

Boston-
Cambridge-

Newton 

1498.9 1289.4 1182.3 -14.0% -8.3% 

Baltimore-
Columbia-

Towson 

1035.5 961.2 831.2 -7.2% -13.5% 

South      

Dallas-Fort 
Worth-Arlington 

3115.4 3857.1 4034.12 +23.8% +4.6% 

Houston-The 
Woodlands-
Sugar Land 

2687.0 3028.8 3143.9 +12.7% +3.8% 

Miami-Fort 
Lauderdale-West 

Palm Beach 

1985.4 2262.7 2518.9 +12.6% +11.3% 

Atlanta-Sandy 
Spring-Roswell 

2085.8 2398.8 2546.2 +14.0% +6.1% 

Tampa-St. 
Petersburg-
Clearwater 

1387.7 1511.9 1598.8 +9.0% +5.7% 

aAll administrative boundaries of selected MSAs were derived from U.S Census 
Bureau: https://www.census.gov/geo/maps data/data/cbf/cbf_msa.html. MSAs in the 
south were selected from Southeast and Gulf South of the U.S and therefore, 
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Washington-Arlington-Alexandria and Baltimore-Columbia-Towson were regarded as 
north MSAs in this study.    

 

The ongoing intensification on human settlement in high hurricane-exposure areas, 

especially in the U.S. southeastern region, potentially leads to the escalation in flood-

induced losses. Despite the fact that the driving factors are complex and unclear, they 

reflect the micro to macro levels of socioeconomic development that has been prioritized 

in high hurricane-exposure areas in the last decades. Additionally, intensification of human 

settlement always couples with anthropogenic environmental changes (deforestation, 

wetland destruction, etc.), potentially resulting in more severe impacts during hurricanes 

and floods (Viero et al., 2019). Although the investigated period of this study stops at the 

year 2013 due to the termination of DMSP/OLS satellites, intensification of human 

settlement in areas with high hurricane-exposure (like Zone 1) is expected to continue and 

might even accelerate. In alignment with economic recovery, studies have shown escalated 

population shift towards the Atlantic and Gulf coast, after the stalling during the recession 

(Neumann et al., 2015).  

Coastal resilience becomes more complicated when the increasing pressure of 

human settlement in coastal zones is coupled with the more frequent and costly hurricanes. 

The last three years (2016-2018) have seen consecutive above-average damaging Atlantic 

hurricane seasons. The economic damage in the conterminous U.S in 2017 was among the 

costliest ever recorded on a nominal, inflation-adjusted, and normalized basis (Klotzbach, 

2018). What’s worse, 2018 was the most recent hurricane season to feature four 

simultaneously named storms (Florence, Isaac, Helene, and Joyce) after 2008. Although 

the future trend of hurricane seasons cannot be easily predicted, the implication of greater 
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losses stands as the sizable growth of human settlement continues along the Atlantic and 

Gulf coasts.  

With the launch of the Suomi National Polar-orbiting Partnership (NPP) Satellite 

in October 2011, NTL data from the Visible Infrared Imaging Radiometer Suite onboard 

have become available. Its on-board calibration capacity and saturation-free merit have 

made NPP-VIIRS a new generation system of nighttime light observations (Elvidge et al., 

2013). This new NTL data source will provide improved monitoring of human settlement 

and land development in hurricane-prone regions for advanced disaster assessment. 

4.6 CONCLUDING REMARKS  

Floods resulted from hurricanes (mostly originated from the North Atlantic Basin) have 

posed significant threats to people residing in the U.S Atlantic and Gulf Coasts. A better 

understanding of the temporal and spatial dynamics of human settlement in these 

hurricane-prone areas is needed for improved damage assessment and sustainable urban 

planning. 

This chapter examined the spatiotemporal dynamics of nighttime satellite-derived 

human settlement in 1992-2013 in four zones at different levels of hurricane proneness on 

the U.S. Atlantic and Gulf Coasts. The hurricane-prone zones were delineated based on 

historical storm tracks from the North Atlantic Basin during 1851-2016 via a wind speed 

weighted track density function. A three-step intercalibration framework was applied to 

intercalibrate the multi-satellite DMSP/OLS NTL series, and the NDVI-desaturated NTL 

products were extracted to derive VANUI, a popular index representing human settlement 

intensity. Mann-Kendall trend and Theil-Sen slope were further applied to identify the 

existing trend in the 22-year period.   
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Zonal statistics indicate that in the frontmost zones along the coast, i.e., Zone 1 and 

Zone 2 receiving the most frequent hurricane hits, human settlement intensity has 

dramatically increased although the change rate has slowed down since the early 2000s. 

The increase was not significant in areas farther away from the coasts (Zone 3 and Zone 

4). Via trend analysis, 4.22% of the area in Zone 1 experienced a significant increase in 

settlement intensity, followed by 2.34% in Zone 2, 2.08% in Zone 3 and 1.65% in Zone 4, 

revealing higher pressure of human settlement and thus impacts from hurricanes in the 

frontmost coastal areas. Different from the zonal partitions, opposite trends of human 

settlement were observed from the north (decreasing) to the south (increasing) of the study 

region, which are supported by decadal census records. These opposite trends agree with 

the “Snow Belt-to-Sun Belt” U.S population shift reported in other studies. Along the 

Atlantic and Gulf coasts, the ongoing intensification of anthropogenic environmental 

changes coupled with more frequent and severe hurricanes is likely to cast more severe 

pressure on coastal resilience.  

Beyond the flood exposure and awareness on the U.S. coast, flood risk perception 

in the entire CONUS also needs to be properly benchmarked, allowing a comprehensive 

evaluation of the impact on those likely to bear the eventual coast of flooding. Taking 

advantage of the recently released Microsoft building footprints and the ACS 5-year 

estimates, the following chapter (Chapter 5) describes a fine-scale comparative assessment 

of the exposed population within the 100-year floodplains in the CONUS.
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CHAPTER 5 

BENCHMARKING THE POPULATION EXPOSURE TO FLOOD 

RISKS IN THE CONTERMINOUS U.S4

5.1 INTRODUCTION 

The 100-year floodplain (1% of annual exceedance probability), produced by the Federal 

Emergency Management Agency (FEMA) in 1968, has been the longstanding marker for 

deciding federal flood insurance, housing protective actions, and local mitigation policies 

(Blessing et al., 2017). Numerous estimations have been conducted based on the boundary 

of FEMA 100-year floodplain to estimate the population exposure and how this exposure 

is distributed nationwide (Crowell et al., 2010; Qiang et al., 2017; Yager et al., 2018). 

Those estimations, however, greatly differ from each other and are intrinsically limited 

because they failed to capture the great heterogeneity of population distribution at the 

micro-level.  

Population data in the United States is repetitively surveyed by the Census Bureau 

in different geographical units. The commonly used population data in the U.S include U.S 

Decennial Census (block as the smallest unit) and American Community Survey (ACS) 

(block group as the smallest unit). However, the aggregated population data within the 

 

4 Huang, X., Wang, C. Estimates of exposure to the 100-year floods in the Conterminous 

United States using national building footprints. Submitted to the International 

Journal of Disaster Risk Reduction.  
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census unit, especially within large polygons in rural areas, only represent the total 

population and do not necessarily suggest real population distribution of the unit (Wardrop 

et al., 2018; Huang et al., 2019e). Crowell et al. (2010) estimated the population exposure 

of coastal floods in the U.S by assuming a uniform distribution of population within block 

groups. Yager et al. (2017) assigned the population in the U.S census tract based on the 

percentage of its census blocks covered by FEMA floodplain. Wing et al. (2018) improved 

the population distribution for estimating population exposure by disaggregating the 

population in the census block based on land use types and slope in the unit. Another study 

applied the modeled km-level population grids by overlaying grid centroids with flood 

hazard maps (Fang et al., 2018). Despite their efforts in deriving the population within 

flood hazard zones, these studies failed to find a proxy that can better characterize the 

micro-level population in the floodplain. Given the small, zigzagging, and rather narrow 

floodplain polygons, great uncertainty might be introduced if heterogeneity of population 

distribution is not well considered.  

Spatial heterogeneity can be efficiently outlined from high-resolution satellite 

imagery. For example, Bing Maps from Microsoft released more than 125 million of 

building footprints covering the entire U.S in June 2018 (open-sourced in 

https://github.com/Microsoft/USBuildingFootprints), which is believed to be the most 

comprehensive inventory of national building footprint at the time of writing. People live 

in buildings. The direct linkage between the distribution of buildings and that of the 

population largely facilitates characterizing population distribution and greatly aids in 

summarizing population residing in a certain boundary. 

https://github.com/Microsoft/USBuildingFootprints
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In addition, a comparative study is needed to estimate the exposed population to 

floods, given the numerous limitations of FEMA boundaries. FEMA floodplains have been 

criticized by many as they are only partially complete nationwide. Only 55.0% of the 

counties in the conterminous U.S (CONUS) have the complete flood map coverage, 

whereas 22.7% have no flood map available (Qiang et al., 2017). In addition, Birkland et 

al. (2003) found that approximately 33% of the FEMA maps were more than 15 years old, 

and another 30% were 10-15 years old. Despite that this problem is being addressed by the 

Modernization Management Support (MMS) program of FEMA, the updating process 

takes time, and the varying age issue can not be fully resolved. In light of the limitations 

of FEMA floodplains, the availability of floodplains from other sources provides additional 

valuable insights on how the exposed population is distributed in those floodplains. 

Therefore, comparing the estimation from FEMA with the estimations from other available 

floodplain products allows us to gain a comprehensive understanding of the exposed 

population in the U.S.  

This chapter explores an improved flood exposure assessment by utilizing the 

Microsoft building footprints to disaggregate the block group population from the latest 

ACS 5-year estimates (2013-2017). The outputs of flood exposure are statistically 

compared between the 100-year FEMA floodplains and three popular open-source 

floodplain products in the CONUS. The findings from this national assessment provide 

valuable benchmark information regarding current flood exposure (100-year flood) in the 

CONUS by answering the following questions: 1) how many people are exposed? 2) who 

are they? 3) how are they distributed? And 4) how do the estimations from other floodplains 

differ from the estimations from FEMA floodplain? 
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5.2 DATASETS 

The primary datasets used in this chapter include 1) Microsoft computer-generated national 

building footprints: to capture population heterogeneity within the geographic boundary of 

census unit; 2) Census data: to serve as aggregated ground-truth population from which 

building footprints can disaggregate; 3) Land use datasets including NLUD 2010 and 

OpenStreetMap land use polygons: to trim raw building footprints by removing residential-

irrelevant buildings before the disaggregation process; 4)  FEMA floodplain: to serve as a 

baseline flood boundary within which population statistics are summarized; 5) Open access 

floodplain products: to compare with the estimates from the official FEMA floodplain 

boundary. 

5.2.1 Microsoft building footprints 

The building footprint dataset used in this chapter was released by the Bing Maps team in 

June 2018, relying on Open Source Microsoft Cognitive Toolkit (CNTK) and 5 million 

labeled Bing imagery. It is reported that the extracted building footprint dataset reaches a 

commission error of 0.7% and an omission error of 6.5% nationwide (Microsoft 

USBuildingFootprints, 2018). The original dataset consists of a total of 125,192,184 

building footprint polygon geometries in all 50 U.S states in GeoJSON format. After 

confining with the CONUS boundary (48 states, D.C. included), 124,828,547 footprints 

are remained and projected to U.S Albers equal-area conic projection for to preserve the 

size information. Note that the dates of extracted buildings are undetermined due to the 

fact that Bing imagery consists of varying sources. Information regarding building height 

and building type is not recorded in the dataset.  
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5.2.2 Census data 

The Census data used in this chapter is derived from American Community Survey (ACS) 

by the U.S Census Bureau, an ongoing survey that regularly gathers vital information about 

population statistics previously contained only in the long form of the U.S Decennial 

Census. Given that U.S Decennial Census is issued every ten years, the ACS is regarded 

superior to U.S Decennial Census in its better temporal interval (Mather et al., 2005) and, 

therefore, is more suitable for an updated estimation of the population exposed to flood. 

With a 60-month sampling period from Jan 1st, 2013 to Dec 31st, 2017, the latest (at the 

time of writing) ACS 5-year estimate (2013-2017) is selected. Its long sampling period 

increases the statistical reliability when examining small geographical areas and is believed 

to be more reliable compared with ACS 1-year and ACS 5-year estimates (Gaquin and 

Ryan, 2018). Due to the fact that the smallest geographical unit in ACS 5-year estimates is 

block group, the U.S block group boundary (2017 version) is obtained from Topologically 

Integrated Geographic Encoding and Referencing (TIGER) in shapefile format. A total of 

266,330 block groups are derived within the CONUS boundary. 

5.2.3 Land use datasets   

Buildings in the Microsoft national building footprint dataset are with different 

functionality. To establish a better linkage between the distributions of buildings and 

population, trimmed the raw building dataset were further trimmed by removing footprints 

that are not likely residential. Two land use datasets were applied to fulfill this goal: 

National Land Use Dataset 2010 (NLUD 2010) and OpenStreetMap (OSM) land use 

polygons. 
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NLUD 2010  

Developed by Theobald (2014), NLUD 2010 aims to provide comprehensive, detailed and 

high-resolution (30 m) land use classification for the CONUS. It was constructed through 

spatial analysis of nearly two-dozen publicly available national spatial datasets covering 

housing, employment, infrastructure, and satellite-based land cover (Theobald, 2014). It 

includes 79 land use classes that fit within five main land use groups: water, built-up, 

production, recreation, and conservation (Table A.1). Specifically, the built-up category is 

further subdivided into residential, commercial, industrial, institutional, transportation, and 

miscellaneous. Comparing with USGS National Land Cover Dataset (NLCD) classified 

from remote sensing imagery, NLUD 2010 better distinguishes the populated buildings 

and unpopulated buildings as well as other impervious surfaces (Dmowska and Stepinski, 

2017).  

OSM land use polygons 

OSM is a collaborative open-source and open-access project to collect geographic 

information from the public. As one of the most successful Volunteered Geographic 

Information (VGI) platforms, its large userbase (5.5 million users in the year 2019) 

provides rich and detailed land use information with decent coverage in the CONUS (OSM, 

2019a). The massive land use polygons annotated by millions of volunteers transcend 

widely used land cover information that often fails to distinguish types of building usage 

at the individual level.  

The OSM land use polygons used in this chapter were retrieved from GEOFABRIK 

(https://www.geofabrik.de/geofabrik/), a company that updates OSM data on a daily basis. 

OSM land use data was downloaded on March 1st, 2019. In the CONUS, there are a total 
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of 1,714,072 user-annotated land use polygons with 19 unique land use classes (Table A.2). 

Specifically, land use type “Residential” (Code 7203) represents an area of land dedicated 

to predominantly residential buildings such as houses or apartment buildings (OSM, 

2019b). It greatly contributes to the extraction of residential buildings from the raw 

building footprint dataset in this study. 

5.2.4 FEMA 100-year floodplain 

As the primary metric for predicting and acting on the possibility of a specific area being 

inundated during a rainfall or wave-based event, FEMA floodplains provide essential 

guidance for local planning, insurance purchases and regional development in the U.S. This 

study utilizes the FEMA 100-year floodplain boundary because it is the basis for floodplain 

management and the minimum requirement for participation of local governments in the 

National Flood Insurance Program (NFIP) (Burby et al., 1988; Blessing et al., 2017). In 

this chapter, FEMA 100-year floodplain was obtained from the National Flood Hazard 

Layer (NFHL) at FEMA Flood Map Service Center. The NFHL was downloaded on April 

1st, 2019 in ESRI shapefile format.  

In the NFHL data, high flood risk areas represent areas that are inundated by a 1-

percent chance of being equaled or exceeded in any given year (FEMA, 2019). Flood risk 

zones in NFHL are classified into three categories (FEMA, 2019): 1) Moderate to Low 

Risk Areas (zones B, C, and X); 2) High Risk Areas (zones A, AE, AH, AO, AR and A99, 

V and VE); and 3) Undetermined Risk Areas (Zone D). In the remainder of this chapter, 

Zone V and Zone VE (flood risks due to wave action) are denoted as 100-year coastal 

floodplain and other zones in NFHL High Risk Areas are denoted as 100-year 

fluvial/pluvial (F/P) floodplain. 
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The NFHL has not completely covered the CONUS, as floodplain maps for a total 

of 513 counties (16.51%) in CONUS are not available (Figure 5.1). Counties with no 

floodplain maps are mostly located in the Mountain States, including Colorado, Wyoming, 

Utah, New Mexico, Nevada, Idaho, Arizona, and Montana. 

 

Figure 5.1 FEMA 100-year floodplain availability in CONUS at county level (FEMA 
floodplain retrieved on April 1st, 2019).  

5.2.5 Open-access 100-year floodplain products 

Three open-access 100-year floodplain products were selected for comparative analysis 

against the FEMA boundary for a comprehensive estimation of the population exposed to 

a 100-year flood in the CONUS. Those 100-year floodplain products were respectively 

termed as RFCON (Woznicki et al., 2019), GAR (Rudari et al., 2015), and JRC (Dottori et 

al., 2016).  
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RFCON floodplain was derived via a random forest classifier using soil 

characteristics and DEM-derivatives. With the classifier trained by FEMA floodplain, 

RFCON presents a spatially complete 100-year floodplain (both fluvial/pluvial and coastal) 

for the entire CONUS, greatly compensating the coverage limitation of FEMA floodplain 

(Woznicki et al., 2019).  

GAR floodplain was developed by the Global Assessment Report (GAR) on 

Disaster Risk Reduction 2015 from the United Nations Office for the Disaster Risk 

Reduction (UNISDR). As an official floodplain issued by the United Nations, GAR 

captures fluvial/pluvial 100-year flood extent on a global scale.  

JRC floodplain was released in 2016 by the European Commission Joint Research 

Center (EC-JRC). Same as GAR, JRC mainly considers the extent of fluvial/fluvial floods 

globally. Other details of the three floodplain products can be found in Table 5.1.  

 

Table 5.1 Summary of open access 100-year floodplain products used in this chapter. 
 GAR 

(Rudari et al., 2015) 
JRC 
(Dottori et al.,2016) 

RFCON 
(Woznicki et al., 2019) 

Resolution 30 arc-seconds  
(1km) 

30 arc-seconds  
(1km) 

1 arc-second 
(30m) 

Year issued 2015 2016 2019 

Floodplain 
type 

Fluvial/pluvial Fluvial/pluvial Fluvial/pluvial and 
coastal 

Coverage Global Global CONUS 
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Methodsa Simulated floodplain 
using regional flood 
frequency approach 
to estimate flood 
flows from pooled 
river gauged data. 
The floodplain was 
simulated via a flood 
volume redistribution 
model, GLOFRIS.  

Simulated floodplain 

using cascade of 
precipitation time 
series from global 
climate reanalysis 
data driving a land 
surface model to 
produce flows at 
locations along a 
river. The floodplain 
was simulated via a  
2D hydrodynamic 
model. 

Trained floodplain via 
a random forest 
classifier using DEM-
derivatives and flood-
based soil 
characteristics.  
The random forest 
model was trained on 
FEMA floodplain. 

Sources Global Assessment 
Report on Disaster 
Risk Reduction 2015 
from the United 
Nations Office for 
Disaster Risk 
Reduction (UNISDR) 
(https://www.preventi
onweb.net/english/ 
hyogo/gar/2015/en/ho
me/data.php) 

European 
Commission Joint 
Research Center 
(EC-JRC) 
(https://data.jrc.ec.eu
ropa.eu/collection/id
-0054) 

Research data available 
from the United States 
Environmental 
Protection Agency 
(EPA) EnviroAtlas 
(https://www.epa.gov/e
nviroatlas/enviroatlas-
interactive-map). 

aMethods in GAR and JRC are summarized in Trigg et al. (2016) and Bernhofen et 
al. (2018). 

5.3 METHODS 

The methodology in this chapter follows a general workflow described in Figure 5.2. The 

raw Microsoft national building footprint dataset was first trimmed based on two land use 

datasets, NLUD 2010, and OSM land use polygons, to remove buildings that are not likely 

residential (Section 5.3.1). After trimming, buildings were used to disaggregate population 

statistics from ACS 2013-2017 at the block group level into building level (Section 5.3.2). 

Finally, building-level statistics were summarized and spatially compared among different 

floodplain products (Section 5.3.3). 
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Figure 5.2 General workflow of estimating the population exposed to 100-year floods in 
the CONUS using national building footprints. 

5.3.1 Building footprint trimming 

The building footprint trimming process confines population distribution to residential-

relevant buildings, thus greatly capturing the heterogeneity of population distribution at the 

micro-level. In the NLUD 2010 dataset, residential (subcategory) was selected (from built-

up category), which includes: dense urban residential (Code 211), urban residential (Code 

212), suburban residential (Code 213), exurban residential (Code 214) and rural residential 

(Code 215). In addition, highway/railway (Code 252) was included as some residential 

buildings are very close to transportation, meaning that those residential buildings are 

likely to fall within highway/railway cells. The detailed coding scheme of the NLUD 2010 

dataset can be found in Theobald (2014). In the OSM land use dataset, land use type 

“Residential” (Code 7203) was selected as it indicates an area of land having 

predominantly residential buildings. The building trimming process kept building 

footprints that are within either the aforementioned land use type in those two datasets.  
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In addition, the raw Microsoft national building footprint dataset contains many 

small footprints that are not likely habitable (e.g., garages and temporary awnings). To 

remove those small polygons, the size of the minimum footprint was empirically set to be 

50 𝑚2 . Extra-large footprints that are unlikely residential were also removed by a 

maximum threshold of 5,000 𝑚2. The analyses in the remainder of the chapter used the 

trimmed building footprints.  

5.3.2 Population disaggregation 

As the smallest unit of ACS product, each block group represents a geographical area with 

homogeneity of aggregated statistics. However, they are spatially distributed with great 

heterogeneity. It is reasonable to assume that 1) the statistics of a block group are only 

confined to the building footprints within this block group, and 2) are distributed 

proportionally to the size of the building footprint that characterizes the horizontal holding 

capacity of a building. Here, the proportion (S) of a building footprint shared within its 

block group can be calculated as: 

 𝑆𝑅𝑖 = 𝐵𝐹𝑠𝑖𝑧𝑒𝑖∑ 𝐵𝐹𝑠𝑖𝑧𝑒𝑖𝑖  (𝑖 ∈ 𝑅)                                              (5.1) 

where 𝑆𝑅𝑖  denotes the areal percentage of building 𝑖  within block group R and 𝐵𝐹𝑠𝑖𝑧𝑒𝑖  

denotes the building footprint size of building 𝑖.  Note that the disaggregation process 

redistributes population statistics to individual building within a block group while 

preserves the sum of statistics reported at the block group level, i.e., the sum of 𝑆 within 

block group 𝑅 equals 1 (∑ 𝑆𝑅𝑖𝑖∈𝑅  = 1). The statistics of block group 𝑅 (𝑃𝑅) are further 

distributed to building 𝑖 according to its share (𝑆𝑅𝑖 ): 𝑃𝑅𝑖 = 𝑆𝑅𝑖 × 𝑃𝑅                                                             (5.2) 
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where 𝑃𝑅𝑖  denotes the statistics of building 𝑖  within block group 𝑅 . The statistics 

aggregated at ACS block group level are also preserved as 𝑃𝑅 = ∑ 𝑃𝑅𝑖𝑖∈𝑅 .  

In this study, 𝑃𝑅 includes total population and six socioeconomic variables: age, 

employment, race, ethnicity, tenure, and poverty. Details for the six socioeconomic 

variables are presented in Table 5.2. 

Table 5.2 Statistics of block group R (𝑃𝑅) included in this chapter. 
Category Subcategory 
Agea Under 5 

5 to 14 
14 to 25 
25 to 34 
35 to 44 
45 to 54 
55 to 64 
65 to 74 
75 to 84 
Above 85 

Race White 
Black or African American 
American Indian and Alaska native 
Asian alone 
Native Hawaiian and Pacific Islander 
Some other races 
Two or more races 

Ethnicity Hispanic or Latino 
Not Hispanic or Latino 

Employmentb Employed 
Unemployed 

Tenurec Owner Occupied 
Renter Occupied 

Povertyd Under 1.0 (Doing poorly) 
1.00 to 1.99 (Struggling) 
Above 2 (Doing Ok) 

aAge category is modified from ACS 5-year estimates (2013-2017) from 
the U.S Census Bureau.  
bEmployment denotes the employment status of the civilian population in 
the labor force 16 years and over. 
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cTenure is counted by households. 
dPoverty denotes the ratio of income to the poverty line.  
 

5.3.3 Spatial query and comparative exposure estimation 

After the disaggregation of statistics of ACS block groups to the statistics of the individual 

building, a spatial query was performed to extract buildings that fall within the FEMA 

floodplain boundary as well as the other three floodplain boundaries. To facilitate the 

query, building footprint polygons were converted to point features, and the FEMA 

floodplain boundary was converted to a binary raster. Statistics of buildings within 

floodplain boundaries were further summarized in the CONUS as a whole, as well as at the 

county level, to shed light on the distribution pattern of current flood exposure across the 

CONUS. Counties were selected as the unit of spatial analysis because they maintain the 

well-established administrative functions (Qiang et al., 2017). Therefore the flood 

exposure derived in this study can be easily linked to available county-level socioeconomic 

records to assist local decision-makers.  

In addition to the spatial differences in flood exposure among counties, statistics 

are likely to vary within the same county because of the disparity among the different 

floodplain products. As the official floodplain in the U.S, FEMA floodplain serves as the 

baseline estimation with which estimations from other floodplains products were 

compared. Due to the fact that GAR and JRC mainly estimated fluvial/pluvial floods and 

RFCON estimated both fluvial/pluvial and coastal floods, two groups of comparison were 

consequently designed. Estimations from GAR and JRC were compared with estimations 

from FEMA fluvial/pluvial floodplain (denoted as FEMA (F/P)), and RFCON was 

compared with FEMA fluvial/pluvial floodplain together with FEMA coastal floodplain 
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(denoted as FEMA (F/P + Coastal)). The county-level differences in estimations from 

different floodplain products were standardized by the county population.  

Getis-Ord 𝐺𝑖∗  was further used to find potential hot spots among floodplain 

different products. Getis-Ord 𝐺𝑖∗ is a spatial clustering statistic that summarizes statistically 

significant spatial patterns by looking at each feature within the context of neighboring 

features (Ord and Getis, 1995; Getis and Ord, 2010): 𝐺𝑖∗ = ∑ 𝑤𝑖,𝑗𝑥𝑗−�̅� ∑ 𝑤𝑖,𝑗𝑛𝑗=1𝑛𝑗=1
𝑆√𝑛∑ 𝑤𝑖,𝑗2 −(∑ 𝑤𝑖,𝑗𝑛𝑗=1 )2𝑛𝑗=1 𝑛−1

                                          (5.3) 

where 𝑥𝑗  denotes the differences in estimated population exposure in proportion to the 

total population in county 𝑗, 𝑛 denotes the total number of counties, 𝑤𝑖,𝑗 denotes the spatial 

weight between county 𝑖  and county 𝑗 (counties within a fixed Euclidean distance that 

ensures every county has at least one neighbor are computed equally), �̅� denotes the mean 

(
∑ 𝑥𝑗𝑛𝑗=1𝑛 ), and 𝑆 is calculated as: 

𝑆 = √∑ 𝑥𝑗2𝑛𝑗=1𝑛 − (�̅�)2                                                  (5.4) 

Three significant levels were summarized: 𝛼 = 0.01, 𝛼 = 0.05, and 𝛼 = 0.1. They 

respectively correspond to the identification of hot spots (or cold spots) with 99% 

significance, 95% significance, and 90% significance. 

5.4 RESULTS 

5.4.1 How many people are exposed? 

In term of fluvial/pluvial floodplain (F/P), FEMA (F/P) estimates a total of 10.992 million 

exposed population in the CONUS (Figure 5.3). In comparison, JRC and GAR respectively 

estimate 12.091 million and 14.161 million, which are 1.099 million and 3.169 million 
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more than the FEMA estimation (Figure 5.3). It suggests that the estimation of flood 

exposure from FEMA is less than the ones from other official sources like JRC floodplain 

and GAR floodplain. When considering coastal floods, FEMA (F/P + Coastal) estimates 

that a total of 11.119 million people in the CONUS are currently facing the danger of 

floods. This estimation is 890 thousand shy of the estimation from RFCON (12.080 

million), a spatially complete 100-year floodplain for the entire CONUS. The incomplete 

coverage of FEMA floodplain (as shown in Figure 5.1 above) potentially limits its 

capability of providing a comprehensive flood exposure analysis in the CONUS.   

5.4.2 Who are they? 

Age 

Figure 5.3 presents the age compositions of the exposed population in the CONUS for two 

groups of comparisons. Similar age compositions can be found from estimations using 

different floodplain products. The age compositions exposed to flood are generally in 

accordance with the age compositions of the entire U.S, indicating that there is no 

significant age bias towards different age groups in terms of flood proneness. When 

flooding occurs, children and the elderly may face a particular set of challenges because 

extremes of the age spectrum affect the movement out of harm’s way. FEMA (F/P) 

estimates that around 1.957 million children (under age 14) are exposed to a 100-year F/P 

flood, whereas two other official sources like JRC and GAR, estimate 2.342 million and 

2.620 million respectively. Taking coastal floods into consideration, FEMA (F/P + Coastal) 

estimates a total of 1.971 million children, and in comparison, RFCON estimates 2.182 

million. As RFCON is spatially complete and trained using FEMA floodplain, it means 

that the gap of 211 thousand underestimated children by FEMA is primarily due to the 
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incompleteness of FEMA floodplain. As for the elderly (above 65), estimations from 

FEMA (F/P) and JRC are similar as they respectively estimate 1.878 million and 1.769 

million, while GAR estimates a significantly higher number, 2.517 million. Considering 

coastal floods, FEMA (F/P + Coastal) underestimates 132 thousand seniors compared with 

RFCON. 

Figure 5.3 Age composition exposed to 100-year floodplains in the CONUS. 

Race and Ethnicity 

Figure 5.4 shows the race composition of the population exposed to the 100-year flood in 

the CONUS in two groups of comparisons. Comparing three F/P floodplain products, the 

estimation of GAR differs greatly from the other two. In its total exposed population 

(14.161 million), GAR estimates that the White group and the African American group 

respectively consist of 82.9% (11.74 million) and 9.6% (1.36 million). In comparison, 

however, the White group percentages in FEMA (F/P) and JRC are considerably lower, 

75.5% and 71.7% respectively, and the African American group percentages are 

considerably higher, 12.6% and 14.3% respectively. In addition, GAR estimates the 
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exposed Asian group to be 150 thousand, significantly lower than estimation from FEMA 

(F/P) (430 thousand) and estimation from JRC (610 thousand) (Figure 5.4). Considering 

coastal floods, RFCON overestimates 1.19 million of the white group and underestimate 

280 thousand of the African American group, compared with FEMA (F/P + Coastal). It is 

worth mentioning that Race compositions in the entire U.S and in FEMA floodplains (both 

FEMA (F/P) and FEMA (F/P + Coastal)) are highly similar in all race groups (Figure 4), 

indicating that FEMA estimations suggest no racial bias towards flood exposure. Other 

floodplains, however, tend to overestimate the white group and underestimate the African 

American group.  

As for ethnicity, the percentage of the Hispanic or Latino group in the U.S is 17.6%. 

This number reaches 24.7% and 24.5% in FEMA (F/P) and FEMA (F/P + Coastal), 

respectively (Figure 5.5), suggesting that the Hispanic or Latino group tends to live in 

FEMA floodplains according to FEMA. However, the percentage of the Hispanic or Latino 

group in the GAR floodplain is 10.3%, suggesting otherwise. No bias is found against the 

Hispanic or Latino group in RFCON as it estimates a percentage of 17.7%, quite close to 

the national percentage of Hispanic or Latino group. 
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Figure 5.4 Race composition exposed to 100-year floodplains in the CONUS. 

Tenure 

As shown in Figure 5.5, 36.2% of all housing units are occupied by renters and 63.8% by 

owners in the U.S. A slightly higher share of units occupied by renters is found in 

floodplains of FEMA (F/P) (38.6%), FEMA (F/P + Coastal) (38.4%) and JRC (40.2%). In 

comparison, a lower share of units by renters is found in GAR with only 31.7%. RFCON 

doesn’t show any bias against tenure status as its 35.5% of renters is very similar to the 

national statistic of 36.2%. 

Employment and Poverty  

The employment in this study represents the employment status of the civilian population 

in the labor force 16 years and over. Following this definition, the national unemployment 

rate from ACS estimates (2013-2017) is 6.5% (Figure 5.5). In terms of the unemployed 
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who are exposed to flood danger, the percentages from all selected floodplains are similar 

and close to national statistic, with FEMA (F/P + Coastal) 7.0%, FEMA (F/P) 7.0%, JRC 

7.4%, GAR 7.0% and RFCON 6.8%. The result suggests that employment status is not 

biased against flood exposure in all selected floodplains. 

The poverty defined in this study represents the relative poverty status where the 

income is divided by the poverty line. Breaking into three categories, a ratio above 2 

denotes the wealthy group, a ratio between 1.00 and 1.99 denotes the struggling group, and 

a ratio under 1 denotes the poor group. In the U.S, these three groups respectively consist 

of 67.3% (the wealthy group), 18.2% (the struggling group), and 14.6% (the poor group) 

(Figure 5.5). Considering the flood exposure, however, a lower percentage of the wealthy 

group and a higher percentage of the poor group are found within all five selected flood 

plains. For example, within FEMA (F/P +Coastal) floodplain, the wealthy group consists 

of 4.4% less, and the poor group consists of 2.2% more, compared with the national 

statistic. Estimations from other floodplain products also suggest less percentage of the 

wealthy group facing flood risks. The unanimous agreement of all five floodplains, despite 

the small variance, reveals that the poor group tends to live within the floodplain and 

therefore, face higher risk and rescue challenge during flood events. Detailed statistics 

regarding these six socioeconomic variables within floodplains can be found in Table A.3. 
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Figure 5.5 Composition of ethnicity, tenure, employment, and poverty in FEMA (F/P + 
Coastal) with the composition from the entire U.S. 

5.4.3 How are they distributed? 

Fluvial/Pluvial (F/P) flood  

In the first group of comparison, the spatial distribution of population exposure at the 

county level was compared in floodplains that only consider F/P flood: FEMA (F/P), JRC, 

and GAR (Figure 5.6). To reveal the spatial patterns, the county-level exposed population 
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of the aforementioned three floodplains is categorized in ten quantiles at a 10% interval. 

As expected, counties near major river channels are more likely located in 100-year 

floodplains and, therefore, tend to have more people exposed to flood danger, especially 

the case for JRC (Figure 5.6a). For example, a high concentration of exposed population 

can be easily found along the Mississippi River, Missouri River and Arkansas River, which 

coincides with the fact that floods from those three rivers usually inflict severe damage on 

the public. In contrast, less population exposure can be found in counties in the western 

mountainous region and the eastern inland region.  

Despite those agreements, the spatial distribution of the exposed population 

estimated from the selected three floodplains varies greatly. In contrast with JRC that 

mainly captures high exposure in counties along major rivers (Figure 5.6a), FEMA (F/P) 

also highlights the high exposure in counties on Gulf Coast, West Coast, and Atlantic Coast 

(Figure 5.6c). GAR floodplain obviously captures more population exposure in the central 

U.S, despite the fact that most of those counties are in the lowest quantile (dark blue) 

(Figure 5.6b).  
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Figure 5.6 Population distributed in the JRC (a), GAR (b), and FEMA (F/P) (c) 
floodplains. 

 

Figure 5.7 Total population distributed in RFCON and FEMA (F/P + Coastal). 

Fluvial/Pluvial and Coastal flood combined (F/P + Coastal) 

The second group of comparison focuses on comparing floodplains that consider both F/P 

floods and coastal floods: FEMA (F/P + Coastal) (Figure 5.7a) and RFCON (Figure 5.7b). 

Given that RFCON is trained by FEMA floodplain in available locations and then extends 

its coverage to the entire CONUS, RFCON provides a scenario in which population 
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exposure is theoretically captured using a spatially complete FEMA floodplain. In general, 

a high similarity is found in places where FEMA floodplain is available, with high exposure 

in counties along the major rivers and U.S coasts (Figure 5.7). However, in counties where 

FEMA floodplain is unavailable (mostly in central U.S and Mountain States), RFCON 

reveals that majority of counties are within low quantiles (blue) but some of them, e.g., 

Sweetwater County in Wyoming and Malheur County in Oregon, are with high flood 

exposure (red). Those counties, lying outside the coverage of FEMA floodplains but with 

high exposure, are potentially responsible for the flooding losses that failed to be captured 

in the U.S (Blessing et al., 2017). 

A further comparison was conducted between FEMA (F/P + Coastal) and RFCON 

by ranking the top ten counties with the total population exposed and with the proportion 

of the population exposed. In terms of the total population exposed (Table 5.3), Miami-

Dade County, FL ranks the first in both floodplains. However, the number of people 

exposed to a 100-year flood varies greatly from 1.2 million in FEMA floodplain to 260k 

in RFCON. Four counties are both mentioned in the top ten ranks: Sacramento County, 

CA, and Miami-Dade County, Pinellas County, and Hillsborough County, FL. In terms of 

the proportion of the population exposed (Table 5.4), four counties appear in both lists, 

with Hyde County in NC and Monroe County in FL ranking the first and the second, 

respectively. Statistics for these two counties in two floodplains are nearly identical, with 

90.1% from FEMA in contrast with 90.5% from RFCON in Hyde County, and 86.4% from 

FEMA in contrast with 84.6% from RFCON in Monroe County. 
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Table 5.3 The top 10 ranked counties by the total population exposed to 100-year 
fluvial/pluvial and coastal floods (F/P + Coastal). 
 FEMA (F/P + Coastal)  RFCON 

Rank County Pop  
% of 
pop 

 
County Pop  

% of 
pop 

1 
Miami-Dade 

(FL) 

1,195,51
1 

44.2  
Miami-Dade 

(FL) 
260,550 9.6 

2 Harris (TX) 457,778 10.1  
Sacramento 

(CA) 
200,939 13.4 

3 Broward (FL) 296,433 15.7  
Pinellas 

(FL) 
166,309 17.5 

4 Pinellas (FL) 249,200 26.2  
Maricopa 

(AZ) 
134,321 3.2 

5 Lee (FL) 237,214 33.9  
Bernalillo 

(NM) 
124,289 18.4 

6 Collier (FL) 194,874 54.6  
Cameron 

(TX) 
119,719 28.5 

7 
Hillsborough 

(FL) 
171,395 12.7  Orange (CA) 117,415 3.7 

8 Jefferson (VA) 150,532 34.4  
Hillsboroug

h (FL) 
113,758 8.4 

9 
Santa Clara 

(CA) 
125,711 6.6  El Paso (TX) 113,049 13.5 

10 
Sacramento 

(CA) 
122,807 8.2  

Los Angeles 
(CA) 

98,112 1.0 

Note. Counties in bold indicate counties identified by both floodplains. 
 

Table 5.4 The top 10 ranked counties by the proportion of the population exposed to 
100-year fluvial/pluvial and coastal floods (F/P + Coastal). 
 FEMA (F/P + Coastal)  RFCON 

Rank County Pop  
% of 
pop 

 
County Pop  

% of 
pop 

1 Hyde (NC) 4,963 90.1  Hyde (NC) 4,981 90.5 
2 Monroe (FL) 64,912 84.6  Monroe (FL) 65,160 84.9 
3 Tyrrell (NC) 3,431 83.9  Saline (KS) 40,591 73.3 
4 Cameron (LA) 5,304 77.9  Custer (MT) 8,038 67.6 
5 Poquoson (VA) 8,462 70.4  Cameron (PA) 3,132 65.9 
6 Dare (NC) 22,680 64.0  Logan (CO) 13,347 61.0 
7 Custer (MT) 6,553 55.1  Mingo (WV) 15,187 60.4 
8 Collier (FL) 194,874 54.6  Bent (CO) 3,493 60.2 
9 Brooks (TX) 3,884 53.6  Osborne (KS) 2,097 56.9 

10 Willacy (TX) 11,013 50.4  Tyrrell (NC) 2,325 56.9 
Note. Counties in bold indicate counties identified by both floodplains. 
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5.4.4 How do estimations vary compared with FEMA floodplain? 

To investigate the spatial biases of exposure estimations from other floodplains against 

FEMA floodplain, the FEMA estimation was set as a baseline and the county-level 

differences (standardized by county population) from estimations of other floodplains were 

calculated. Here, three comparisons are respectively conducted: GAR and FEMA (F/P) 

(Figure 5.8), JRC and FEMA (F/P) (Figure 5.9), and RFCON and FEMA (F/P + Coastal) 

(Figure 5.10).  

Compared with FEMA (F/P), GAR generally overestimates 11% of the exposed 

population at the county level (Figure 5.8 (a1)). The distribution of 𝐺𝑖∗ Z score, derived 

from Figure 5.8 (a2), identifies several hot spots and cold spots at three confidence levels 

with relatively high confidence (Figure 5.8 (b2)). A hot spot can be found along the 

Mississippi River (highlighted in a purple ellipse), suggesting that FEMA potentially 

underestimates the exposed population in this flood-prone region. Other hot spots can be 

found in the state of Idaho and Montana, where FEMA floodplain has incomplete coverage, 

revealing the existence of a large amount of exposed population that failed to be captured 

by FEMA. Three major cold spots (highlighted in green ellipses), Miami, Southeastern 

inlands, and Northeastern Atlantic coast suggest FEMA’s overrepresentation of population 

exposure in these regions.  
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Figure 5.8 County-level differences between exposed population from GAR and FEMA 
(F/P) in proportion to the county population (a2) associated with county count histogram 
(a1); County-level 𝐺𝑖∗ Z score distribution (b2) associated with county count histogram 

(b1). 

Figure 5.9 presents a comparison between JRC and FEMA (F/P). The mean 

difference of county-level exposed population in proportion to county population is 0.01 

(1%) (Figure 5.9 (a1)), suggesting that JRC has no tendency of either overestimating or 

underestimating county-level population exposure compared with FEMA estimation in 

CONUS generally. Spatially, however, population exposure from JRC exhibits a strong 

disparity against estimation from FEMA (Figure 5.9 (a2)). The distribution of 𝐺𝑖∗ Z score 

reveals similar patterns as it does in the previous comparison (GAR and FEMA (F/P)). Hot 

spots are also found in the Mississippi River region and Idaho, and cold spots in Miami 

and on the Northeastern Atlantic coast (Figure 5.9 (b2)). Differently, JRC reveals a new 
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hot spot and a new cold spot with high confidence, lying respectively in Nebraska and 

Kentucky/West Virginia (Figure 5.9 (b2)).  

 

Figure 5.9 County-level differences between exposed population from JRC and FEMA 
(F/P) in proportion to the county population (a2) associated with county count histogram 
(a1); County-level 𝐺𝑖∗ Z score distribution (b2) associated with county count histogram 

(b1). 

The comparison between RFCON and FEMA (F/P + Coastal) reveals some similar 

patterns but also opposite ones (Figure 5.10). Generally, RFCON has no tendency of over- 

or underestimating county-level exposed population (Figure 5.10 (a1)). The distribution of 𝐺𝑖∗  Z score shows the same hot spots in Idaho and Montana, and cold spot on the 

Northeastern Atlantic coast (Figure 5.10 (b2)), in accordance with the findings from two 

previous comparisons. A cold spot is found covering nearly the entire Florida, different 

from the ones that only cover the Miami region in two previous comparisons. In the lower 
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Mississippi River, the comparison between RFCON and FEMA draws an opposite 

conclusion as it reveals that FEMA potentially underrepresents the exposed population 

along the Mississippi River. In addition, a hot spot is found in Kentucky/West Virginia, 

opposing to the cold spot in the same location in the comparison between JRC and FEMA. 

 

Figure 5.10 County-level differences between exposed population from RFCON and 
FEMA (F/P + Coastal) in proportion to the county population (a2) associated with county 

count histogram (a1); County-level 𝐺𝑖∗ Z score distribution (b2) associated with county 
count histogram (b1). 

5.5 DISCUSSION 

This chapter aims to provide the benchmark information regarding the current flood 

exposure (100-year flood) in the CONUS utilizing a recently released national building 

footprint dataset and the 2013-2017 ACS estimates. A comparative study is further 

conducted to examine the flood exposure within FEMA 100-year floodplain boundary and 

other three publicly available 100-year floodplains.  
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This study transcends other flood exposure studies in two folds. Firstly, the 

application of national building footprints provides a spatially explicit population 

distribution that captures the heterogeneity of population distribution at the micro-level. 

Previous attempts that estimate regional flood exposure solely rely on the ground-truth 

population from different levels of geographic units (e.g., census tract, block group, block, 

etc.). The binary spatial relationship (included or excluded) between floodplain polygons 

and centroids in those geographic units is usually derived to calculate the exposed 

population (Crowell et al., 2010; Yager et al., 2017). However, great uncertainties might 

be introduced if the heterogeneity of population distribution is not well considered. For 

instance, if a centroid of a block group falls within the identified floodplain, people within 

the entire block group are assumed to be exposed to the flood risks, which is not necessarily 

true. Figure 5.11 presents the visual comparison between flood exposure analysis based on 

centroids of geographic units (Figure 5.11a) and based on building footprints (Figure 

5.11b) in an example site in South Carolina. Given the fact that the two block group 

centroids (circled in blue) are within the FEMA floodplain, residents within the two block 

groups are all assumed to be exposed, unavoidably leading to great uncertainty in terms of 

estimating the flood exposure. In comparison, a direct spatial relationship between 

residential buildings and floodplain greatly aids in summarizing the population residing in 

flood risk zones as only people living in buildings with flood risks are denoted as exposed 

population (Figure 5.11b).  

Secondly, this study compares the estimations of flood exposure from multiple 

floodplain products, allowing us to gain a comprehensive understanding of the population 

facing flood risks in the CONUS. Studies have found that commonly used FEMA 
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floodplains have numerous limitations, such as their incomprehensiveness (Qiang et al., 

2017) and aging issues (Birkland et al., 2003). A great disagreement was also noticed 

among many floodplain products as they largely vary in extent, particularly in semi-arid 

zones and wetlands (Trigg et al., 2016). The discrepancy among different floodplain 

products is explored thoroughly in this study via the investigation of official FEMA 

floodplain product, a spatially complete FEMA 100-year floodplain, i.e., the RFCON, and 

two other well-recognized floodplain products, GAR and JRC. This study did not indicate 

which product is better or more accurate. Rather, the comparative estimations provide 

general benchmark information regarding the current 100-year flood exposure in the 

CONUS, enhancing our understanding of how different floodplain products spatially vary 

in estimations, which could provide advisory information for both local and federal 

authorities in future policy and decision making.   

 

Figure 5.11  Comparison between flood exposure analysis based on centroids of 
geographic units (block groups) (a) and based on building footprints (b). 

FEMA floodplain product has been commonly adopted as an official source of 100-

year floodplain coverage in the United States. Based on this product, this chapter estimates 

that a total of 11.119 million people in the CONUS are facing the danger of 100-year 
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floods. This number looks less striking than other studies in similar efforts. Using 

population density data from US Environmental Protection Agency (USEPA), which 

distributes the 2010 census block population counts into 30m pixels based on land use and 

slopes, Wang et al. (2018) estimated that 13 million people are exposed to the FEMA 100-

year floods. Even more dramatically, Yager et al. (2017) estimated a total of 15 million by 

calculating the percentage of block centroids covered by FEMA floodplain in each census 

tract. This chapter reveals that, with the national building footprint product, a better proxy 

for population distribution than land use and centroids of geographic units, 2 - 4 million 

fewer people with flood risks are counted in the CONUS.  

As assuring as the result might sound, however, the cross-comparison among 

different floodplain products raises the alarm. Comparing with the estimation from FEMA 

(F/P) floodplain, estimations from JRC and GAR respectively indicated that 1.099 million 

and 3.169 million more people are exposed to the flood risks. Similarly, with the inclusion 

of coastal floods, RFCON estimates 890 thousand more than the estimation from FEMA 

(F/P + Coastal) floodplain. Two comparisons above reach the same suggestion that FEMA 

floodplain, potentially limited by its partial coverage, tends to underestimate the flood 

exposure compared with other sources. This conclusion coincides with the findings from 

Blessing et al. (2017), who reported the significant mismatch between FEMA's estimated 

flood loss and the real flood loss. Spatially, estimations from different floodplain products 

vary. However, an agreement can be reached that JRC, GAR, and RFCON all 

overestimated the exposed population in the state of Idaho and Montana, compared to the 

estimation from FEMA. Coincidentally, Idaho and Montana happen to be the states where 

FEMA floodplains are considerably less available (see the availability of FEMA floodplain 
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in Figure 5.1), revealing the existence of a large amount of exposed population that failed 

to be captured by FEMA. In addition, special attention should be paid to the regions where 

estimations from different floodplains disagree with each other, e.g., regions along the 

Mississippi River and regions in the Kentucky/West Virginia. Additional research and 

possibly official data from local authorities may help to shed light on the flood exposure in 

those regions.  

Through the examination of demographic variables in the floodplains, this study 

also conducts some preliminary examination of environmental justice and social 

vulnerability on flood hazards in the CONUS. Race and ethnicity are major drivers of 

flood-related social vulnerability since these may impose cultural and language barriers 

that affect pre-disaster mitigation and access to post-disaster resources for recovery (Cutter 

et al., 2003). The results of this chapter indicate that, while estimations from FEMA 

floodplain suggest no racial bias towards flood exposure, estimations from other 

floodplains reveal that the white group tends to be more exposed proportionally and the 

African Amerian group otherwise. The identified racial inequity from other floodplain 

products agrees with some local studies in Miami (Chakraborty et al., 2014) and in New 

York City (Maantay and Maroko, 2009). Estimations based on FEMA floodplains found a 

distinctive higher proportion of Hispanic or Latino group facing flood risks, however, 

inconclusive results are found in terms of flood exposure on communities of ethnicity, as 

estimations from different floodplain products show no consistency. Socioeconomic status 

drivers are among the most prominently measured characteristics in social vulnerability 

studies (Rufat et al., 2015) and can easily translate into social vulnerability through access 

to resources, coping behavior, and stress (Adger, 1999). This study explores several 
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socioeconomic indicators, including unemployment rate, poverty, and tenure status, in 

response to the flood exposure. No bias is found for the unemployment rate against flood 

exposure, as the exposed unemployment percentages from all selected floodplains are close 

to the national statistics. Divergent results are found for the tenure status with flood 

exposure as estimations vary upon different floodplain products. However, despite small 

variances, estimations from all selected floodplains reveal that the poor are facing more 

flood risks than the wealthy. Although the human-flood hazard relationship has been 

structured with spatial heterogeneity (Maldonado et al., 2016), the inequitable flood risk 

experienced by the poor in the CONUS, identified by all selected floodplains, emphasizes 

the importance for future environmental justice and hazard vulnerability studies to 

emphasize the need for the vulnerable groups.  

This study suggests FEMA prioritize improving floodplain identification spatially 

and temporally to provide the public with a reliable and up-to-date rendering of their true 

flood exposure, ensuring that NFIP rates reflect the real risk of flooding. High attention 

should be paid to regions where floodplain maps are unavailable (mostly located in the 

Mountain States), as the results reveal a large potentially uncaptured population with flood 

risks in those regions. As of December 2016, the “New, Valid, or Updated Engineering 

(NVUE)” rate of FEMA was at 42%, meaning that only 42 percent of the NFIP’s maps 

adequately identified the level of flood risk (Office of Inspector General, 2017). Therefore, 

the necessity of accurate, complete, up-to-date, and publicly available flood hazard maps 

is obvious. The FEMA’s MMS program has been taking place, and its continuation is 

essential for local communities and various stakeholders as it provides updated NIFP maps 

that reflect the dynamics of flood hazards, encouraging wise community-based floodplain 
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management and improved citizens’ flood hazard awareness. The statistical results also 

reveal that the poor group experiences heightened exposure to flood risks, which is a 

particular concern due to their generally reduced capacities to prepare for, respond to, and 

recover from flood events (Chakraborty et al., 2014). Measures should be taken as the 

concentration of socially vulnerable groups at high risks potentially increases the pressure 

to mitigate severe flood events in a significant way.  

The NFIP flood insurance rates should continue to be subsidized for groups residing 

in flood risks zones, especially with lower income, who otherwise are incapable of paying 

the increased rates. It should be noted that the conclusion at the national level should not 

be regionalized without caution. An opposite example is Miami, where a study found that 

the wealthy appear inclined, rather than disinclined, to place themselves at risk to flooding 

in exchange for the benefits that come with the risk, as the flood insurance is available to 

externalize the economic risks of flooding (Maldonado et al., 2016). However, the 

nationwide inequitable flood risk faced by the poor identified in this study should raise the 

alarm for the federal as well as the local government. 

Finally, it is important to recognize several limitations of this study for the benefit 

of exploring related avenues for future research. Firstly, the limitations of the nationwide 

Microsoft building footprints are worth mentioning. The Microsoft building footprint 

product used in this study does not contain building height information. Uncertainty is 

inevitably introduced when the census population is disaggregated into those buildings due 

to the lack of information in the vertical dimension. Although the Microsoft building 

footprint dataset, released in June 2018, is believed to be the most up-to-date and 

comprehensive building footprint dataset in the U.S, its vintage depends on the underlying 
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Bing Imagery. Despite the fact that the Bing Map team extracted the footprints using their 

most up-to-date high-resolution imagery, it is still difficult to know the exact dates for 

individual pieces of data (Microsoft, 2019). The temporal ambiguity in the dataset might 

cause problems for studies that require certain temporal restrictions. Secondly, the spatial 

disparities (estimated via Getis-Ord 𝐺𝑖∗ ) in flood exposure from different floodplain 

products are estimated at the county-level, as counties usually share similar political and 

governmental functions. However, changes in aggregated units (e.g., from counties to grids 

or from counties to states) might alter the resulted spatial conclusions due to the famous 

Modifiable Areal Unit Problem (MAUP) (details in Fotheringham and Wong (1991)), a 

fundamentally unsolvable issue in spatial statistics. Therefore, caution is advised when 

extrapolating the spatial findings in this study to studies with other spatial units or scales. 

Thirdly, despite that the Getis-Ord 𝐺𝑖∗ statistic can identify significant spatial patterns by 

investigating the similarity of a certain feature with its neighboring features, it fails to 

distinguish on a global scale which hot/cold spot clusters have the higher/lower values 

compared with other hot/cold spots (Songchitruksa and Zeng, 2010). That is, Getis-Ord 𝐺𝑖∗ 
statistic highlights the county-level disparities in exposure estimations from multiple 

floodplains via identified hot/cold spots but fails to prioritize them. Lastly, the comparative 

assessment of the exposed population in this study is limited to several selected floodplains 

with only 1% of annual exceedance probability. Comparison among more floodplain 

products with various flood risk levels (i.e., 500- year flood) is needed. 

5.6 CONCLUDING REMARKS 

This chapter improves the estimation of the population in floodplains by considering its 

spatial heterogeneity within census units and provides a comparative assessment of the 
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population exposed to flood hazards for the entire Conterminous United States. Unlike 

other studies, this study utilizes the latest national building footprints, recently open-

sourced by the Microsoft Bing Map team in 2018, to capture the heterogeneity of 

population distribution at the micro-level. To better quantify the exposure, the population 

in block groups from the ACS 5-year estimates (2013-2017) is disaggregated to residential 

buildings, identified from NLUD 2010 and OpenStreetMap Land Use polygons. A 

comparative study is then conducted by examining the 100-year flood exposure from 

FEMA and from the other three publicly available 100-year floodplains, i.e., JRC, GAR, 

and RECON.  

Based on the FEMA floodplain (both F/P and coastal), the results suggest that 

11.119 million people in the CONUS are currently facing the 100-year flood risk. The other 

three selected floodplains, however, all reveal higher numbers than the estimation from 

FEMA. From a spatial perspective, estimations from other floodplain products suggest that 

a large population of residents are found in regions where FEMA floodplain product is 

unavailable, indicating that FEMA potentially underestimates the exposure in those 

regions, presumably responsible for the uncaptured losses reported from other studies. 

Attention should be paid to regions where estimations from different floodplains disagree 

with each other, especially the Lower Mississippi River.  

Through the examination of racial/ethnic and socioeconomic variables in the 

geographic distribution of flood exposure, the results indicate that the low-income people 

are facing higher flood risks than the wealthy in the floodplain. Despite that some local 

case studies indicate otherwise, the inequitable flood risk experienced by the poor revealed 

across the CONUS underscores the significance of future hazard vulnerability studies to 
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emphasize the need for this vulnerable group. Meanwhile, divergent results are found in 

terms of flood exposure on communities of ethnicity, as estimations from different 

floodplain products show no consistency. In light of the inconsistency among the selected 

floodplains in the exposure analysis, FEMA should continue its MMS program to provide 

the public with reliable, up-to-date floodplain maps and ensure that NFIP rates reflect the 

real risk of flooding. 

The benchmark information regarding the 100-year flood exposure and the 

knowledge of how different floodplain products vary spatially in exposure analysis greatly 

enhance our understanding of the current flood risks in the CONUS, largely benefiting both 

local and federal authorities for future policymaking.  
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CHAPTER 6 

CONCLUSIONS

Flood, one of the most common natural hazards on Earth, poses great threats to a large 

amount of population in the world. As the severity and frequency of flood events have 

noticeably increased in the U.S, improving flood awareness and exposure analysis for 

better flood mitigation strategy is in great need. Fortunately, innovative spatial algorithms 

and data sources have flourished in the emerging Big Data Era. 

 This dissertation focuses on obtaining improved flood awareness and exposure 

analysis through innovative geospatial analytics, taking advantage of Big Data 

technologies. The improved flood awareness is achieved via a data fusion enabled (Chapter 

2) and deep learning supported (Chapter 3) flood monitoring framework that systematically 

integrates a variety of heterogeneous data sources, including satellite imagery, water 

gauges, and crowdsourcing platforms. The improved exposure assessment is achieved via 

the application of nighttime remote sensing series for estimating hurricane exposure in U.S 

Atlantic/Gulf coasts (Chapter 4) and a comparative assessment of the exposed population 

within 100-year floodplains in the entire CONUS (Chapter 5).  

Chapter 2 builds a flood inundation reconstruction model by enhancing the NRT 

normalized difference water index (NDWI) derived from remote sensing imagery with the 

RT data, including stream gauge readings and social media (tweets). Splitting into three 

modules: water height module, global enhancement module, and local enhancement 

module, the proposed model first incorporates the gauge readings and the NDWI image to 
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reconstruct a macroscale flood probability layer, which is then locally enhanced using the 

verified flood-related tweets. The final output of the model matches well with the USGS 

inundation map and its surveyed high-water marks. Results suggest that by enhancing NRT 

imagery with RT data sources, the proposed flood inundation probability reconstruction 

model renders a more robust, spatially enhanced flood probability index for emergency 

responders to quickly identify areas in need of urgent attention. The study in this chapter 

proves the feasibility of fusing heterogeneous data sources in a flood event, leading to 

enhanced flood awareness in a near real-time manner. However, retrieving flood relevant 

posts remains a great challenge, as on-topic social media posts only comprise a small 

proportion of the enormous volume of information in social media space. The method of 

retrieving flood relevant posts in this chapter (keyword-matching coupled with manual 

verification) is rather time/labor-consuming. Thus, an automatic approach to retrieve on-

topic social media posts is in great need. 

Chapter 3 solves the remaining problem in Chapter 2 by presenting an automatic 

approach to labeling on-topic social media posts using visual-textual fused features. Two 

convolutional neural networks (CNNs), Inception-V3 CNN and word embedded CNN, are 

applied to extract visual and textual features respectively from social media posts. Well-

trained on our training sets, the extracted visual and textual features are further 

concatenated to form a fused feature to feed the final classification process. The results 

suggest that both CNNs perform remarkably well in learning visual and textual features. 

The fused feature proves that additional visual feature leads to more robustness compared 

with the situation where only the textual feature is used. The on-topic posts, classified by 

their texts and pictures automatically, represent timely disaster documentation during an 
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event. Coupling with rich spatial contexts when geotagged, social media could greatly aid 

in a variety of disaster mitigation approaches. The proposed visual-textual CNN  

architecture significantly  automates the on-topic  social  media  retrieval, largely  

expending searching  scope, ensuring more  robustness of  classification, and seeding a 

wide range of social media based disaster studies. Chapter 2 and Chapter 3 form a deep 

learning multi-source flood monitoring framework, which can be applied to other flooding 

cases in the future. The continuous input of socially sensed information via the approach 

designed in Chapter 3 can be fused with river gauge readings and temporal-discrete 

remotely sensed images via the model designed in Chapter 2, enabling the framework to 

monitor flood at different flooding phrases, providing uninterrupted situational awareness 

that greatly benefits local authorities and first responders.  

Chapter 4 delves into the perspective of flood exposure of human settlement in a 

broader geographic context. This chapter investigated the long-term human settlement 

development in response to frequent hurricane hits in the U.S Atlantic/Gulf Coasts, given 

that many floods in the U.S are hurricane-induced. A better understanding of the 

spatiotemporal dynamics of human settlement in hurricane-prone areas largely benefits 

sustainable development. The study in Chapter 4 used the nighttime light (NTL) data from 

the Defense Meteorological Satellite Program’s Operational Linescan System 

(DMSP/OLS) to examine human settlement development in areas with different levels of 

hurricane proneness from 1992 to 2013. A popular index that quantifies human settlement 

intensity, Vegetation Adjusted NTL Urban Index (VANUI), was derived and examined 

with the Mann– Kendall test and Theil–Sen test to identify significant spatiotemporal 

trends. The results clearly exhibit a north-south and inland-coastal discrepancy of human 
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settlement dynamics and reveal that both the zonal extent and zonal increase rate of human 

settlement positively correlate with hurricane proneness levels. The ongoing intensification 

of anthropogenic environmental changes coupled with more frequent and severe hurricanes 

is likely to cast more pressure on coastal resilience, potentially leading to severer damage 

caused by hurricane-induced floods. The spatiotemporal changes of human settlement 

revealed from nighttime remote sensing in hurricane-prone areas provide valuable 

information to evaluate the hurricane-induced damages and to support decision making of 

future urban development. 

Lastly, Chapter 5 further extends the study in Chapter 4 and obtains baseline 

information about flood risk perception by quantifying the general exposure of floods in 

the entire CONUS and assessing its impact on those likely to bear the eventual cost of 

flooding. In light of the limitations of previous flood exposure studies in the U.S, this 

chapter used the recently released Microsoft building footprint dataset to capture the 

heterogeneity of population distribution at the micro-level. The population at block group 

level from ACS 5-year estimates (2013-2017) was further disaggregated to residential 

buildings, identified via NLUD 2010 and OpenStreetMap Land Use polygons. A 

comparative study was then conducted to investigate the 100-year flood exposure from 

FEMA and from the other three publicly available 100-year floodplains. Although the 

exposure analysis shows varying spatial patterns for selected floodplains, it indicates that 

a large number of exposed residents are found in regions where FEMA floodplain product 

is unavailable, presumably responsible for the uncaptured losses reported from other 

studies. In addition, the inequitably high flood risk experienced by the poor revealed at the 

national level underscores the significance of flood vulnerability studies to emphasize the 
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need for this vulnerable group. The benchmark information regarding the 100-year flood 

exposure and the knowledge of how different floodplain products vary spatially in 

exposure analysis greatly enhance our understanding of the current flood risks in the 

CONUS, largely benefiting both local and federal authorities for future policymaking.  

With this dissertation research, I have gained rich set of theoretical, 

methodological, and contextual knowledge of how to obtain better flood awareness and 

how to achieve comprehensive exposure analysis for flooding events in the Big Data Era. 

It greatly advances the flood-related studies by proving the possibility of fusing 

heterogeneous data sources for enhanced flooding situational awareness, illustrating the 

efficacy of using deep learning algorithms for automating on-topic crowdsourcing data 

retrieval, demonstrating the application of nighttime remote sensing in hurricane-induced 

disaster exposure analysis for the U.S coastal regions, and benchmarking the current 100-

year flood exposure in the entire CONUS via nationwide building footprints. The 

methodologies and results presented in this dissertation greatly benefit local authorities and 

the federal government for mitigating both short-term and long-term flood-induced 

damages. 
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APPENDIX A 

SUPPORTING TABLES

Table A.1 Available land use categories in NLUD 2010. 
Land use 
major type 

Subcategories 

Water Natural – area (lake, swamp, and playa) 
Human – area (reservoir) 
Natural – linear (river and wash) 
Human – linear (canal/ditch) 
Estuary (Estuary/complex channels) 
Wetlands 
Ocean (open ocean and bay inlet) 

Build-up Residential 
Commercial (office, retail/shopping centers, entertainment, and 
lodge) 
Industrial (factory/plant, landfill, confined animal feeding, and 
utilities) 
Institutional (school, medical, government/public, military, 
fire/police stations, church, and prison) 
Transportation (airports, highway/railway, port, train station, other 
transportation and undeveloped) 
Miscellaneous (cemetery and rural buildings) 

Production General (general agricultural) 
Cropland (cropland/row crops, pastureland, orchards, sod/switch 
grass, and aquaculture) 
Rangeland (grazed and stock tank) 
Mining (mining strip mines, quarries, gravel pits, and mine shifts) 
Timber (timber harvest and timber plantations) 
Extraction/barren land (oil/gas wells and misc. barren) 

Recreation Undifferentiated park (general park) 
Developed park (urban park, golf course, motorized, OHV Staging 
area/trailhead, resort/ski area, Marina, campground/ranger station, 
picnic/trailhead, and boat/fishing access) 
Natural park (natural park, designated recreation area, and 
designated scenic area) 

Conversation Public (wildlife habitat, conservation area, natural reserve, 
wilderness, areas of Critical Env. Concerns, Research Natural Area, 
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fish/wildlife service area, archaeology/historical/ scenic area, and 
wild/scenic river) 
Public-limited access (municipal watershed, Corps of Engineers 
dam and marine protected area) 
Private easement (wildlife conservation and agricultural 
conservation) 

Note. This table was summarized from Theobald (2014) 
 

Table A.2 OSM land use statistics in CONUS 
Land use class Total 

records 
Total size  

(𝑘𝑚2) 
Land use class Total 

records 
Total size 

(𝑘𝑚2) 
Allotments 1,681 4.52 Industrial  52,537 9,079.45 

Commercial 64,216 2,949.86 Meadow 42,615 23,430.72 
Farm 186,297 73,989.69 Military 3,124 112,921.92 

Forest 358,426 274,690.80 Natural reserve 27,215 683926.68 
Grass 262,348 2,356.47 Orchard 18,259 3583.34 
Park 124,472 34,573.64 Quarry 7119 4,197.45 

Recreation Ground 21,545 3,238.34 Residential 373,261 42,348.51 
Retail 42,913 2,164.11 Scrub 62,416 13,940.30 

Vineyard 15,137 1,847.07 Cemetery 45,904 1,529.74 
Health 4,587 16,063.60    

Note. OSM data used in this study was downloaded on March 1st, 2019. 
 
 

Table A.3 Detailed profile of population statistics exposed to 100-year floodplains in 
the CONUS   

100-year floodplain (F/P) 

 

100-year 
floodplains (F/P + 

Coastal) 
(in thousands)  (in thousands) 

Category Subcategory FEMA 
(F/P) 

JRC GAR 

  

FEMA 
(F/P + 

Coastal)  

RFC
ON 

Age Under 5 650 776 841  655 713  

5 to 14 1,307 1,566 1,779  1,316 1,469  

14 to 25 1,395 1,662 1,892  1,405 1,577  

25 to 34 1,487 1,725 1,711  1,499 1,579  

35 to 44 1,362 1,503 1,629  1,374 1,454  

45 to 54 1,472 1,565 1,838  1,489 1,600  

55 to 64 1,441 1,526 1,952  1,463 1,637  

65 to 74 1,067 1,023 1,443  1,090 1,185  

75 to 84 572 523 769  585 613  

Above 85 239 223 307  243 254 
Race White 8,296 8,672 11,741  8,412 9,604 
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Black or African 
American 

1,390 1,734 1,359 

 

1,395 1,115 

 

American Indian 
and Alaska 
native 

70 114 254 

 

71 141 

 

Asian 433 610 149  435 402  

Native Hawaiian 
and Pacific 
Islander 

11 20 9 

 

11 13 

 

Some other races 512 589 317  514 468  

Two or more 
races 

280 351 333 

 

282 338 

Ethnicity Hispanic or 
Latino 

2,712 2,727 1,455 

 

2,724 2,142 

 

Not Hispanic or 
Latino 

8,281 9,364 12,706 

 

8,396 9,938 

Employment Employed 4,959 5,399 6,032  5,013 5,422  

Unemployed 373 434 455  376 395 
Tenure Owner Occupied 2,547 2,685 3,761  2,590 3,021  

Renter Occupied 1600 1,803 1,744  1,615 1,664 
Poverty Under 1.0 1,804 2,274 2,478  1,817 1,911  

1.00 to 1.99 2,185 2,523 3,012  2,201 2,300 
  Above 2 6,747 6,975 8,170   6,841 7,566 
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APPENDIX B 

MANUSCRIPT COPYRIGHT RELEASE 

 

Figure B.1 Screenshot of copyright clearance from IEEE Transactions on Geoscience 
and Remote Sensing. 

 

 

Figure B.2 Screenshot of copyright clearance from International Journal of Digital Earth. 
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Figure B.3 Screenshot of copyright clearance from Natural Hazards and Earth System 
Sciences. 
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