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Summary

1.

 

Compared to bioclimatic variables, remote sensing predictors are rarely used for pre-
dictive species modelling. When used, the predictors represent typically habitat classi-
fications or filters rather than gradual spectral, surface or biophysical properties.
Consequently, the full potential of remotely sensed predictors for modelling the spatial
distribution of species remains unexplored. Here we analysed the partial contributions
of remotely sensed and climatic predictor sets to explain and predict the distribution of
19 tree species in Utah. We also tested how these partial contributions were related to
characteristics such as successional types or species traits.

 

2.

 

We developed two spatial predictor sets of remotely sensed and topo-climatic vari-
ables to explain the distribution of tree species. We used variation partitioning techniques
applied to generalized linear models to explore the combined and partial predictive powers
of the two predictor sets. Non-parametric tests were used to explore the relationships
between the partial model contributions of both predictor sets and species characteristics.

 

3.

 

More than 60% of the variation explained by the models represented contributions
by one of the two partial predictor sets alone, with topo-climatic variables outperforming
the remotely sensed predictors. However, the partial models derived from only remotely
sensed predictors still provided high model accuracies, indicating a significant correlation
between climate and remote sensing variables. The overall accuracy of the models was high,
but small sample sizes had a strong effect on cross-validated accuracies for rare species.

 

4.

 

Models of early successional and broadleaf species benefited significantly more from
adding remotely sensed predictors than did late seral and needleleaf species. The core-
satellite species types differed significantly with respect to overall model accuracies.
Models of satellite and urban species, both with low prevalence, benefited more from
use of remotely sensed predictors than did the more frequent core species.

 

5.

 

Synthesis and applications.

 

 If  carefully prepared, remotely sensed variables are useful
additional predictors for the spatial distribution of trees. Major improvements resulted
for deciduous, early successional, satellite and rare species. The ability to improve model
accuracy for species having markedly different life history strategies is a crucial step for
assessing effects of global change.
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Introduction

 

Predictive habitat distribution modelling is a powerful
approach for conservation planning and for applied
and theoretical ecological study (Guisan & Zimmer-
mann 2000; Austin 2002a; Guisan & Thuiller 2005). It
is used for a wide variety of ecological applications
such as the detection (Edwards 

 

et al

 

. 2005; Guisan

 

et al

 

. 2006) or prediction of rare species (Edwards 

 

et al

 

.
2004; Engler, Guisan & Reichsteiner 2004; Welch &
MacMahon 2005), the estimation of species richness
(e.g. Heikkinen 1996; Ferrier 

 

et al

 

. 2004), the testing of
ecological niche concepts (Austin & Smith 1989; Aus-
tin 2002b), for biogeographical hypotheses (Leathwick
1998), the assessment of  potential invasion risks
(Thuiller 

 

et al

 

. 2005) or for reserve selection and
conservation planning (Araujo 

 

et al

 

. 2005).
Increasingly, these models are being used to assess

the potential consequences of global change on species
distributions (Guisan, Theurillat & Spichiger 1995;
Iverson & Prasad 1998; Peterson 

 

et al

 

. 2002; Dirnböck,
Grabherr & Dullinger 2003; Bomhard 

 

et al

 

. 2005;
Thuiller 

 

et al

 

. 2006), thus including the effects of climate
change as well as land use change and alterations of the
global nitrogen cycle (Vitousek 1994). By linking cli-
mate projections with the known physiological toler-
ances of many species, it is possible to model direct and
indirect consequences of global change scenarios on
species and ecological systems. However, such future
projections require two important additional com-
ponents. The first is the proper understanding of the
species–environment relationship, often couched in terms
of niche theory. The second is the ability to relate these
species–environment relationships to structural habi-
tat properties in the form of digital geographical infor-
mation system (GIS)-based layers. Projections will thus
rely ideally on the melding of basic life history informa-
tion with current and evolving remote-sensing techniques.

The conceptual background for habitat distribution
modelling is rooted in the niche concept (Hutchinson
1957). The distinction of both indirect (distal) as well as
direct or resource variables (proximal) was important
for theoretical advances in this field, and for testing
assumptions based on the species’ niche (Austin 1980).
These types of models evaluate not only the shape of
the species response to the environment (Austin 1987;
Yee & Mitchell 1991), but also describe the distribu-
tions of species along environmental gradients. In the
past, such gradients were evaluated primarily using cli-
mate and topographic variables, but land cover remained
important, especially for animal species (Manel, Buck-
ton & Ormerod 2000; Venier 

 

et al

 

. 2004). Consequently,
the development of  new environmental predictors
of direct or resource variables (e.g. Prentice 

 

et al

 

. 1992;
Zimmermann & Kienast 1999; Dirnböck 

 

et al

 

. 2003;
Parra, Graham & Freile 2004; Edwards 

 

et al

 

. 2005;
Randin 

 

et al

 

. 2006), and the evaluation of new statistical
techniques for modelling (Austin 1987; Yee & Mitchell
1991; Elith 

 

et al

 

. 2006), have been important research issues.

Competition is one reason why a species is not able
to occupy all physiologically possible sites (i.e. the fun-
damental niche), but rather only a fraction thereof, i.e.
the realized niche. The realized niche of a species is
often complex (Austin & Nicholls 1997; Oksanen &
Minchin 2002), and only some of the relevant predic-
tors can be translated accurately into spatial depictions
within a GIS. Therefore, information such as derived
from remotely sensed data is used frequently as a pre-
dictor. These data, considered surrogates that integrate
many ecological relationships, are often used at coarse
spatial resolution (e.g. McPherson, Jetz & Rogers 2004;
Parra 

 

et al

 

. 2004; Venier 

 

et al

 

. 2004), and often exist in
the form of, or are derived from, land cover classifica-
tions (Pearson, Dawson & Liu 2004; Thuiller, Araujo &
Lavorel 2004). Spatially explicit information on more
direct predictors of species distribution, such as soil
characteristics, is frequently unavailable and rarely used
in habitat distribution modelling.

Also, in predictive modelling studies carried out at
higher spatial resolution, the use of vegetation classifi-
cations is usually not desirable, especially for plant spe-
cies where circularity would be introduced when using
plant communities as predictors. Rather, subtle differ-
ences in the vegetation/soil properties, or in phenological
characteristics, are of higher interest for discriminating
between suitable and unsuitable sites within the potential
distribution (Guisan, Theurillat & Kienast 1998; Vetaas
2002; Chefaoui, Hortal & Lobo 2005). Thus, remote
sensing data can be used in better ways than simply for
filtering pixels to avoid predictions in unsuitable areas.
Rather, we can retrieve continuous gradient predictors
to improve the calibration of the species’ niche com-
pared to topographic and bioclimatic predictors alone.
These gradients do not only resolve habitat structural
properties, but allow us to address additionally bio-
physical and process-level information such as canopy
chlorophyll (Bicheron & Leroy 1999; Ustin 

 

et al

 

. 2004),
nitrogen and lignin content (Ollinger 

 

et al

 

. 2002) or
growth capacity (Waring 

 

et al

 

. 2006). This challenge of
better linking remote-sensing to underlying ecological
relationships must be addressed if  species habitat dis-
tribution models are to be improved for assessing
effects of global change.

The goal of our study was to explore the potential of
remote sensing for enhancing the predictive power of
habitat distribution models of 19 tree species in Utah, USA.
We tested a variety of multitemporal remotely sensed
spectral gradients (reflectance of individual bands and
surface temperatures) and indices [normalized difference
vegetation index (NDVI), as well as wetness, greenness
and brightness from tasselled cap transformations]
with no loss of information due to classification. Our
specific objectives were to explore: (a) to what degree
remotely sensed predictors may improve a model cali-
brated from topographic and bioclimatic predictors;
(b) to what degree the variation of a full model can be
partitioned into fractions explained by remote sensing
predictors alone, topo-climatic predictors alone, and a
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joint fraction explained by both predictor sets; and (c)
to what degree the addition of remotely sensed predic-
tors affected models of species with different charac-
teristics. We examined these objectives using variation
partitioning approaches similar to those described by
Borcard, Legendre & Drapeau (1992). Realizing these
objectives will shed light on whether habitat distribu-
tion models can bridge the gap successfully between
more direct, bioclimatic variables, and more indirect
variables such as those obtained through remotely sensed
information. We expected to find the largest proportion
of the variance/deviance explained to be shared between
both predictor sets, but with highly variable single con-
tributions of remote sensing predictors among species
(see reasoning below).

We also evaluated several hypotheses regarding the
partitioned percentage of explained variation of the
habitat distribution models in relation to species char-
acteristics. First, we expected early successional species
to benefit more from using remotely sensed predictors,
because climate variables alone cannot be used to dis-
tinguish possible reflectance differences between early
and late seral species and thus often predict the tempo-
rally more stable late seral species. Secondly, we expected
predictive models of the rare species to benefit more
from remotely sensed predictors. There are many reasons
why a species may be rare, and not all these reasons may
be modelled from topo-climatic predictors (Edwards

 

et al

 

. 2005). However, remotely sensed predictors may
capture subtle differences in either the soil/vegetation
characteristics or in the phenology linked with the rare
species. Finally, we hypothesized that broadleaf trees
might benefit more from adding multitemporal remote
sensing predictors due to their more distinct phenology
compared to needleleaf trees.

 

Materials and methods

 

study area

 

The study area encompasses the forested and moun-
tainous area of the eastern part of the Great Basin of
the Interior West, USA. The specific area analysed is
the USGS zone 16 (Fig. 1), as defined by the national
mapping efforts within the Multi-Resolution Land
Characteristics project (Homer & Gallant 2001). Zone
16 is a biogeographical region situated primarily in
Utah. It encompasses roughly 6 million hectares of het-
erogeneous mountainous terrain, including a wide
variety of vegetation types ranging from shrubsteppe
through forests to alpine communities. We restricted
our analysis to the forested parts of zone 16.

 

dependent variables and sampling

 

For our analyses we used data from the Forest Inven-
tory and Analysis Program (FIA) of the United States
Forest Service, which conducts inventories in forested
ecosystems nationwide (http://www.fia.fs.fed.us/). A

network of sample plots has been established across the
country at an intensity of approximately one plot per
2400 hectares, and data collection is conducted under
an annual rotating panel system. Of the 3456 plots
available in zone 16, only 1941 forested and single-
condition plots were used in the analyses. FIA collects
extensive stand- and tree-level measurements at each
sample plot, which are compiled and combined with
stand-level variables to produce plot-level summaries.
These summaries include total tree basal area by each
of 19 tree species available for our modelling (Table 1).
Each sample plot was then characterized as having a
tree species present if  any basal area occurred, and
absent otherwise.

 

predictor variables

 

We derived two sets of predictors; a first set of topo-
graphic and bioclimatic variables and a second set of
remote sensing-based variables. For both sets we exam-
ined all available variables, finally reducing both sets to
eight variables each in order to keep the number of var-
iables equal, reasonably small and easy to interpret (see
Appendix S1 in Supplementary material for derivation
of these data sets).

The topo-climatic predictor set was generated at a
90 m spatial resolution, originating from a downscal-
ing procedure of the DAYMET 1 km monthly climate
maps (http://www.daymet.org). These climate maps
were developed using the procedures of Thornton,
Running & White (1997). The derivation of the final
predictor set included a variable reduction approach.
For each variable set of 12 monthly maps, we calcu-
lated the annual mean and the difference between

Fig. 1. The study area of zone 16 spans across Utah and
stretches into Wyoming and Idaho.

http://www.fia.fs.fed.us/
http://www.daymet.org
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summer and winter climates. The final eight selected topo-
climatic predictors included: annual degree-days of
growing season using a 0 

 

°

 

C threshold (DDEG), summer-
to-winter difference in (i) average daily minimum
temperature (TMIN.

 

d

 

) and (ii) relative humidity
(RELH.

 

d

 

), yearly means of (i) daily potential global
solar radiation (SFMM.

 

y

 

), (ii) relative humidity
(RELH.

 

y

 

) and (iii) precipitation sum (PRCP.

 

y

 

), as well
as SLP and TOPO. The selection of the final eight pre-
dictors was made so that correlations among variables
were 

 

<

 

 0·7 in order to minimize collinearity problems.
The remote sensing-based predictors were devel-

oped using Landsat ETM

 

+

 

 imagery obtained from the
USGS Multi-Resolution Land Characteristics con-
sortium of 2001 (http://www.mrlc.gov/). Imagery was
collected for three different time periods representing
the temporal dynamics of vegetation; early (spring),
peak (summer) and late growing seasons (autumn).
In order to distinguish between predictors of  the
respective seasons, we use the abbreviation ‘.

 

sp

 

’,
‘.

 

su

 

’ and ‘.

 

au

 

’ hereafter. We prepared bands 1–5 and 7,
as well as derived indices of NDVI, of surface tempera-
ture, and of tasselled cap transformations originating
from a principal component analysis of all seven bands
(see Appendix S1 for details). All indices were re-
sampled to 90 m, in order to (i) match the spatial
resolution of the topo-climatic predictors and (ii) to
cover an area that is at least the full spatial extent of
the dependent forest inventory plot data. Similar to
the topo-climatic predictors, we carried out a variable
reduction procedure, stopping after having selected
eight final remote sensing-based model parameters:
green vegetation index (GVI.

 

su

 

), the wetness index
(WI.sp.), the normalized difference vegetation index
(NDVI.sp., NDVI.

 

au

 

), the soil brightness index (SBI.

 

su

 

),
the surface temperature index (T9.

 

su

 

, T9.

 

au

 

) and spring

season band 3 (B3.sp.). With the exception of band 3,
only transformed indices remained after the variable
selection, and correlations among variables remained

 

<

 

 0·7.

 

species characteristics

 

We selected four attributes for each tree species to test
if  the partial model contributions of the two predictor
sets differed as a function of species characteristics
(Table 1). The first two characteristics examined were
leaf longevity (evergreen vs. deciduous) and leaf type
(broadleaf vs. needleleaf). We hypothesized that a
deciduous species is easier to discriminate from all others
using multitemporal remote sensing data because its
specific phenology can be remotely sensed. In contrast,
evergreen species do not exhibit easily detectable phe-
nological characteristics from remotely sensed imagery.
We did not evaluate the effects of leaf type independ-
ently from leaf longevity because the evergreen broad-
leaf 

 

Cercocarpus ledifolius

 

 Nutt. in T. & G. was the only
species where longevity was not a function of leaf type.

The third characteristic considered was the succes-
sional type of the species. We reclassified all tree species
into early and late successional status, depending on
their behaviour in stand development subsequent to
moderate-to-severe disturbance. While most species
are clearly of early or late successional type, there are
species that may switch their status depending on the
environmental conditions. 

 

Pinus contorta

 

 Dougl. ex
Loudon is a late seral species on poor volcanic soils, but
in Utah it is primarily an early successional species
responding to fire. 

 

Quercus gambelii

 

 Nutt. can be early
or late, depending on the water availability. We classi-
fied it as early in zone 16 forests. Finally, 

 

Populus angus-
tifolia

 

 James is a riparian species occurring on sand

Table 1. Tree species used in the modelling analyses. The species characteristics are abbreviated as follows: N = needleleaf,
B = broadleaf, E = evergreen, D = deciduous

Species
Frequency 
ntot = 1941

Leaf 
type

Leaf 
longevity

Succession 
type

Core-satellite 
species type

Abies concolor 233 N E Late Urban
Abies lasiocarpa 429 N E Late Core
Acer glabrum 16 B D Early Urban
Acer grandidentatum 119 B D Early Urban
Cercocarpus ledifolius 147 B E Early Urban
Juniperus osteosperma 473 N E Late Core
Juniperus scopulorum 230 N E Early Satellite
Picea engelmannii 357 N E Late Core
Picea pungens 25 N E Late Urban
Pinus aristata 12 N E Late Urban
Pinus contorta 230 N E Early Urban
Pinus edulis 405 N E Late Core
Pinus flexilis 96 N E Late Satellite
Pinus monophylla 29 N E Late Satellite
Pinus ponderosa 173 N E Late Satellite
Populus angustifolia 8 B D Early Satellite
Populus tremuloides 623 B D Early Core
Pseudotsuga menziesii 417 N E Late Core
Quercus gambelii 273 B D Early Core

http://www.mrlc.gov/
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bars and terraces of creeks and streams, and rarely
becomes shaded out. Still, we classified it as early.

Last, we categorized the species according to the
extended core-satellite hypothesis first proposed by
Hanski (1982), and later extended by Collins, Glenn &
Roberts (1993), who added urban and rural types. Core
species are those with high frequency across the land-
scape and high abundance per plot, whereas satellite
species are rare with low average abundance. Urban
species are comparably infrequent, but show high
abundance where they occur. Finally, rural species are
low in abundance, but occur frequently. To assign spe-
cies types, we analysed the species frequency of occur-
rence in the landscape and average abundance (cover)
per plot using FIA data (Fig. 2). Because we analysed
large gradients across many vegetation types with ele-
vations spanning more than 3000 m of relief, we did not
expect any of the tree species to occur everywhere. Thus,
we classified core species at much lower frequencies,
starting at around 10% of sites occupied.

 

data analysis

 

We used generalized linear models (GLMs; McCullagh
& Nelder 1989) with logit links to relate the species
presences to the topo-climatic and remotely sensed
predictor sets. We fitted three regression models per
species: two partial models, using (1) only the topo-
climatic predictors; (2) only the remote sensing-based
predictors; and a full model (3) using the combined
topo-climatic and remote sensing-based predictors.
Both predictor sets had eight variables each. In each
case, we started from a complete model with all variables

included with linear and quadratic powers. Interactions
were modelled only for DDEG and SFMM.

 

y

 

 in order
to allow the detection of mixed radiation and thermal
energy effects. We then applied stepwise regression pro-
cedures, optimizing the models based on the Aikake’s
information criterion (AIC). The order of the predictors
entering the model was according to the deviance
explained (

 

D

 

2

 

, a measure analogous to the 

 

R

 

2

 

 in ordinary
regression) of the predictors when fitted individually,
starting with the best predicting variable first. For the
full model, we alternated topo-climatic and remotely
sensed predictor variables in the same descending
order starting with DDEG, the best climatic predictor.
The models were fit using the 

 

r

 

 statistical package (

 

r

 

Development Core Team 2004) (http://www.r-project.org/).
To evaluate the model fit, we calculated the adjusted

 

D

 

2

 

 (

 

adj.D

 

2

 

) following Weisberg (1980). This approach
corrects the 

 

D

 

2

 

 (deviance explained) for the number
of fitted regression parameters and the number of
observations, thus considering the degrees of freedom
(Guisan & Zimmermann 2000). It yields similar cor-
rections to the method by Liao & McGee (2003). A 10-
fold cross-validation was applied to test the model
accuracy. Cross-validation was set up so that (1) the
model was fixed and only the parameters were re-
adjusted and (2) the original prevalence in the data set
was maintained in each fold. Where the number of
observed presences was less than 30 for a species, we used
jack-knife procedures as a measure of cross-validation
(five species, see Table 1). Model accuracy was assessed
by two measures, Cohen’s kappa (Cohen 1960) and the
area under the receiver characteristic curve (ROC)
(AUC; Fielding & Bell 1997). We evaluated kappa in
5% steps, determining the threshold where the highest
kappa value was obtained for each species.

We employed variation partitioning techniques
(Borcard 

 

et al

 

. 1992) to partition out the individual and
joint contribution of both predictor sets relative to the
full model. We first calculated the three partial models
as discussed above, estimating the 

 

adj.D

 

2

 

 for each
model type per species. Next, for each species we sub-
tracted the 

 

adj.D

 

2

 

 values of (1) the topo-climatic model
and (2) the remote sensing-based model from the

 

adj.D

 

2

 

 of  the full model, yielding the partial fractions of
the full model not included in the remote sensing-based
and topo-climatic model, respectively. Finally, we sub-
tracted the sum of the two partial contributions from
the full model, which yields the fraction explained
jointly by both predictor sets. We used the same
method as Lobo, Castro & Moreno (2001). It differs
from the method by Borcard 

 

et al

 

. (1992) in that we did
not use the residuals of the partial models for calibrat-
ing an additional model for the respective other predic-
tor set, as the logit-transformed residuals in GLMs are
not suitable for processing as was performed by Bor-
card 

 

et al

 

. (1992) using canonical correspondence anal-
ysis. This was pointed out recently by Araujo & Guisan
(2006), and further statistical development is necessary
to adopt the same procedure.

Fig. 2. Allocation of species types based on the extended core-satellite species
hypothesis (Hanski 1982; Collins et al. 1993). We used mean basal area per plot as
importance measure and the frequency among all FIA plots used.

http://www.r-project.org/
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We used Kruskal–Wallis tests to evaluate the effects
of species characteristics upon partial and total devi-
ance explained and upon model accuracy. We used the
Mann–Whitney test for the two-level leaf and succes-
sional types. Linear regression was used to assess the
effect of sample size upon partial and total deviance
explained as well as upon model accuracy.

 

Results

 

model performance

 

The full models developed from the combined topo-climatic
(direct) and remote sensing-based predictors (indirect)
had both good model fits (

 

adj

 

.

 

D

 

2

 

) and high accuracies
(AUC). When testing the accuracy of the fitted models
by a 10-fold cross-validation, we obtained a mean AUC
value of 0·89, with values ranging from 0·72 to 0·97 for
the species modelled (Table 2). Cross-validated kappa
values averaged 0·49, and ranged from 0·14 to 0·76.

Model fit was highest when using both predictor sets,
with an average adj.D2 of 0·48 and values ranging from
0·26 and 0·67. Both individual predictor sets alone
resulted in lower model fits. The average adj.D2 value of
the topo-climatic models was 0·36, which is higher than
the average value of 0·29 for the RS-based models. The
rank order in model qualities between model types was
generally the same for all individual species models,
with the exception of Cercocarpus ledifolius, Pinus aristata
Engelm. and Populus tremuloides Michx., where both
predictor sets reveal comparable model qualities. Adjusted
D2 values differed significantly between all three model
types (P < 0·001).

The cross-validated accuracy assessments confirmed
this trend as well (Fig. 3). When comparing the cross-
validated and stepwise optimized model accuracies
using AUC, it becomes obvious that the number of
observations had an influence on model performance.
A minimum of 200 observations was needed to gener-
ate comparably stable models (Fig. 3a). Fewer obser-
vations resulted in a considerable loss in accuracy
when tested by cross-validation. Further, the number
of observations had an effect on model accuracy irre-
spective of predictor set used for the model calibration
(Fig. 3b). Models calibrated from remote sensing data
showed low cross-validated model accuracies when the
number of observed presences was low.

partial contributions of the two 
predictor sets

The partitioning of the adjusted deviance explained
revealed clear differences between the two parameter
sets (Table 3). On average, roughly 20% of the overall
deviance was explained by the topo-climatic predictors
alone (mean = 0·19), and 10% was explained by remote
sensing predictors alone (mean = 0·11). A further 20%
of the deviance were explained jointly by both predic-
tor sets (mean = 0·18). There were also considerable
differences among species, resulting in high standard
deviations.

On average, the broad-leafed species showed high
percentages explained by the remote sensing predic-
tors, with the exception of Acer grandidentatum Nutt.
in T. & G. There was also a high correlation between the
deviance explained by the full models and the deviance

Table 2. Summary of model fit (deviance explained) and crossvalidated accuracy. Kappa and AUC are derived from the 10-fold
cross-validated models, while the model fit was evaluated from the stepwise optimized models. Adjusted D2 values are listed for
the models containing both predictor sets (FULL), the topo-climatic predictors only (CLIM), and the remote sensing-based
predictors (RS), respectively. n: the number of observed presences in the data set used in each species-specific model

Species n
Kappa 
FULL

AUC 
FULL

adj.D2 
FULL

adj.D2 
CLIM

adj.D2

RS

Abies concolor 233 0·46 0·88 0·35 0·26 0·19
Abies lasiocarpa 429 0·57 0·90 0·44 0·39 0·30
Acer glabrum 16 0·14 0·80 0·47 0·31 0·25
Acer grandidentatum 119 0·50 0·93 0·48 0·38 0·26
Cercocarpus ledifolius 147 0·42 0·87 0·36 0·20 0·21
Juniperus osteosperma 473 0·76 0·95 0·61 0·54 0·45
Juniperus scopulorum 230 0·35 0·83 0·26 0·19 0·14
Picea engelmannii 357 0·71 0·95 0·60 0·56 0·41
Picea pungens 25 0·22 0·84 0·35 0·29 0·12
Pinus aristata 12 0·23 0·88 0·56 0·32 0·32
Pinus contorta 230 0·74 0·97 0·67 0·53 0·48
Pinus edulis 405 0·72 0·96 0·62 0·56 0·48
Pinus flexilis 96 0·32 0·87 0·32 0·23 0·19
Pinus monophylla 29 0·58 0·88 0·62 0·47 0·41
Pinus ponderosa 173 0·61 0·93 0·51 0·37 0·32
Populus angustifolia 8 0·16 0·72 0·57 0·34 0·21
Populus tremuloides 623 0·66 0·92 0·50 0·32 0·33
Pseudotsuga menziesii 417 0·49 0·86 0·32 0·24 0·16
Quercus gambelii 273 0·63 0·94 0·52 0·39 0·25
Average 0·49 0·89 0·48 0·36 0·29
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explained jointly by the two predictor sets (Spearman’s
r = 0·64, P < 0·004; Fig. 4). Populus angustifolia had no
joint deviance explained by the two predictor sets,
despite its comparably high model accuracy. On the
other hand, the Pinus edulis Engelm. model had almost
the full deviance explained jointly with little unique
contribution by the two predictor sets.

species characteristics

Accuracy as measured by kappa differed significantly
among core-satellite species types (P = 0·032; Table 4).
Core species – the most abundant in the data set – had
highest kappa values (Fig. 5a). Sample size also
explained significantly variations in kappa tested in a
regression (P < 0·001). AUC, on the other hand, could
be explained only from the number of observations

(P = 0·014), while core-satellite types did not show sig-
nificant differences among AUC values of all modelled
species. The overall adj.D2 of all models did not differ
between any of the species characteristics analysed.
However, the species characteristics did differ signifi-
cantly in the percentages explained by the two predictor
sets used. Remote sensing-based predictors improved
the deviance explained significantly more for broadleaf
trees than for conifers (P = 0·03, Fig. 5c). In contrast,
topo-climatic predictors showed significant differences
in improving the explained deviance among leaf lon-
gevity types (P = 0·01), with deciduous trees showing
higher gains from this predictor set (Fig. 5d). Finally,
we observed a considerable difference among succes-
sional types in the deviance explained by the remote
sensing-based predictors, although not significant (P =
0·07; Fig. 5b).

Fig. 3. Model accuracies of all tree species as a function of observed frequencies. (a) AUC of stepwise optimized (open boxes) and
additionally cross-validated (closed boxes) models. (b) AUC of cross-validated models calibrated from both predictor sets (closed
boxes), from topo-climatic (grey triangles), and from remote sensing-based (open triangles) predictors.

Table 3. Partitioning of the deviance explained by the two predictor sets. The first and the third column list the proportion of
deviance explained exclusively by the topo-climatic, and by the remote sensing predictors, respectively. The second column lists
the deviance explained jointly by both predictor sets. The total deviance explained represents the adjusted D2 of  the full model

Species
CLIM 
alone

CLIM 
and RS

RS 
alone

Total 
expl.

Total 
unexpl.

Abies concolor 0·16 0·11 0·09 0·35 0·65
Abies lasiocarpa 0·13 0·26 0·04 0·44 0·56
Acer glabrum 0·22 0·09 0·16 0·47 0·53
Acer grandidentatum 0·21 0·18 0·09 0·48 0·52
Cercocarpus ledifolius 0·14 0·07 0·15 0·36 0·64
Juniperus osteosperma 0·16 0·38 0·07 0·61 0·39
Juniperus scopulorum 0·12 0·08 0·07 0·26 0·74
Picea engelmannii 0·19 0·37 0·04 0·60 0·40
Picea pungens 0·23 0·07 0·05 0·35 0·65
Pinus aristata 0·24 0·09 0·23 0·56 0·44
Pinus contorta 0·19 0·34 0·14 0·67 0·33
Pinus edulis 0·14 0·43 0·05 0·62 0·38
Pinus flexilis 0·13 0·10 0·09 0·32 0·68
Pinus monophylla 0·20 0·28 0·14 0·62 0·38
Pinus ponderosa 0·18 0·19 0·14 0·51 0·49
Populus angustifolia 0·36 –0·02 0·23 0·57 0·43
Populus tremuloides 0·16 0·17 0·17 0·50 0·50
Pseudotsuga menziesii 0·16 0·09 0·07 0·32 0·68
Quercus gambelii 0·26 0·13 0·13 0·52 0·48
Average 0·19 0·18 0·11 0·48 0·52
Standard deviation 0·06 0·13 0·06 0·12 0·12
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Discussion

model performance

The high accuracies of the full models based on remotely
sensed and topo-climatic predictors indicate that the
models are reliable. An evaluation of other studies
reveals that our models compare favourably with respect
to overall model accuracy and deviance explained.
Randin et al. (2006) obtained medians for cross-validated
kappa values of 0·28 and 0·33, and AUC values of 0·76
and 0·78, respectively, for models of alpine plants in
two different areas of the European Alps. Thuiller and
coworkers (Thuiller 2003; Thuiller et al. 2004) built a
range of models for plant and animal species in different
areas across Europe, based partly on remotely sensed
predictors. For trees, they obtained average kappa and
AUC values of 0·66 and 0·94, respectively. McKenzie
et al. (2003) modelled 14 tree species in the Pacific
North-west using three different tree data sets, using
predictors and tree species similar to ours. Model D2

values ranged from 0·11 to 0·51 (mean = 0·30), and AUC
values from 0·71 to 0·96 (mean = 0·85).

It is obvious that the rare species models, although
yielding high adj.D2 values, were less accurate (Fig. 5).
However, even though prevalence generally influenced
model accuracy and adj.D2, some rare species such as
Pinus monophylla Torr. & Frem. in Frem. still yielded
high model accuracies. The drop in model accuracy
when n < 200 observed presences is in agreement with
work by Pearce & Ferrier (2000), who observed a severe
drop in model accuracy for sample sizes below 250
observations. McPherson et al. (2004) also documented
a clear drop in the accuracy of rare bird species models,
as assessed by kappa and AUC, for sample sizes below
300. In addition, model accuracy dropped in a second

Fig. 5. Linkages between species characteristics and model accuracy and fit. (a) Core-satellite types significantly differ in model
accuracy. (b) Remote sensing-based predictors and successional types. (c) Remote sensing-based predictors increase model fit for
broadleaf trees more than for conifers. (d) Topo-climatic predictors add more to model fit of deciduous than to evergreen trees.
See Table 4 for significance tests. Box and whisker boundaries represent quartiles.

Fig. 4. Partial deviance explained by the two predictor sets for all tree species modelled.
Species are ordered by descending fraction of joint adjusted deviance explained (adj.D2)
from both predictor sets.

Table 4. Significance levels for the effects of species characteristics upon model
accuracy and model fit. The effect of the number of observations (n) on model output
was measured by linear models. Leaf type effects were measured by Mann–Whitney
tests, whereas the effects of successional and core-satellite types were measured by
Kruskal–Wallis test. See Table 3 for a description of the adj.D2 origin and Table 1 for the
description of species characteristics

n
Leaf 
type

Leaf 
longevity

Successional 
type

Core-satellite 
type

Model accuracy
Kappa *** ‡ ‡ ‡ *
AUC * ‡ ‡ ‡ †

Model fit and partial contributions
adj.D2 – total explained ‡ ‡ ‡ ‡ ‡
adj.D2 – RS alone † * * † ‡
adj.D2 – RS and Clim * ‡ ‡ ‡ †
adj.D2 – Clim alone † † * ‡ ‡

***< 0·001; **< 0·01; *< 0·05; †< 0·1; ‡> 0·1.
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simulation study originating from the same bird data
set when the prevalence was either below 10% or above
90% (if the presence–absence classification error is below
1%). However, Stockwell & Peterson (2002) tested a
range of statistical models against sample size in 103
abundant Mexican birds and observed a clear drop in
average accuracy only if  models were calibrated from
less than 50 random samples.

remote sensing and partial 
contributions of predictor sets

Several studies included remotely sensed information
for predictive distribution modelling. Thuiller et al. (2004)
investigated the extent to which the remotely sensed
pelcom land cover classification improved the predic-
tive power when added to bioclimatic predictors in
models for a range of taxonomic groups. They found that
remotely sensed predictors, although clearly improving
the fit of individual species’ models, did not further
improve the cross-validated accuracy of the models.

These findings are in agreement with most of our
results. First, adj.D2 increased significantly when remotely
sensed predictors were added to the topo-climatic
models (~ +25% over the topo-climatic models, P < 0·01),
with some species clearly benefiting more than others.
However, when evaluating the models, we obtained
only a weak and non-significant increase in predictive
cross-validated accuracy. Secondly, the models built
from remotely sensed predictors alone revealed a rea-
sonable fit, but were less accurate than those based
solely on topo-climatic predictors. We interpret this as
an indication that land cover patterns are highly corre-
lated with bioclimatic gradients; thus, both predictor
sets are expected to provide similar prediction accuracies.
Thirdly, not all species share the same environmental
requirements. Remote sensing addresses primarily
vegetation structural and biomass or productivity related
properties. We agree with the conclusion by Pearson
et al. (2004) that the remotely sensed habitat information
helps to discriminate between suitable and unsuitable
sites that cannot be distinguished from bioclimatic layers
alone. However, the addition of remote sensing predictors
adds additional noise to the species–environment rela-
tionships as measured by bioclimatic variables, perhaps
because similar structural features (as seen from satel-
lites) may arise under different topo-climatic conditions.

When comparing the partial contributions of topo-
climatic and remotely sensed predictors to the models,
we observed somewhat large differences among species.
As a general observation, the contribution of remotely
sensed predictors towards overall model fit decreased
as the overall model fit increased (Fig. 4). The excep-
tions include primarily rare species (Acer glabrum Torr.,
Picea pungens Engelm., Pinus aristata, Populus angusti-
folia). When excluding these four species, the Spearman’s
rho increases to 0·85 (P < 0·001). Thus, the models with
lower fit gained considerably more from the remotely
sensed predictors.

species characteristics

The extended core and satellite species types partly met
our expectations, with core species having the best model
accuracies, followed by the urban species. Our core species
are not as frequent in the landscape as Collins et al. (1993)
require for species to be classified in this type, due to the
large environmental gradients found in our study region.
However, if  species are very abundant in a landscape, it
may be difficult also to reach high model accuracies (see
McPherson et al. 2004). The urban species have high
variability in cross-validated accuracies. We expected
urban species to be similar to core species. Among the
seven urban species present in our data set, three have
very low prevalence (Acer glabrum, Picea pungens,
Pinus aristata). Without these three species, the average
kappa value is clearly higher. The satellite species were
difficult to model. They are generally rare (low preva-
lence) and they are often not present where the topo-
climatic conditions seem appropriate, making it difficult
to model accurately the realized niche of these species.

There are many reasons why a species may be rare (or
common), some of which can be captured by predictive
models, while others cannot. Edwards et al. (2005) hypoth-
esized that among the three species types that are either rare
and/or present only with low average abundance (i.e. urban,
satellite and rural), only the urban species would be com-
parably easy to model. We did not have data on rural
species, and thus could not test this idea unequivocally;
nor did we see a clear difference between the urban and
satellite tree species. However, as noted above, we did see
a difference between the latter two types if  we omitted
the very rare species in our analysis. Urban species with
a sample size larger than 30 (prevalence > 1·5%) pro-
vided reasonable model fits. Thus, we conclude that the
hypothesis is partly supported, but it clearly needs to be
extended with requirements regarding sample size to
generate accurate models (McPherson et al. 2004; Edwards
et al. 2005), as well as better understanding of sample
design effects on model performance (Edwards et al. 2006).

As hypothesized, early successional and broadleaf,
deciduous trees benefited more from adding multitem-
poral remote sensing predictors than did late seral and
needleleaf species. This means that temporal sequences
detect more effectively the strong phenological signal
in leaf longevity and an improved distinction in spatial
pattern of deciduous from evergreen trees. This effect
may not be obtained if  only data from a single season
were used. The effect was less significant for early suc-
cessional species. Nevertheless, the multitemporal images
allowed us to recognize more clearly early successional
species that usually have similar climatic requirements
as other seral species. The effects of prevalence and
sample size upon model accuracy have often been tested
in the past. However, we need to explore further the
additional effects of species characteristics upon model
behaviour if  we are to make significant progress in the
development of niche-based models in ecology and
their application to global change scenarios.
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Remotely sensed variables proved to be good predic-
tors of the distribution of tree species in our study area.
We expect remote sensing predictors to be even more
important if  mixed vegetation communities other than
only forests are combined in such analyses. The benefit
of adding remotely sensed predictors was especially
high when applied to rare species, and to species that
have low model accuracies (urban and rural species).
On one hand, it means that species and biodiversity
conservation actions to detect and manage rare and
occasional (satellite) species clearly benefit from add-
ing remote sensing predictors to predictive habitat
distribution models. On the other hand, considerable
efforts are required to develop a better theoretical and
conceptual understanding of  the ecological meaning
of the spectral response from vegetation in order to
maximize the benefit from using remote sensing infor-
mation, which may require the development of  new
ecological paradigms (Ustin, Smith & Adams 1993).
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