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Abstract Accurate crop-specific damage assessment

immediately after flood events is crucial for grain pricing,

food policy, and agricultural trade. The main goal of this

research is to estimate the crop-specific damage that occurs

immediately after flood events by using a newly developed

Disaster Vegetation Damage Index (DVDI). By incorpo-

rating the DVDI along with information on crop types and

flood inundation extents, this research assessed crop dam-

age for three case-study events: Iowa Severe Storms and

Flooding (DR 4386), Nebraska Severe Storms and Flood-

ing (DR 4387), and Texas Severe Storms and Flooding

(DR 4272). Crop damage is assessed on a qualitative scale

and reported at the county level for the selected flood cases

in Iowa, Nebraska, and Texas. More than half of flooded

corn has experienced no damage, whereas 60% of affected

soybean has a higher degree of loss in most of the selected

counties in Iowa. Similarly, a total of 350 ha of soybean

has moderate to severe damage whereas corn has a negli-

gible impact in Cuming, which is the most affected county

in Nebraska. A total of 454 ha of corn are severely dam-

aged in Anderson County, Texas. More than 200 ha of

alfalfa have moderate to severe damage in Navarro County,

Texas. The results of damage assessment are validated

through the NDVI profile and yield loss in percentage. A

linear relation is found between DVDI values and crop

yield loss. An R2 value of 0.54 indicates the potentiality of

DVDI for rapid crop damage estimation. The results also

indicate the association between DVDI class and crop yield

loss.

Keywords Crop damage � Disaster vegetation damage

index (DVDI) � Flood inundation � Rapid

assessment � Remote sensing

1 Introduction

Flood causes significant crop damage around the globe

every year (FAO 2015). The frequency and intensity of

floods have increased because of recent climate change

(Aerts and Botzen 2011; Bouwer 2011; Field et al. 2012;

Hirabayashi et al. 2013). The Food and Agriculture Orga-

nization of the United Nations estimates that more than 93

thousand hectares of cropland and 1.6 million tons of crops

are damaged by flooding in a decade (2003–2013), which

accounts for more than half of aggregated crops damaged

by natural hazards and disasters (FAO 2015). Crops are

highly vulnerable to flooding for two reasons: crop fields

are usually located in fertile flood plains; and the agricul-

tural sector is weakly protected by flood protection mea-

sures (Brémond and Agenais 2013). Flood damage and loss

assessment have become more important because of recent

paradigm shifts in flood management from traditional

physical-based management approach to risk management

(Merz et al. 2010; Gerl et al. 2016; Adnan et al. 2020).

Flood crop loss assessment is not only crucial for under-

standing the direct loss of crop yield, but also essential for

the aftermath of trade flows of agricultural commodities,

sectoral growth, and ultimately national economy (Del

Ninno et al. 2003; FAO 2015). Accurate crop loss assess-

ment after flood events is essential for crop pricing, dam-

age compensation, financial appraisal for the insurance

sector, yield assessment, food trade impact assessment,

mitigation measures, and comprehensive risk analysis.
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Therefore, the information on flooded acreage and the

degree of damage are the most essential aspects of all

flood-related decision support systems.

The flood assessment model developed by the World

Meteorological Organization and the Global Water Part-

nership includes a three-stage assessment: rapid assess-

ment, early recovery assessment, and in-depth assessment

(Di et al. 2017). Since the detailed evaluation is time-

consuming, early recovery assessment and comprehensive

assessment may not be able to support immediate policy

and decision processes. Rapid assessment of flood-affected

cropland acreage, however, can be helpful for early action

to reduce the disaster risk. One very general approach for

rapid flood crop loss assessment is to estimate the flooded

acreage of cropland (Cressman et al. 1988). A more

specific approach than a general approach is crop-specific

flooded acreage estimation (Citeau 2003; Dutta et al. 2003;

Zhu et al. 2007; Förster et al. 2008). Another approach is

the loss assessment using crop condition and growth stage

information. In the latter approach among the three com-

mon approaches, relative damage can be assessed quickly

by analyzing crop conditions by means of the vegetation

indices (VIs) of crops (Ahmed et al. Ahmed 2017; Shrestha

et al. 2017).

Figure 1 illustrates the conceptual framework for the

estimation of flood crop loss using remote sensing-derived

crop type, crop condition profile, and flood inundation

extent. The traditional field survey-based system is a cost

ineffective, labor intensive, noncontinuous, time consum-

ing, and incomplete technique for gathering required

information over vast agricultural areas (Tapia-Silva et al.

2011; Ahmed et al. 2017; Di et al. 2017). Besides, field

survey is very challenging at almost any time of the year

(Merz et al. 2010; Brémond and Agenais 2013). Space-

borne remote sensing brings cost-effective and efficient

solutions to the rapid gathering of information on flood

extent, crop types, and crop condition profiles (Opolot

2013; Schumann and Moller 2015; Lin et al. 2016; Rahman

and Di 2017). Satellite remote sensing data have been

successfully used for the monitoring of crop condition

profile (Yu et al. 2013; Di et al. 2017). Moreover, remote

sensing is the only feasible option for in-season mapping of

crop types over agricultural land (Mosleh et al. 2015;

Rahman et al. 2019).

The degree of crop damage can be assessed either by

comparing vegetation indices before and after a flood event

or by comparing current crop conditions with the historical

condition. Many vegetation indices have been developed

for crop condition monitoring, including NDVI (Normal-

ized Difference Vegetation Index), EVI (Enhanced Vege-

tation Index), RVI (Ratio Vegetation Index), SAVI (Soil

Adjusted Vegetation Index), OSAVI (Optimized Soil

Adjusted Vegetation Index), VCI (Vegetation Condition

Index), MVCI (Mean Vegetation Condition Index),

RMVCI (Ratio to Median Vegetation Condition Index),

and LAI (Leaf Area Index). Although most of these veg-

etation indices were originally developed for the monitor-

ing of crop response to drought, many recent studies have

used them for flood damage assessment. These VIs can be

broadly categorized into two groups: VIs directly derived

from remote sensing bands, for example, NDVI; and VIs

not directly derived from remote sensing bands, for

example, VCI, which compares the current NDVI to his-

toric NDVI (Rahman and Di 2020). The NDVI, which is

one of the most common VIs, is the ratio between the

infrared and visible red bands of the electromagnetic

spectrum. A NDVI measures the greenness of vegetation,

which is directly correlated with vegetation health.

Because NDVI is also the primary input for the calculation

of other Vis, Kogan et al. (2012) proposed the VCI by

further normalization of NDVI with historic maximum and

minimum NDVIs. The idea behind VCI is to capture

Fig. 1 Framework for crop-specific flood loss assessment using remote sensing technology
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relative NDVI change with respect to historical NDVI at a

given location. Another VCI, MVCI, considers the mean

NDVI instead of maximum and minimum NDVI from

historic NDVI time-series data. Although both mean and

median express the central tendency of data, the mean is

sensitive to outliers. Daily NDVI is often contaminated by

clouds, which results in unreliable mean NDVI. Therefore

to avoid the effect of cloud and other noise on NDVI, a

modified VCI (mVCI) that uses median NDVI instead of

mean NDVI can be used for monitoring vegetation con-

ditions (Di, Yu et al. 2018). Yu et al. (2013) examined

various vegetation indices (VIs) for remote sensing-based

flood damage estimation and concluded that all vegetation

indices can detect flood impact on crops; but their perfor-

mances are varied from case to case. Shrestha et al. (2013)

compared the MODIS (Moderate Resolution Imaging

Spectroradiometer) NDVI time series with historical

median NDVI between 2000 and 2014 to show the impact

of floods on crops. Liu et al. (2018) developed a regression

model using multidate VIs (for example, NDVI, EVI, RVI,

OSAVI, MTVI2,1 EVI2,2 and GNDVI3), leaf area index

(LAI), and above-ground biomass to assess the damage on

winter wheat. Chejarla et al. (2016) assessed crop loss by

comparing crop biomass before and after flood events.

Therefore, flood crop damage can be rapidly assessed by

the change in the crop conditions profile before and after a

flood event. Di, Yu et al. (2018) proposed a novel index

called Disaster Vegetation Damage Index (DVDI) to

measure crop/vegetation damage by disaster events. This

proposed novel technique relies on mVCI (median Vege-

tation Condition Index) before and after disaster events.

Therefore, this method can be useful for remote sensing-

based rapid assessment of flood crop damage. Recent

studies have shown that DVDI is an effective index for

rapidly measuring vegetation damage due to natural haz-

ard-induced disasters (Di, Guo et al. 2018; Lu et al. 2020).

This study aims to use the newly developed DVDI to

examine the crop-specific degree of flood crop damage for

selected case studies by incorporating three primary

information: crop types, crop condition, and flood extents.

2 Materials and Methods

This research follows a step by step workflow to derive

three required sets of information for crop-specific damage

assessment, including crop types, flood extents, and crop

condition profiles from Earth observation. Section 2.1

provides a brief introduction of three selected case studies.

Sections 2.2–2.4 illustrate the methodological procedure

for the mapping of crop types, flood extent mapping, and

rapid crop damage assessment using DVDI. Section 2.5

presents the validation of the damage assessment.

2.1 Study Areas

Three recent flood cases are chosen for this study from

among the Federal Emergency Management Agency

(FEMA)’s major disaster declarations. These cases are:

Iowa Severe Storms and Flooding (Major Disaster Decla-

ration Number DR 4386; FEMA 2018a); Nebraska Severe

Storms and Flooding (Major Disaster Declaration Number

DR 4387; FEMA 2018b); and Texas Severe Storms and

Flooding (Major Disaster Declaration Number DR 4272;

FEMA 2016). The case studies are selected from recent

(within three years before 2019) flood events. These cases

are chosen because of their incident period in the middle of

the crop growing season and the severity of potential crop

damage. These events impacted a vast amount of arable

land, which is another important aspect of the selection of

these cases. Counties are selected for crop-specific quan-

titative damage assessment based on their exposure (flood

extent) to the corresponding flood case.

Iowa and Nebraska are Midwestern states in the United

States, and are located on the east and west banks of the

Missouri River, respectively. Geographically, these two

states are part of the Great Plains, and about 90% of their

land is devoted to agriculture because of the high fertility

of the soils in this region. These states are also considered

as the Corn Belt region of the United States due to their

high proportion of corn cultivation. The third case study

area, Texas, is located in the central-south part of the

United States. According to the United States Department

of Agriculture (USDA), Iowa, Nebraska, and Texas are the

top three grain-producing states after California, and pro-

duce 8.10%, 6.20%, and 5.8% respectively of agricultural

commodities in the United States (USDA-ERS 2016).

DR 4386 is a FEMA declared disaster event in Iowa,

which occurred between 6 June and 2 July 2018. This event

impacted 31 counties in the northwestern part of the state.

Six counties, Osceola, Kossuth, Clay, Palo Alto, Humboldt,

and Wright, are selected for detailed assessment. These six

counties are selected based on the total area of flood

extents. DR 4387 is a FEMA declared disaster event in

Nebraska, which occurred between 17 June and 1 July

2018. This event impacted 11 counties with varying

severity, mostly located in the northeastern part of the state.

The six most affected counties by this flood event are

Dixon, Dakota, Wayne, Thurston, Cuming, and Colfax. DR

4272 is a FEMA declared disaster event in Texas, which

occurred between 22 May and 24 June 2016, and impacted

more than 20 counties in the southeastern part of Texas.

1 Modified Triangular Vegetation Index2.
2 Enhanced Vegetation Index2.
3 Green Normalized Difference Vegetation Index.
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Ellis, Navarro, Anderson, and Robertson are the most

affected counties based on the total area of flood extents.

These four counties are selected in this case study for

detailed assessment for the 2016 flood event.

2.2 Rapid Mapping of Crop Types

Field level crop type information is crucial for the rapid

assessment of crop-specific damage. However, census-

based, crop-type information is not readily available during

the crop growing season. For instance, the USDA crop data

layer (CDL) provides crop-specific land cover products for

the United States, which is available at the end of the

growing season. In-season, crop-specific damage assess-

ment cannot utilize CDL because of the data’s delayed

release. Therefore, two major approaches can be consid-

ered for the rapid gathering of in-season crop type infor-

mation: remote sensing-based, in-season mapping of crop

types; and machine learning-based prediction of crop types

at field level. The detailed methodological approaches of

remote sensing-based crop mapping can be found in a

previous study by Rahman et al. (2019). One major

drawback of optical remote sensing is the inability to see

through clouds, which may hinder in-season crop mapping.

Since farmers may rotate their crops, the pattern of crop

rotation may be useful for crop mapping without analyzing

remote sensing imageries. Thus, the second approach is the

use of machine learning for the prediction of field-level

crop types using crop rotation. Our study used Markov

chain modeling to predict field level crop types in order to

support crop-specific flood damage assessment.

Since CDL provides historical crop types at pixel level

over more than 10 years, crop rotation pattern at parcel

level can be used for prediction modeling. Information on

crop types planted in a field over many years can be seen as

a discrete sequence. The prediction of the next item in the

given sequence can be the approach employed to predict

crop types for the next year. Markovian logic is frequently

used for prediction models that rely on learning from

sequential states of variables. Aurbacher and Dabbert

(2011) generate crop sequences in land-use models using

maximum entropy and Markov chains. They found that the

Markov chain approach is more suitable than normal

simple stochastic modeling for cropping sequence predic-

tion in their case study on German croplands. Similarly,

Osman et al. (2015) predicted crop types at the parcel level

before the crop growing season using the first-order Mar-

kov chain on a four-year crop rotation pattern in southern

France. However, Osman et al. (2015) used the frequency

of crop rotation as a weight between states instead of

transitional probability, which considers the long-term

sequence.

In this study, CDL data from the past 11 years are used

to develop the crop plantation sequence to predict crop

types for the year of a flood event. We used transitional

probability between crop types calculated from the

sequence. Crop type in each year on a given field is a

sequence of random variables X1, X2,…Xn…; and transi-

tional probabilities between crop types are the degree of

dependencies. Thus, the transitional probability (pij) from

state si to state sj is defined by Eq. 1.

pij ¼ Pr Xnþ1 ¼ sjjXn ¼ si
� �

ð1Þ

A transition matrix of the probability of transitions from

one state to another can be represented as P = (pij)i,j, where

each element of position (i, j) represents the transitional

probability pij. For instance if r = 3, a 3 9 3 transition

matrix P is shown in Eq. 2.

P ¼
p11 p12 p13
p21 p22 p23
p31 p32 p33

2

4

3

5 ð2Þ

Figure 2 illustrates the detailed representation of

Markov models for major crop rotation patterns by

showing the Markov chain transitional probabilities for

different sequences. An alternate pattern of crop rotation

and their transitional probability for the next sequence is

shown in Fig. 2a. In the corn-soybean alternate pattern, if

the current state is corn, then the probability of soybean in

the next state is 100% and vice versa. Therefore, the

transitional probability from corn to soybean and soybean

to corn is 1. Figure 2e shows a monocropping pattern of

corn, which indicates the same crops every year. Therefore,

the transitional probability of having the same crop is 1.

Figure 2c shows a pattern where three crops are presented,

the probabilities of transition from alfalfa to corn and

soybean to corn are 1. However, the probabilities of

transition from corn to soybean and corn to alfalfa are 0.6

and 0.4 respectively. Similarly, Fig. 2d and f show a more

complex situation by including other crop types and

noncropland covers. The lines with arrows show the

direction of probabilities of transition from one state to

another. In the case of a tie, prediction chooses one state

randomly among states that have an equal chance.

2.3 Operational Flood Inundation Mapping Using

Satellite Remote Sensing

Advanced Earth observation and geospatial technologies

bring the opportunity to map flood inundation extents over

vast areas very quickly. Moderate to coarse spatial reso-

lution optical remote sensing systems (including MODIS,

Visible Infrared Imaging Radiometer Suite (VIIRS),

Landsat, and Sentinel-2) provide data with a higher tem-

poral resolution, at frequencies from daily to every 2
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weeks. It is difficult to monitor flood progress in many

cases because of the inability of optical remote sensing to

see through clouds and canopies (Lin et al. 2016). It is

equally difficult to detect storm-induced floods because of

high cloud concentrations under low-pressure oceanic

conditions. Hence, most of the optical remote sensing-

based, flood monitoring systems are unable to provide

flood inundation information during these cloud conditions.

Microwave remote sensing, however, brings the opportu-

nity for flood inundation mapping in all-weather conditions

since microwaves can penetrate through clouds, aerosol,

haze, and tree canopy. Although microwave remote sens-

ing in flood mapping is becoming popular, data from most

of the microwave remote sensing systems, especially

Synthetic Aperture Radar (SAR), was not available free of

charge before the launch of Sentinel-1. Thus, both optical

and SAR options are explored with recent flood cases in

Iowa, Nebraska, and Texas. Cloud-free Landsat images

were not available for these selected case studies. Flood

extents were mapped for Iowa and Nebraska cases using

both Sentinel-1 (SAR) and Sentinel-2 (optical). Since these

flood events were long, and satellites passed on different

dates, both flood extent maps are combined to get the

maximum flood extents. For the Texas event, flood extents

were mapped using only Sentinel-1 data because of the

unavailability of cloud free optical data from Landsat and

Sentinel-2.

2.3.1 Methodological Approach of Flood Mapping

with Optical Remote Sensing

First pre- and post-flood event, cloud-free, remote sensing

scenes are downloaded from data portals. The Modified

Normalized Difference Water Index (MNDWI) is then

calculated for both pre- and post-scenes using Eq. 3:

MNDWI ¼
qg � qmir

qg þ qmir

ð3Þ

where qg is the visible green band of Sentinel-2 MSI band

3. qmir is a middle infrared band (MIR) of Sentinel-2 MSI

band-8. The computation of MNDWI produces values

between - 1 and ? 1, where values greater than zero

indicates water and values less than or equal to zero rep-

resent non-water pixels (Xu 2006). Although the threshold

zero usually works for most of the cases, a threshold

selection method from gray-level histograms proposed by

Ostu (1979) is adapted to map water information. Pre- and

post-event water information is then extracted from

MNDWI maps using Ostu’s histogram thresholding

approach. A change detection technique then is applied on

Fig. 2 Examples of Markov chains for major crop rotation patterns:

a an alternate cropping pattern (soybean-corn-soybean) starting with

soybean; b an alternate cropping pattern (corn-soybean-corn) starting

with corn; c crop rotation pattern with three crops; d crop rotation

pattern with four crops; e mono cropping pattern with corn; f a

complex crop rotation pattern with five types including four crop

types and a non-crop land use
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pre- and post-event water maps to map inundated areas,

where each pixel is mapped as flooded if that pixel repre-

sents nonwater in the pre-event map and water in post-

event map.

2.3.2 Methodological Approach of Flood Mapping

with SAR Data

Similar to the optical remote sensing, pre- and post-flood

water information derived from Sentinel-1 SAR data is

compared to map flood inundation extent. Pre- and post-

event Ground Range Detected (GRD) products are down-

loaded from the European Space Agency (ESA) Sentinel

data portal. Vertical–Vertical (VV) polarization of Sen-

tinel-1 data is used for the extraction of pre- and post-event

water information because it is advantageous over Vertical-

Horizontal (VH) cross-polarization considering the accu-

racy of flood mapping (Clement et al. 2018). The Sentinel

Application Platform (SNAP) is used for calibration, range

correction, speckle filtering, and binarization for prepro-

cessing of the image, as well as to map water extents.

Finally, histogram thresholding is used to separate water

from land. The threshold is chosen based on the gray-level

histograms thresholding approach proposed by Ostu (1979)

for each scene. Subsequently, a change detection technique

is used to extract flood information from pre- and post-

flood water maps.

2.4 Methodological Process for the Degree of Crop

Damage Assessment

This study combined flood information, in-field crop types,

and crop condition profile for rapid crop damage assess-

ment. Figure 3 illustrates a step by step workflow for rapid

crop damage assessment. At first, MODIS daily NDVI data

products are downloaded from a Web portal maintained by

the Center for Spatial Information Science and Systems of

George Mason University. Daily NDVI is calculated using

MODIS daily surface reflectance L2G Global 250 m

products (MOD09GQ and MYD09GQ). Equation 4, the

mathematical expression of NDVI, is used to calculate

NDVI from MODIS surface reflectance.

NDVI ¼
qnir � qr

qnir þ qr

ð4Þ

where qnir and qr are surface reflectance in near-infrared

(NIR) and visible red (VR) bands of the electromagnetic

spectrum. The NDVI was calculated for the current flood

year as well as for past years. After calculating NDVI, the

median Vegetation Condition Index (mVCI) was

calculated using Eq. 5. The daily mVCI of the current

year and past years are calculated from daily NDVI. All

mVCI maps between 2000 and the year before the year of

flood event are considered as the historical mVCI.

Therefore, NDVImax(x,y), NDVImed(x,y), and NDVImin(x,y)

at a pixel (x,y) are the maximum, median, and minimum of

the historical time series. To calculate mVCI before and

after a flood event, two widows are considered to take

cloud-free mVCI data. Since clouds may exist over a

longer period of time before a flood event, a 14-day long

window before flood events is chosen to get useful mVCI.

Similarly, a short 7-day window is chosen to calculate

mVCI after flood events. A shorter after-event window is

chosen to avoid the potential contamination of grass and

weed in cropland.

mVCI ¼
NDVI x;yð Þ � NDVImed x;yð Þ

NDVImax x;yð Þ � NDVImed x;yð Þ
ð5Þ

After calculating pre- and post-event mVCI, DVDI was

calculated by taking the difference between pre- and post-

event mVCI. The mathematical expression of the DVDI

index is given in Eq. 6.

DVDI ¼ mVCIa� mVCIb ð6Þ

where mVCIa and mVCIb are the vegetation conditions

immediately after and before a disaster respectively. A

positive DVDI indicates no damage and a negative value

indicates considerable damage to the vegetation. Since the

possible values of DVDI are inherited from NDVI, the

range of DVDI value is also between - 1 and ? 1. Crop

NDVI may change for several reasons, such as pest attack

and crop phenological change. Thus, DVDI only considers

the change immediately before and after the event to

reduce the impact of other changes in crop profiles. The

underlying assumption is that crop profile changes between

immediately before and after flood events only because of

flood impact. Moreover, NDVI varies across the days of the

year because of seasonal change. Therefore, any compar-

ison of NDVI should be specific to the day of year and

location. Each mVCI was calculated by comparing NDVI

with the historical median NDVI of the same day of the

year (DoY).

Since the goal of this research is to find flood crop loss,

DVDI maps are masked by combined flood inundation

extents derived from operational flood mapping that uses

both optical and SAR data. The DVDI of flooded areas is

then masked by crop areas to map the degree of crop-

specific damage. Three different maps are derived from

images of different spatial resolutions: Flood extents

derived from 10 m sentinel data; DVDI derived from

250 m MODIS data; and crop types are mapped at 30 m

CDL spatial resolution. All maps are resampled to 10 m for

the suitability of the analysis. The continuous variable

DVDI can be categorized into a subjective scale of the

degree of damage by using the different ranges of negative

values (Di, Yu et al. 2018). Many case studies also divided
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crop damage into four to six categories using subjective

scales (Okamoto et al. 1998; Islam and Sado 2000;

Capellades et al. 2009; Chowdhury and Hassan 2017). This

is, in fact, a very common approach for the reporting of

rapid crop damage. In this study, the degree of damage is

categorized into six classes: No damage, very slight dam-

age, slight damage, moderate damage, severe damage, and

very severe damage. The positive values ([ = 0) of DVDI

are labeled as ‘‘No Damage.’’ Negative values of DVDI are

categorized into five ordinal classes using equal intervals.

These five categories are defined as 0[DVDI[= - 0.1:

‘‘Very Slight Damage’’; - 0.1[DVDI[= - 0.2:

‘‘Slight Damage’’; - 0.2[DVDI[ = - 0.3: ‘‘Moderate

Damage’’; - 0.3[DVDI[ = - 0.4: ‘‘Severe Damage’’;

- 0.4[DVDI: ‘‘Very Severe Damage.’’

Fig. 3 The methodological

framework for crop-specific

flood loss assessment from

MODIS surface reflectance

bands
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2.5 Damage Assessment Validation Process

It is important to validate the loss assessment model with

actual flood damage on crops. Plot-level crop yield loss

information could be the best option for model validation.

But plot-level information on crop yield loss is not avail-

able publicly. Public access to these crop loss databases is

restricted because of the location information and personal

information associated with it (Shrestha 2017). Our

research utilizes two approaches for the validation of crop

damage assessment. First, the visual assessment is con-

ducted by comparing NDVI curves of different damage

categories. Since NDVI has a strong positive correlation

with crop yield, a significant drop in the NDVI curve is the

indication of crop damage (Shrestha et al. 2016; Ahmed

et al. 2017; Shrestha et al. 2017). Second, the relationship

between the loss percentage of crop yield and DVDI values

can be used for validation. Positive DVDI corresponds to

no loss and negative values indicate crop damage; whereas

smaller values are the indication of higher loss.

2.5.1 Pixel-Level Validation

Three hundred sampling locations are generated using the

equalized stratified random sampling technique for each

case study. Since there are six damage classes, 50 points

are taken for each class. Figure 4 shows the spatial loca-

tions of sampling points. After determining the sampling

locations, the daily NDVI time series data are extracted at

sampling locations for the corresponding years of flood

events. Then NDVI time series are obtained from 2018 for

the Iowa flood event and the Nebraska flood event. Simi-

larly, the NDVI time series for the Texas flood event is

extracted from the 2016 NDVI data.

Since NDVI is obtained from optical remote sensing

bands of MODIS, the daily NDVI is often contaminated by

atmospheric conditions such as cloud, haze, and dust. Thus,

this study used a two-level filtering approach of NDVI

noise removal that employed the Best Index Slop Extrac-

tion (BISE) and Savitzky-Golay filter. The performance of

the Savitzkey-Golay filter is better than other selected

approaches for the noise removal of the NDVI time series

(Rahman et al. 2016). Rahman et al. (2016) provide a

detailed methodological process that achieves noise

reduction from the MODIS derived NDVI profile of crops.

A total of 300 smoothed NDVI curves are obtained for

each case study after removing noise. A generalized NDVI

curve is then constructed for each damage category by

taking an average of 50 NDVI profiles that corresponds to

the specific class. Finally, the six generalized NDVI curves

of the different degree of damages are plotted against day

of year for the comparison among damage categories for

each case study.

2.5.2 Plot-Level Validation

The plot-level validation of damage assessment is con-

ducted by the relationship between yield loss and DVDI

values. Since direct crop loss data are not available from

the public domain, our research calculated crop yield loss

by comparing the yield of the affected year with a previous

year yield at the same plot location. Since plot-level yield

data are not available from the portal of the USDA

National Agricultural Statistics Service (USDA-NASS), we

acquired yield data alternatively from the portals of various

seedling companies. Seed companies provide some plot-

level yield data from locations where farmers planted the

companies’ seed variety. Yield information was collected

Fig. 4 Sampling point locations of pixel-level validation. a the Iowa flood event in 2018; b the Nebraska flood event in 2018; and c the Texas

flood event in 2016
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from five major companies including Pioneer Hi-Bred

International, Beck’s, Syngenta, Bayer Global, and Golden

Harvest Seeds for their coverage in the selected study

areas.

It is important to select those plots that have data on the

same crops for the current year and the past year. There-

fore, this searching process only includes these plots that

are in flood-affected areas and have data on the same crops

in a flooded year as well as in some of the past years.

Although all five source portals of seed companies provide

an embedded base map on their website, it is not possible

to extract geographic coordinates of plots from these por-

tals. Thus, Google Maps is used as an auxiliary reference

source to identify plot locations by cross-referencing them

with embedded maps in these data portals. The targeted

plot is visually identified in both the embedded map and

Google Maps using the crossing point of nearby roads. If

the embedded map has an image view, the process is easier

to match with the Google Maps image view.

Figure 5a illustrates an example of a corn yield plot

location in Iowa in the data portal of Bayer Global. Fig-

ure 5b shows the location of the same plot in Google Maps.

The left panels of Fig. 5a show the corn yield information

of the same plot in 2017 and 2018. Once a targeted plot is

correctly identified in Google Maps, geographic coordi-

nates are extracted using pinpoint of Google Earth. Yield

information of the corresponding plot is also stored in an

excel database. This process is repeated for each available

plot from these data portals. A total of 37 suitable plots

were found for plot level validation.

After completing the database for all selected plots, a

GIS database is created from the excel database using the

coordinates of these plot locations. This GIS database is

then projected to the USA Contiguous Albers Equal Area

Conic projection system. These coordinates are used fur-

ther to acquire the corresponding plot-level DVDI, the

center pixel of which usually is considered for the repre-

sentation of the plot. Yield loss of these plots is calculated

in percentage by taking the ratio of yield loss to the yield in

any previous year. Here, the loss is defined as the sub-

traction of yield in the past from the yield of the flood-

affected year. Figure 6 illustrates the location of selected

plots for the validation, where yellow and green color

indicates the location of corn and soybean fields,

respectively.

3 Results

The result section illustrates the significance and accuracy

of the crop type mapping using Markov chain modeling in

Sect. 3.1. Then crop damage assessment results from the

three case studies are discussed in the following

subsections. Finally, Sect. 3.3 shows the validation of crop

damage assessment results.

3.1 Prediction of Field-Level Crop Type Results

The predicted field-level crop types are compared with

USDA CDL data for the corresponding year of flooding

events. The predicted crop type maps are very similar to

CDL. The accuracy of crop type prediction is assessed for

Iowa through spatial agreements with CDL and ground

truth data. A total of 100,000 pixels are selected over

croplands using stratified random sampling to assess the

spatial agreement with CDL. The predicted map has an

overall agreement of 87% with CDL. The kappa value 0.80

also indicates a higher spatial agreement with CDL. Corn

has the highest producer agreement (85%) among all crop

types. Soybean has 82% user agreement and 73% producer

agreement. Although very high agreement can be achieved

for corn and soybean, prediction accuracy is low for other

crops such as wheat, rye, oats, and alfalfa. The reason for

the low prediction accuracy for these crop types is incon-

sistent and insufficient rotation pattern. The prediction

model needs to be learned from sufficient number of plots

of consistent rotation pattern for accurate prediction.

Similarly, the accuracy of crop type prediction is

assessed through 678 ground truth samples for Iowa col-

lected from the field visit during the crop growing season in

2018 (Rahman et al. 2019). The sampling was used to

collect these ground truth data along major highways in the

southwestern, northern, southeastern, and central parts of

Iowa. Geotagged photos of crop fields were collected using

cellphone device (iPhone 7). Finally, ground truth data

were prepared using photo interpretation and extraction of

location information from geotagged photos. The result

shows 85% prediction accuracy with a kappa value of 0.69.

The prediction accuracy for corn is very high, where user

accuracy and producer accuracy are reported at 91% and

93% respectively. Soybean also shows high user accuracy

(82%) and producer accuracy (79%). Alfalfa shows rea-

sonable prediction accuracy (75% user accuracy and 64%

producer accuracy). The high spatial agreement and accu-

racy are probably achieved in corn and soybean prediction

because of the stable crop rotation patterns of these two

major crops.

3.2 The Rapid Assessment of Flood Crop Damage

Flood crop damage is assessed for three selected case

studies. The assessment results are discussed for Iowa,

Nebraska, and Texas as case studies 1, 2, and 3, respec-

tively in the following.
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Fig. 5 Sampling point locations of pixel-level validation. a Satellite view of plot location in the portal of Bayer Global; b Image view of the

same location in Google Maps
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3.2.1 Case Study 1: Iowa Severe Storms and Flooding (DR

4386)

The incident period of the Iowa Severe Storms and

Flooding event was between 6 June and 2 July in 2018,

which indicates the flood event occurred in the greening

and maturing stage of major crops in Iowa. Figure 7

illustrates the pixel-level degree of vegetation damage in

the northwestern part of Iowa. Four zoomed-in panels show

the degree of crop damage in four randomly selected

locations within the affected areas. Although many crop

fields were flooded, the dark green colors indicate no

damage by the floods (Fig. 7a, b, d). Many croplands are

severely damaged on both sides of the Des Moines River

(Fig. 7c). The duration of floods may be one of the reasons

for the different degrees of damage in crop fields.

Figure 8 provides quantitative measures of damage to

major crops in six selected counties in Iowa. Only three

crops of corn, soybean, and alfalfa are considered for

damage assessment because of the negligible presence of

other crop types in Iowa. Four counties show soybeans

having higher acreage of severe to slight damage (Fig. 8a–

d). In contrast, most of the flooded cornfields have no or

slight damage in all selected counties. Corn is usually taller

than soybean, which could be the cause for higher damage

in soybean compared to corn.

A total of 153 ha of soybean faced moderate to very

severe damage in Osceola County. More than 60% of

flooded cornfields have no damage in Osceola (Fig. 8a).

Similarly, almost half of flooded corn has no damage

whereas 60% of affected soybean has a higher degree of

loss in Kossuth (Fig. 8b). Clay is one of the most affected

counties, where 174 ha of corn and 237 ha of soybeans are

severely damaged. An additional 262 ha of corn and soy-

bean are moderately damaged in this county (Fig. 8c).

Figure 8b and d show almost similar crop damage patterns

in Palo Alto and Kossuth. A few hectares of alfalfa have

slight to moderate damage in most of the selected counties.

Both corn and soybean have mostly slight to moderate

damage in Humboldt and Wright Counties (Figs. 8e and f).

3.2.2 Case Study 2: Nebraska Severe Storms and Flooding

(DR 4387)

Similar to the flood event in Iowa, the Nebraska Severe

Storms and Flooding event also occurred in June 2018.

Most of the affected counties are adjacent to the affected

counties in Iowa. Thus, these two flood events are mostly

the result of a severe storm in June over Nebraska and

Iowa. Figure 9a–d show four detailed views of the degree

of damage of flooded croplands taken from four locations

in the affected regions. Croplands in some counties, such as

Dixon, Dakota, Thurston, and Cuming, are severely

affected. Panels 9b and 9c show severe damage in most of

the flood-affected croplands. Panel 9a from Platte County

shows no damage or slight damage in most of the affected

croplands.

Figure 10 illustrates the quantitative assessment of the

different degrees of crop damage in six selected counties.

Most of the affected crop fields have no or slight damage in

Dixon County. Only around 6 ha of soybean has moderate

to severe damage. More than half of the affected soybean

has slight to moderate damage and negligible severe

damage in Dakota County. Although corn has very negli-

gible damage, nearly 150 ha of soybean has moderate to

severe damage in Thurston. Cuming is the most affected

county where nearly 350 ha of soybean has moderate to

severe damage; more than 400 ha of soybean experienced

slight damage. There is almost no damage in affected

croplands in Colfax and Wayne Counties. The damage in

Fig. 6 Sampling point locations of pixel-level validation. a the Iowa flood case; b the Nebraska flood case; c the Texas flood case
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alfalfa fields is also very negligible in flood-affected

counties in Nebraska.

3.2.3 Case Study 3: May 2016 Texas Flood

The Texas flood event occurred between 22 May and 24

June 2016, and impacted more than 20 counties. Figure 11

shows the degree of crop damage in flood-affected coun-

ties. The zoomed-in view of four locations is also shown in

Panels a–d. Similar to other case studies, no damage and

slight damage are also more frequent compared to severe

damage.

Figure 12 illustrates the damage to different crop types

in four selected counties. Unlike Iowa and Nebraska, cot-

ton, sorghum, and oats are also major crops along with

corn, soybean, and alfalfa in Texas. Many croplands have

winter wheat in Texas. Corn is severely affected in

Anderson County where moderate, severe, and very severe

damage are accounted for 284, 260, and 194 ha respec-

tively. There was no damage to soybean and oats in

Anderson County (Fig. 12c). Alfalfa is the most affected

crop type in Navarro County. More than 200 ha of alfalfa

have moderate to severe damage, and more than 600 ha are

slightly damaged (Fig. 12b). Nearly 300 ha of soybean are

Fig. 7 The degree of damage of flood-affected croplands during the 6

June to 2 July Iowa Flood in 2018: a southwestern Osceola &

northwestern O’Brien Counties; b northeastern Palo Alto County;

c southeastern Palo Alto County; and d northeastern Webster &

southwestern Wright Counties
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moderately to severely damaged in Ellis County (Fig. 12a).

Cotton is the most affected crop in Robertson County

where about 1000 ha of cotton have slight to moderate

damage. It is also observed that major crop types vary

significantly from county to county in Texas.

3.3 Validation of Damage Assessment Result

Damage assessment results are validated using two dif-

ferent approaches: pixel-level validation by comparing

NDVI profile and plot-level validation using yield loss

information. These validation results are discussed below.

3.3.1 Pixel-Level Validation

The result of the pixel level validation is presented through

the average daily NDVI profile of each damage class.

Figure 13 illustrates the average NDVI curve for each

damage class for the three case studies. Subplots a, b, and

c, in Fig. 13 represent the average daily NDVI profile of

damage classes for the Iowa, Nebraska, and Texas flood

cases, respectively. Red, orange, yellow, light-green, green,

and dark-green color indicates the NDVI profile for the

damage classes—very severe, severe, moderate, slight,

very slight, and no damage, respectively. Two vertical

Fig. 8 The quantitative assessment of damage on major crop types in six selected counties in Iowa: a Osceola; b Kossuth; c Clay; d Palo Alto;

e Humboldt; f Wright
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dotted lines indicate the start and end date of the flood

events, respectively. There is a clear drop in NDVI values

after a flood event for different damage classes. The

deviation of the NDVI curve of different damage cate-

gories compared to the curve of the no damage category is

the indication of the degree of damage.

As expected, the red lines of the very severe damage

class show the highest drop in the NDVI profile after flood

events. The orange lines of severe damage indicate the

higher deviation after red lines. Similarly, other curve lines

of damage classes also show considerable deviation from

the NDVI curve of the no damage class, although the shape

of the curve of each flood case is different from each other

depending on many factors such as event duration and crop

phenology during the event. Figure 13c shows a huge drop

in and a right shift of the red line, which may indicate crop

replantation after having a total loss at the beginning of the

growing season. Although Fig. 13a and b do not show a

clear drop in the NDVI profile during the event, the impact

is clearly visible after 2–3 weeks of the event. This is

probably because the crop phenology stage is different in

Nebraska and Iowa compared to Texas. The shape of

NDVI curves looks similar in Iowa and Nebraska, probably

due to the domination of similar crop types and crop

phenology stage.

3.3.2 Plot-Level Validation

The yield information of a crop for multiple years is

available only for 37 plots from all three flood cases. A

Fig. 9 The degree of damage of flood-affected croplands during the 17 June to 1 July Nebraska flood in 2018: a Platte County; b Dodge County;

c Cuming County; d Dakota County
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total of 23, 10, and 4 plots are available from the Iowa,

Nebraska, and Texas flood cases respectively. The per-

centage yield loss and corresponding DVDI values are

plotted in Fig. 14. The positive values in yield loss are the

indication of no loss.

The higher negative values should correspond to higher

crop loss and vice versa. Among the 14 sampled plots with

positive DVDI value, 11 plots correspond to positive yield

loss (no loss). A total of 23 plots have negative DVDI, all

of them also corresponding to yield loss. Therefore, it can

be concluded that DVDI values can successfully indicate

crop loss. Although low R2 (0.5441) value indicates that a

relationship between DVDI and percentage yield loss is not

particularly strong, the overall indication of crop loss can

be made using the DVDI index.

Table 1 shows another evaluation of the damage cate-

gory through percentage yield loss. Among the 14 plots of

no damage category, 11 plots have no loss. Only 3 plots of

the no damage category have less than 10% crop loss.

Eight out of the 15 plots of very slight damage category

have a yield loss of less than 10%. Half of the plots in the

slight damage category have less than 10% loss and the

other half belong to the group of 10–20% yield loss. Two

plots of moderate damage category have 10–20% loss and

Fig. 10 The quantitative assessment of damage on major crop types in six selected counties in eastern Nebraska: a Dixon; b Dakota; c Wayne;

d Thurston; e Cuming; f Colfax
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only one plot has a 30–40% loss. Only one plot is in the

severe damage category, which corresponds to about 48%

loss.

4 Conclusion

A newly developed index called DVDI (Disaster Vegeta-

tion Damage Index) is used in this study to assess the flood

impact on crops for three selected case studies in Iowa,

Nebraska, and Texas. Five crop damage classes—very

slight damage, slight damage, moderate damage, severe

damage, and very severe damage—are defined to express

the degree of damage using some equal interval ranges of

negative DVDI values. DVDI maps are masked by the

areas of inundated croplands to get crop damage caused

only by flood events. The degree of damage is also vali-

dated in two ways: (1) NDVI profiles of damage classes are

compared to see the potential drop in NDVI compares to

the no damage curve; and (2) evaluate the relation of DVDI

with crop yield loss.

Crop-specific damage levels at the county scale are also

calculated for selected counties as representative examples.

The results show that many croplands were inundated

during flood events, but no damage occurred. Croplands in

some counties have moderate to severe damage. Very

severe damage occurred only in a few croplands in most of

the cases. The results also indicate that soybean fields had

higher damage compared to corn in most of the counties in

Iowa and Nebraska, probably because corn stalks are taller

Fig. 11 The degree of damage of flood-affected croplands during the Texas Flood in 22 May to 24 June in 2016
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than soybeans. The validation results indicate a strong

relationship between DVDI and yield loss. The results also

show that damage classes correspond to the drop in the

NDVI profiles. Thus, it can be concluded that the degree of

damage can be explained using a DVDI-based qualitative

scale.

Although DVDI-based qualitative assessment can be

used in rapid crop damage assessment, there are some

Fig. 12 The quantitative assessment of damage on major crop types in four selected counties in eastern Texas: a Ellis; b Navarro; c Anderson;

d Robertson
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limitations and constraints in this process. There were

significant differences in flood damage among counties

affected by the same flood event. The possible reasons

could be flood depth, crop types, and phenological differ-

ence. Since this research did not include flood depth

information in the process, it is difficult to conclude the

exact reason for the difference in crop damage. The ranges

of negative DVDI may need to be adjusted to convert it on

a subjective scale for different geographic contexts as well

as for different crop types. The length of a window for

mVCI selection before and after flood events needs to be

carefully chosen, since outcome is sensitive to the selection

of windows. The choice of windows also depends on the

objective of whether the assessment process captures the

instant effect of events or captures the condition of the

recovered crop. Moreover, cloud contaminated pixels need

to be carefully excluded from daily mVCI. There are also

important uncertainties in both remote sensing-based flood

mapping and crop mapping. Flood mapping with Earth

observation data results in underestimation or overestima-

tion rather than actual flood extent dimensions. Similarly,

the error in crop mapping may affect the accuracy of crop-

specific damage assessment. Validation is always chal-

lenging because plot-level correct loss information is

Fig. 13 Comparison among the

NDVI curves of different

damage classes in a Iowa;

b Nebraska; and c Texas
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unavailable in most of the cases. Although our research

considered two validation approaches, both have signifi-

cant limitations. Pixel-level validation is biased to some

extent, since estimated DVDI is inherited from NDVI

change. However, validation of DVDI classes through

NDVI changes is still meaningful, since it shows how

DVDI subjective classes follow the drop in NDVI profile.

We conducted plot-level validation by using available data

from different seed companies, which data necessarily is

the subject of cautious judgment because of the business

motives of the companies and associated crop insurance

issues. Seed companies may release yield data only for

these plots that have the best yield records. Moreover, there

is a high chance that these companies do not provide yield

information for those plots that are severely affected by

floods. Plot boundary information and accurate plot-level

loss information could significantly enhance the validation

process. Despite having limitations and weaknesses, DVDI

can be used successfully for the rapid assessment of flood

crop damage.

Apart from these limitations, there are several advan-

tages in the use of DVDI for crop damage assessment.

First, the whole workflow mostly depends on free of charge

available remote sensing data; thus, it can be applied

anywhere at any time of the season. Second, this approach

does not require survey data and historical data that are

scarce in many developing countries. Third, this approach

is able to provide a quick assessment immediately after

flood events, which is precious for policy and decision

making to reduce disaster risk. Although our study used

historic crop rotation patterns for mapping crop types, if

historic field-level crop information is unavailable, we

R² = 0.5441
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Fig. 14 Relationship between Disaster Vegetation Damage Index (DVDI) and crop yield loss

Table 1 Damage class and corresponding yield loss in percentage

Yield loss in percentage Total number of plots

‘ No loss 0–10% 10–20% 20–30% 30–40% [ 40%

No damage 11 3 0 0 0 0 14

Very slight 0 8 5 2 0 0 15

Slight 0 2 2 0 0 0 4

Moderate 0 0 2 0 1 0 3

Severe 0 0 0 0 0 1 1

Very severe 0 0 0 0 0 0 0

Total Number of Plots 11 13 9 2 1 1 37
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would suggest the use of in-season remote sensing-based

crop mapping. Therefore our approach is useful for both

developed and developing countries. Third, the approach

used in our study is rapid and is useful for quick damage

assessment to support immediate policy and decision

making.
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