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Abstract. To date, remote sensing-based algorithms for inferring urban surface evapotran-

spiration (ET) remain little studied. Based on the modifications of the remote sensing

Penman–Monteith (RS-PM) model, we propose an urban RS-PM model for estimating

urban surface ET. Compared with the traditional RS-PM model, our urban RS-PM model

is specifically developed for urban areas and is characterized by the following improvements:

(1) excluding the interference of impervious surface components in urban areas by replacing

the vegetation cover fraction index with land surface component fraction parameters inversed

through linear spectral mixture analysis for calculating the area proportions of vegetation and

soil; (2) considering the effect of the component fractions of vegetation or soil on all energy

components of the surface energy balance by applying the modified multisource parallel model

for estimating the component latent heat flux; and (3) optimizing the calculation of the com-

ponent net radiation flux by considering the component surface characteristics. This urban RS-

PM model was tested on an urban area of Xuzhou in the eastern Chinese province of Jiangsu.

Landsat 8 operational land imager and thermal infrared sensor satellite images acquired

between 2014 and 2016, together with their corresponding meteorological data and flux obser-

vation data, were used for estimating the ET of the study area for eight dates with the model.

The results were validated by the latent heat flux data observed by an open path eddy covariance

system. Validation shows the goodness of fit (R2), the root-mean-square error, the mean relative

error, and the correlation coefficient (r) between estimated ET and observed ET for the eight dates

were 0.8965, 24.14 W · m−2, 18.5%, and 0.9546, respectively. The results prove that the urban

RS-PM model is effective in estimating ET of urban areas with an acceptable accuracy. © 2018

Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.046006]

Keywords: evapotranspiration; Penman–Monteith model; linear spectral mixture analysis;

remote sensing; urban.
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1 Introduction

Evapotranspiration (ET) is the sum of the water evaporation and vegetation transpiration,

which plays an important role in regulating global energy and water distribution. Traditional

ET observation methods, such as porometer,1,2 lysimeter,3 water balance,4–7 Bowen ration,8,9

Scintillometer,10,11 and sap-flow,12–15 or estimation methods such as the Penman–Monteith

(P-M)16–18 model, are mostly applied on a point, field, or basin scale with high ET estimation

accuracy. However, these methods are inapplicable to large-scale ET estimation. Recent remote

sensing advances have enabled regional ET estimation from satellite image data. At present,
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the available ET estimation methods are generally applied to natural or agricultural surfaces,19

but few have been developed specifically for urban areas. Urban areas are important carriers of

human living and productive activities, which have a significant impact on the regional climate

change and energy exchange. As a key link in the regional water cycle and surface energy

balance (SEB), ET has a regulating effect on regional climate and heat environment in

urban areas which cannot be ignored. Therefore, it is necessary to develop an applicable

algorithm for estimating the land surface ET of urban areas.

The most widely used remote sensing-based ET estimation methods include the SEB

models20,21 and the remote sensing Penman–Monteith (RS-PM) models.22,23 The SEB models

can be broadly divided into the one-source and the dual-source. The one-source SEB models

such as surface energy balance index,24–26 surface energy balance algorithm for land

(SEBAL),20,21,27 simplified surface energy balance index (S-SEBI),28–30 and surface energy

balance system,31–34 do not distinguish between vegetation and soil; they consider a regional

surface, regardless of the spatial structure of the surface, as one big leaf—momentum, heat,

and water vapor are exchanged with the outside space through this large “leaf.” Such SEB

models are appropriate for homogeneous and closed vegetation areas, rather than for

urban areas with varied land cover types. The dual-source models are either serial or parallel,

depending on how the coupling between canopy and soil is considered.35–37 The parallel mod-

els assume that the canopy and soil exchange both water vapor and heat with the atmosphere

independently, and the transmissions through canopy and soil are parallel without a coupling

effect on each other. Zheng38 proposed a multisource parallel model for estimating urban ET

based on the dual-source parallel model by adding the impervious surface component in the

SEB equation. Based on Zheng’s model, Zhang et al.39 then developed the multisource parallel

model with optimized calculations of the component net radiation and the component fractions

of vegetation and soil. However, the multisource parallel model39 relies heavily on remote

sensing data with multiple thermal infrared bands to calculate the component temperatures

of vegetation and soil, which is a key parameter in the model.32 Remote sensing data with

multiple thermal infrared bands, such as those acquired by advanced spaceborne thermal emis-

sion and reflection radiometer (ASTER) and moderate-resolution imaging spectroradiometer

(MODIS) sensors, have limited applications, because ASTER’s short-wave infrared (SWIR)

detectors have failed since 200840 and the low spatial resolution (1 km) of MODIS data is not

quite suitable for urban scale studies.39

The Penman–Monteith (P-M) model has been widely used, as its parameters can be

calculated through conventional meteorological data.16 Cleugh et al.22 were first to propose

an integration between remote sensing data and the P–M model. The first remote sensing

P–M (RS-PM) model used a simple algorithm to estimate the canopy conductance but did

not take soil evaporation into consideration.41 Mu et al.23 developed a new RS-PM model,

which has improved the conductance calculation and estimated soil evaporation by introducing

the complementary relationship hypothesis into the P–M model.41 Mu et al.42 further developed

their RS-PM model by distinguishing daily and nightly ET. Yuan et al.43 revised the model pro-

posed by Mu et al.42 by including the effect of air temperature on stomatal conductance and by

replacing the enhanced vegetation index (EVI) with the leaf area index (LAI) for calculating the

vegetation coverage fraction. Zhang et al.44,45 proposed an RS-PM model based on NDVI called

the process-based land surface ET /heat fluxes algorithm, which they used to estimate the global

ET for the 1983–2006 period. In addition, Leuning et al.46 developed their own model called the

Penman–Monteith Leuning model and reported accurate global and regional ET estimations.

Despite their wide applications to natural or agricultural surfaces, these RS-PM models are

still unsuitable for urban areas, which are characterized by spectral heterogeneous land covers.

To increase the applicability of the RS-PM model, we propose in this study a modified RS-PM

model called the urban RS-PM model based on Mu et al.’s RS-PM model23 and the multisource

parallel model.39 By combing the vegetation and soil fractions extracted through linear spectral

mixture analysis (LSMA, aka linear spectral unmixing) of satellite images over urban areas,

the vegetation transpiration and the soil evaporation in urban areas can be estimated separately.

The urban ET provides key information for urban heat island regulation mechanism studies and

the improvement of urban environment.
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2 Study Area and Data

2.1 Study Area

The built-up area of Xuzhou in the eastern Chinese province of Jiangsu (Fig. 1) has been selected

as the study area to test the proposed urban RS-PM model. Xuzhou (33°43′ to 34°58′N, 116°22′

to 118°40′E) is the second-largest city of Jiangsu province and covers a geographical area

of 3037 km2. Located at the junction of the provinces of Jiangsu, Shandong, Henan, and

Anhui, Xuzhou is known as an important comprehensive transportation and logistics hub in

China. Xuzhou is generally flat and is characterized by low elevations ranging from 30 to

50 m. Affected by the monsoon climate of medium latitudes, Xuzhou has heavy precipitation

and insolation, with an average annual temperature of 15.5°C, an average annual rainfall of

800 to 930 mm, an average annual sunshine period of 2284 to 2495 h, and an average annual

frost-free period of 200 to 220 days. In addition, the forest coverage rate is 30.3% and the ratio of

built-up area to the total area has reached 43.3%. By the end of 2016, the urban population of

Xuzhou reached 8.71 million, with an urbanization rate of 62.44%, indicating that Xuzhou has

become a highly urbanized city. These features have enabled the built-up area of Xuzhou to

become an ideal area for estimating urban ET with our urban RS-PM model.

2.2 Data

2.2.1 Remote sensing data

To extract the information of urban surface component fractions and temperatures, remote sensing

images with multispectral and thermal infrared bands are required. Landsat 8 satellite carries an

operational land Imager (OLI) and a thermal infrared sensor (TIRS):47 the OLI includes nine bands

at 30-m spatial resolution except for the panchromatic band (15 m); the TIRS produces two thermal

infrared bands at 100-m spatial resolution. In this study, the first seven multispectral bands were

used to extract endmember fractions of the study area, and the TIRS band B10 was used to obtain

the land surface temperature. As our available flux data, used for validation (detailed in Sec. 2.2.2),

were observed between 2014 and 2016, and the observation was not continuous during the period,

we selected eight Landsat 8 images of the study area from 2014 to 2016 (Table 1).

To assess the accuracy of component fractions estimated from the Landsat 8 data, high-

resolution remote sensing data are also required. Data from Chinese Earth observation satellites

Gaofen-1 (GF-1) and Gaofen-2 (GF-2) can be a good choice as their panchromatic bands are

Fig. 1 The built-up area of Xuzhou was selected as the study area: (a) Jiangsu province in China,

(b) Xuzhou in Jiangsu province, and (c) the study area extracted and shown on a false color

Landsat 8 image (September 04, 2016, R∶G∶B ¼ b7∶b5∶b3).
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acquired at 2- and 1-m resolution, respectively, both sufficient for LSMA validation. Based on

the acquisition dates of the Landsat 8 data, four Gaofen images were selected (Table 2).

2.2.2 Flux data

Latent heat flux data were also collected to assess the accuracy of the study area’s ET estimated

by the urban RS-PM model. The flux data were observed with an open path eddy covariance

(EC) system, which was set up on a flux tower at the Collaborative Observation Testing Site

affiliated to China University of Mining and Technology (CUMT-COTS) (Fig. 2). The aerody-

namic parameters about the setup and its surroundings are shown in Table 3. The missing data

and abnormal data due to instrument malfunction, poor maintenance, and bad weather conditions

were gap-filled by the mean diurnal variations method.48,49

2.2.3 Meteorological data

Meteorological data for calculating parameters required for the urban RS-PM model were also

obtained at almost the same time as the Landsat image data were acquired from at the CUMT-

COTS. The parameters include air temperature (Tair), relative humidity (RH), wind speed (uz),

and atmospheric pressure (PA) measured at the height of 2 m (Table 4).

3 Methodology

3.1 Urban Remote Sensing Penman–Monteith Model

In this section, we will introduce the framing of the urban PS-PM model and highlight its

improvements over the traditional RS-PM model in Secs. 3.1.2–3.1.4.

Table 2 GF-1 or GF-2 images used for LSMA validation. Note that the two September 24, 2014

scenes were merged for covering the entire study area and that Beijing time = GMT + 8.

Satellite No. Scene ID Acquisition Date Acquisition Time (Beijing)

GF-1 1 579,791 September 24, 2014 11:26:39

2 579,790 September 24, 2014 11:26:34

3 2,979,014 November 04, 2016 11:36:44

GF-2 4 2,872,975 September 05, 2016 11:25:48

Table 1 Landsat 8 images used in this study.

No. Scene ID Acquisition date Acquisition time (GMT)

1 LC81210362014121LGN00 May 01, 2014 02:42:29

2 LC81210362014297LGN00 September 24, 2014 02:42:58

3 LC81220362015355LGN00 December 21, 2015 02:49:04

4 LC81210362016047LGN01 February 14, 2016 02:42:40

5 LC81220362016070LGN01 March 10, 2016 02:48:47

6 LC81220362016246LGN00 September 02, 2016 02:49:07

7 LC81220362016278LGN00 October 04, 2016 02:49:11

8 LC81220362016310LGN00 November 05, 2016 02:49:16
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3.1.1 Algorithm of the traditional remote sensing Penman–Monteith model

The traditional RS-PM model proposed by Mu et al.23 can be expressed as the sum of vegetation

transpiration and soil evaporation:

Table 3 Aerodynamic parameters around the flux tower.

Aerodynamic parameters Physical meaning Measurements (m)

Z EC height from ground 15

hb Average building height 4.5

d Zero displacement 0.68

Z om Momentum roughness length 3

Z − d Effective measurement of height 14.32

Table 4 Basic meteorological data of study area.

Date

Parameter

T air (K) RH (%) uz (m/s) PA (kPa)

May 01, 2014 297.42 55.12 2.66 101.12

October 24, 2014 293.59 65.59 2.51 101.62

December 21, 2015 277.96 51.75 1.03 102.69

February 16, 2016 276.50 33.87 2.47 102.54

March 10, 2016 278.34 24.63 1.79 103.19

September 02, 2016 303.92 32.16 2.54 100.24

September 04, 2016 296.25 67.94 2.65 101.42

November 05, 2016 291.38 65.43 1.67 101.08

Fig. 2 The flux tower at the Collaborative Observation Testing Site affiliated to China University of

Mining and Technology: (a) location and (b) photograph.
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EQ-TARGET;temp:intralink-;e001;116;735LE ¼ λE ¼ λEv þ λEs; (1)

where LE refers to latent heat flux that can be expressed as a product of ET and latent heat of

vaporization λ; and λE, λEv, and λEs, which refer to the total latent heat flux, the latent heat flux

of vegetation transpiration, and the latent heat flux of soil evaporation, respectively. It is neces-

sary to determine the fractions of vegetation and soil in a mixed pixel before calculating ET.

In the model by Mu et al.,23 the proportions of vegetation and soil in each remote sensing image

pixel are estimated by the vegetation coverage fraction, given as

EQ-TARGET;temp:intralink-;e002;116;642FC ¼
EVI − EVImin

EVImax − EVImin

; (2)

where FC refers to the vegetation coverage fraction calculated through the EVI.

For vegetation transpiration, λEv can be estimated as

EQ-TARGET;temp:intralink-;e003;116;570λEv ¼
ΔAc þ ρCpVPD∕rah

Δþ γ

�

1þ
rs;v
rah

� ; (3)

where Δ is the slope of the curve relating saturated water vapor pressure to temperature, Ac, to

the available energy of vegetation (W · m−2) with Ac ¼ RnFC; Rn is the net radiation (W · m−2),

G is the soil heat flux (W · m−2), ρ is the air density (kg · m−3), Cp refers to the air specific heat

capacity (J · kg−1 · K−1), VPD is the difference between saturated vapor pressure (es) and the

actual water vapor pressure (ea), in unit of Pa, i.e., VPD ¼ es − ea (Pa), rah is the aerodynamic

resistance to heat transfer (s·m−1), γ is the psychrometric constant (Pa · K−1), and rs;v is the

canopy surface resistance (s·m−1), respectively.

For soil evaporation λEs, Mu et al.23 took potential soil evaporation and the interaction

between surface and atmosphere (expressed by vapor pressure deficit and relative humidity)

into consideration and proposed an algorithm for it:

EQ-TARGET;temp:intralink-;e004;116;398λEs ¼

�

RH

100

�

VPD∕100

×

ΔAsoil þ ρCpVPD∕rah

Δþ γ
�

1þ rtot
rah

� ; (4)

where RH is the relative humidity (%), Asoil is the available energy of soil (W · m−2) with Asoil ¼
Rnð1 − FCÞ − G. Here, and rtot is the total aerodynamic resistance to vapor transport (s·m−1),50

which can be estimated through correcting the total aerodynamic resistance under standard

conditions for air temperature and pressure:

EQ-TARGET;temp:intralink-;e005;116;295rcorr ¼
1.0

�

273.15þT
293.15

�

1.75
×

101.3
PA

; (5)

EQ-TARGET;temp:intralink-;e006;116;246rtotc ¼ 107.0; (6)

EQ-TARGET;temp:intralink-;e007;116;223rs;s ¼ rtotc × rcorr; (7)

where rcorr is the corrected total aerodynamic resistance; rtotc is a constant (107 s·m−1).51 Note

that T and PA refer, respectively, to air temperature and pressure under standard conditions

with T ¼ 20°C and PA ¼ 101.3 kPa, respectively.

Mu et al.23 innovated the RS-PM model by including soil evaporation and thus enhanced its

applicability. However, there are two major problems when applying the RS-PM model by Mu

et al.23 (henceforth referred to as the traditional RS-PM model) to urban areas with complex

underlying surfaces. First, the traditional RS-PM model is mainly applied to natural or agricul-

tural surfaces, which assumes that the land surface is simply covered by vegetation and

soil. Therefore, the traditional RS-PM model has used the vegetation coverage fraction FC

and ð1 − FCÞ to calculate the proportions of vegetation and soil in mixed pixels of remote

sensing images. This is not the case for urban areas, because the impervious surface is

Zhang et al.: Remote sensing estimation of urban surface evapotranspiration based on a modified. . .
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a major component that dominates their varied land cover types,52 and medium-resolution

remote sensing image pixels of urban areas are very likely to be mixing pixels that contain

an impervious surface component. Second, in the calculation of the available energies

(Ac and Asoil), the traditional RS-PM model only calculates the component net radiation

based on the component fractions of vegetation and soil, without considering the effect of

the component fraction variation on other component energies. In addition, the traditional

RS-PM model directly uses a pixel’s mean net radiation to calculate the component available

energies of vegetation and soil. However, component net radiation should be calculated sepa-

rately due to the spectral heterogeneity between vegetation components and soil components,

which has a significant impact on the surface net radiation.

To be able to apply the RS-PM model to urban areas, the urban RS-PM model combines

linear spectral mixture analysis and a modified multisource parallel model proposed by Zhang

et al.,39 which can estimate vegetation transpiration and soil evaporation in a spectrally

heterogeneous urban context.

3.1.2 Improving the calculation of vegetation and soil proportions

Ridd53 has proposed the V-I-S model to calculate land surface component fractions in mixing

pixels of satellite images over urban areas, which divides the land surface components into

vegetation, soil, and impervious surface. Small54 further classified the impervious surface

component into two types: high-albedo and low-albedo impervious surfaces (henceforth referred

to as high- and low-albedo, respectively). The concepts of high- and low-albedo impervious

surface were also adopted by Wu et al.55 in their LSMA for an urban area. It is noted that in

many of the previous studies that have focused on the extraction of component fractions in urban

surfaces,56–58 urban shadow (e.g., building shadow and tree shadow) is an issue that requires

extra attention. As such, Wu59 has proposed a normalized spectral mixture analysis (NSMA),

which can effectively eliminate the shadow endmembers and reduce the intraendmember

spectral variability.60 The algorithms of the NSMA model are as follows:

EQ-TARGET;temp:intralink-;e008;116;399Rb ¼
Rb

μ
× 100; (8)

EQ-TARGET;temp:intralink-;e009;116;355μ ¼
1

N

X

N

b¼1

Rb; (9)

where Rb is the pixel’s normalized reflectance for band b, Rb is the initial reflectance for band b,

μ is the mean reflectance for the pixel, and N is the total number of bands. With the normalized

spectra, the endmember fractions can be calculated by the full constrained linear spectral mixture

analysis:60

EQ-TARGET;temp:intralink-;e010;116;262Rb ¼
X

NE

i¼1

fiRi;b þ eb; (10)

EQ-TARGET;temp:intralink-;e011;116;211

X

NE

i¼1

fi ¼ 1; fi ≥ 0; (11)

where i is the type of each endmember (i ¼ 1, 2, 3, and 4 refer to the endmembers of

vegetation, soil, high- and low-albedo, respectively), NE is the number of the endmembers,

fi is the fraction of endmember i, Ri;b is the reflectance of the endmember i in band b for

the pixel, and eb is the residual, respectively.

The vegetation component fraction (fv), the soil component fraction (fs), and the high- and

low-albedo fractions (fimp;h and fimp;l) can be extracted by the NSMA model, which has pro-

vided important parameters including the proportions of vegetation, soil, and also of impervious

surface for estimating urban ET.
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3.1.3 Improving the calculation of the vegetation component latent heat flux

A parallel SEB model considers vegetation transpiration and soil evaporation as two independent

and parallel processes in land surface ET.41 This type of model is generally applied to areas

where vegetation is sparsely and unevenly distributed, e.g., an urban context. In addition,

land surface parameters required for the parallel SEB models can be easily acquired through

remote sensing images without taking into account the coupling effect between vegetation

and soil. Therefore, based on the parallel SEB models, Zhang et al.39 have proposed a modified

multisource parallel model that defines the SEB relationship of each land surface component in

urban areas. The component SEB equation of vegetation component in a mixed pixel can be

expressed as follows:

EQ-TARGET;temp:intralink-;e012;116;609λEv ¼ Rn;v −Hv; (12)

where Rn;v is the component net radiant flux of vegetation, Hv is the sensible heat flux of veg-

etation, and λEv is the component latent heat flux of vegetation.39 According to the study by

Zhang et al.,39 Rn;v in a mixed pixel can be expressed as fv multiplied by the net radiation R�
n;v in

a hypothetical pure pixel called P1, in which the vegetation fraction is 100%, and all the con-

ditions of the surface and environment are the same as the vegetation component in the mixed

pixel. In addition,Hv in a mixed pixel can also be expressed as fv multiplied by the sensible heat

flux H�
v in the hypothetical pure pixel P1. Therefore, Eq. (12) can be transformed into

EQ-TARGET;temp:intralink-;e013;116;493λEv ¼ fvR
�
n;v − fvH

�
v ¼ fv × λE�

v; (13)

where λE�
v is the latent heat flux of the hypothetical pure pixel of vegetation. The component

latent heat flux of vegetation in a mixed pixel can be calculated as follows by combining

Eqs. (13) and (3) (with FC being set at 1):

EQ-TARGET;temp:intralink-;e014;116;426λEv ¼ fv

"

ΔR�
n;v þ ρCpðes − eaÞ∕rah;v

Δþ γ

�

1þ
rs;v
rah;v

�

#

; (14)

where rah;v is the aerodynamic resistance of vegetation.

3.1.4 Improving the calculation of soil component latent heat flux

The component SEB equation of the soil component in a mixed pixel can be expressed as

follows:39

EQ-TARGET;temp:intralink-;e015;116;297λEs ¼ Rn;s −Hs − Gs; (15)

where Rn;s is the component net radiant flux of soil, Hs is the component sensible heat flux of

soil, λEs is the component latent heat flux of soil,39 and Gs is the soil heat flux of the soil

component.

The derivation of the component latent heat flux of soil is similar to that of vegetation. Rn;s in

a mixed pixel can be expressed as fs multiplied by the net radiation R�
n;s in a hypothetical pure

pixel called P2, in which the soil fraction is 100% and all the conditions of surface and envi-

ronment are the same as the soil component in the mixed pixel; Hs in a mixed pixel can be

expressed as fs multiplied by the sensible heat flux H�
s in the hypothetical pure pixel P2;

and Gs in a mixed pixel can be expressed as fs multiplied by the soil heat flux G�
s in the hypo-

thetical pure pixel P2. Therefore, Eq. (15) can be transformed into the following:

EQ-TARGET;temp:intralink-;e016;116;146λEs ¼ fsR
�
n;s − fsH

�
s − fsG

�
s ¼ fs × λE�

s ; (16)

where λE�
s refers to the latent heat flux of the hypothetical pure pixel of soil. The component

latent heat flux of soil in a mixed pixel can be calculated as follows by combining Eqs. (16) and

(4) (with FC being set at 0):
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EQ-TARGET;temp:intralink-;e017;116;735λEs ¼ fs

"

ΔðR�
n;s − G�

sÞ þ ρCpðes − eaÞ∕rah;s

Δþ γ

�

1þ rtot
rah;s

� ×

�

RH

100

�

ðes−eaÞ∕100
#

; (17)

where rah;s refers to the aerodynamic resistance of soil.

3.1.5 Algorithm of the urban evapotranspiration

As previously mentioned in Secs. 3.1.3 and 3.1.4, urban ET can be estimated as the combination

of Eqs. (14) and (17), which can be expressed as follows:

EQ-TARGET;temp:intralink-;e018;116;616

λEurban ¼ λEv þ λEs

¼ fv

�

ΔRn;v þ ρCpðes − eaÞ∕rah;v

Δþ γ

�

1þ
rs;v
rah;v

�

	

þ fs

�

ΔðRn;s − GsÞ þ ρCpðes − eaÞ∕rah;s

Δþ γ
�

1þ
rs;s
rah;s

� ×

�

RH

100

�

ðes−eaÞ∕100
	

; (18)

where λEurban refers to the total ET of an urban area and ρ (kg · m−3). Note that es (Pa), ea (Pa),

and RH (%) can be obtained or calculated by the meteorological data. The other parameters

include fv and fs, rah;v and rah;s, rs;v and rs;s, Rn;v and Rn;s, and Gs, which are five types of

major parameters that can be calculated from remote sensing data.

3.2 Linear Spectral Mixture Analysis

To better illustrate the calculation process of the urban RS-PM model, four flowcharts detailing

the input data, intermediate parameters, formulas, and output results are given in different sec-

tions of this paper. The flowchart of the first step (Secs. 3.2 to 3.4) of the calculation process of

our model is shown in Fig. 3, which demonstrates the estimation process of component fractions

and temperatures.

3.2.1 Linear spectral unmixing

According to Sec. 3.1.2, in the linear spectral mixture analysis, the NSMA model was first

applied to eliminate the shadow endmembers and reduce the intraendmember spectral

variability.60 Then, the pure pixel index method39 was used to extract the endmembers of veg-

etation, soil, high-, and low-albedo in mixed pixels. Because open water body is hardly mixed

with other components, water was masked out through the land cover classification before end-

member selection.55 The fraction of each endmember was inversed in the fully constrained

LSMA model using a least squares method.60

As an important parameter in the urban RS-PMmodel, the component fractions of vegetation

and soil directly determine the proportion of the ET in a mixed pixel. Therefore, high accuracy

of component fraction estimation should be ensured. For the fully constrained LSMA model,

the modeling accuracy can be assessed by the RMS55 over all image bands:

EQ-TARGET;temp:intralink-;e019;116;196RMS ¼

�

X

N

b¼1

eb∕N

�0.5

; (19)

where eb is the residual in the calculation of band b, and N is the number of all bands involved in

linear spectral unmixing. The RMS results for the eight Landsat 8 images are shown in Table 5.

The average RMS of each scene was <0.02, indicating good LSMA accuracy.55
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3.2.2 Accuracy assessment of component fractions

The modeled component fractions were assessed by high-resolution Gaofen image data

(Table 2). A total of 100 validation samples, each consisting of 3 × 3 pixels (90 × 90 m) in

Landsat 8 imagery, were randomly generated, and the actual component fractions of each

validation sample were extracted from the GF-1 or GF-2 images through visual interpretation.

Table 5 Average RMS for each fully constrain LSMA.

Landsat 8 image (acquisition date) Average RMS

May 01, 2014 0.0090

October 24, 2014 0.0104

December 21, 2015 0.0080

February 16, 2016 0.0117

March 10, 2016 0.0129

September 02, 2016 0.0098

September 04, 2016 0.0104

November 05, 2016 0.0084

Fig. 3 Flowchart of the first step (step 1) of the urban RS-PMmodel, detailed in Secs. 3.2–3.4. The

gray rectangles represent the input data, and the other color rectangles indicate the parameters

that were used more than once in the next steps. Equations used in each of the processes are

highlighted in blue.
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As only the component fractions of vegetation and soil were used in the calculation of ET, we

examined only the accuracies of estimating vegetation and soil fractions. Scatter plots (Fig. 4)

between the modeled and the actual component fractions show high correction coefficients (both

∼0.9) and low root-mean-square error (RMSEs) (both approximately 0.1). These indicate that

the LSMA produced good surface component fractions, which are acceptable and allowed for

the following calculations.

3.3 Inversion of Land Surface Temperature

Following LSMA, we then immediately inferred the land surface temperature from the Landsat

8 data as it is an intermediate parameter for obtaining the component surface temperature,

the component net radiation, and the aerodynamic resistance. Based on the monowindow

algorithm proposed by Qin et al.,61 Wang et al.62 have developed an improved monowindow

Fig. 4 Comparing the modeled component fractions with the actual fractions derived from

the high-resolution Gaofen image data: (a), (c), (e) vegetation fractions inferred from

the September 24, 2014, September 04, 2016, and November 05, 2016 Landsat 8 images;

(b), (d), and (f) soil fractions inferred from the September 24, 2014, September 04, 2016, and

November 05, 2016 Landsat 8 images.
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algorithm for inferring the land surface temperature from Landsat 8 data, which can be

expressed as follows:

EQ-TARGET;temp:intralink-;e020;116;711Tsur ¼ fað1 − C −DÞ þ ½bð1 − C −DÞ þ CþD�T10 −DTair_eg∕C; (20)

EQ-TARGET;temp:intralink-;e021;116;680C ¼ ετ; (21)

EQ-TARGET;temp:intralink-;e022;116;654D ¼ ð1 − τÞ½1þ ð1 − εÞτ�; (22)

where Tsur is the land surface temperature, a and b are the linear regression coefficients of

Plank function for TIRS band 10, T10 is the brightness temperature of Landsat 8 TIRS

band 10, Tair_e is the effective mean atmospheric temperature, and τ is the atmospheric trans-

mittance of Landsat 8 TIRS band 10, which can be estimated by its relationship with water

vapor content proposed by Wang et al.39,62 Note that ε is the land surface emissivity for Landsat

8 TIRS band 10, which can be estimated with the following equation:39

EQ-TARGET;temp:intralink-;e023;116;556ε ¼ fvRvεv þ fsRsεs þ fimp;hRimpεimp;h þ fimp;lRimpεimp;l; (23)

where Rv, Rs, and Rimp refer to the ratio of component radiation to average radiation in a mixed

pixel with Ri ¼ ðTi∕TsurÞ
4 (i refers to the components of vegetation, soil, high-, or low-

albedo);61 and εv, εs, εimp;h, and εimp;l refer to the component typical emissivity, which can

be obtained from the ASTER Spectral Library.39,63

3.4 Estimation of Component Surface Temperature

In general, the surface temperatures of the four components (i.e., vegetation, soil, high-, and

low-albedo) can be calculated by solving equations established with at least four thermal infrared

bands39—however, there were only two thermal infrared bands in the Landsat 8 data. According

to the definition of component radiation ratio,61,64 the relationship between the component

surface temperature and land surface temperature can be written as follows:

EQ-TARGET;temp:intralink-;e024;116;379Ti ¼ Tsur × ðRiÞ
1∕4: (24)

Qin et al.61 simulated the relationship between the land surface temperature (Tsur) and the

vegetation coverage fraction (Pv) in different areas with different pixel mixing ratios, and found

that the component radiation ratio has a good linear relationship with Pv, which can be expressed

as follows:

EQ-TARGET;temp:intralink-;e025;116;298Rv ¼ 0.9332þ 0.0585Pv; (25)

EQ-TARGET;temp:intralink-;e026;116;267Rs ¼ 0.9902þ 0.1068Pv; (26)

EQ-TARGET;temp:intralink-;e027;116;241Rimp ¼ 0.9886þ 0.1278Pv; (27)

EQ-TARGET;temp:intralink-;e028;116;214Pv ¼

�

NDVI − NDVIs

NDVIv − NDVIs

�

2

; (28)

where NDVIs and NDVIv refer to the NDVI thresholds values of pure soil and pure vegetation

pixels, respectively. Therefore, the component surface temperature can be estimated by combin-

ing Eqs. (24)–(28). The accuracy of the component temperatures obtained through this method

could be lower than that obtained by solving equations established with four thermal infrared

bands;39 however, the urban RS-PM model is insensitive to the variation of the component sur-

face temperatures (discussed later in Sec. 5), and it is therefore feasible to use the empirical

formulas to estimate the component surface temperatures.
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3.5 Calculation of Component Aerodynamic Resistance to Heat Transfer

Figure 5 shows the flowchart of the second step (Sec. 3.5) of the urban RS-PM model, which is

the calculation process of component aerodynamic resistance.

The component aerodynamic resistance of vegetation and soil can be estimated by the

following equations:39,65

For unstable conditions with ∀ Z∕LM < 0:

EQ-TARGET;temp:intralink-;e029;116;656rah;i ¼ ln

�

Z − do;i

Zom;i

− ψm

�

ln

�

Z − do;i

Zoh;i

− ψh

�

∕ðk2cuzÞ; (29)

EQ-TARGET;temp:intralink-;e030;116;611ψm ¼ 2 ln

�

1þ x

2

�

þ ln

�

1þ x2

2

�

− 2 arctanðxÞ þ π∕2; (30)

EQ-TARGET;temp:intralink-;e031;116;571ψh ¼ 2 ln

�

1þ x2

2

�

; (31)

EQ-TARGET;temp:intralink-;e032;116;531x ¼

�

1 −
16ðZ − dÞ

LM

	

0.25

; (32)

while for stable conditions with ∀ Z∕LM > 0,

EQ-TARGET;temp:intralink-;e033;116;479ψm ¼ ψh ¼ −5ðZ − dÞ∕LM; (33)

where rah;i is the component aerodynamic resistance of vegetation or soil; Z is the elevation at

which the wind speed is observed; do;i is the component zero displacement heights of vegetation

or soil; Zom;i and Zoh;i are, respectively, the roughness lengths for momentum and for heat of

vegetation or soil; kc is the von Karman’s constant with kc ¼ 0.41; uz is the wind speed; ψm and

ψh are, respectively, the stability correction functions for momentum and heat; and LM is the

Monin–Obukhov length that can be estimated as Eqs. (49) and (50)66 as shown in the Appendix.

For the vegetation component, Brutsaert et al.67 have modeled an empirical relationship

between Zom;v, do;v, and the average height of vegetation, which can be expressed as

Fig. 5 Flowchart of the second step (step 2) of the urban RS-PM model, detailed in Sec. 3.5.
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Eqs. (51) and (52) shown in the Appendix. Kustas et al.68 have proposed an algorithm for

estimating Zoh;v, which can be expressed as Eq. (53) shown in the Appendix.

For the soil component, most studies have shown that the roughness for the momentum

(Zom;s) and the zero displacement height (do;s) of soil are very small and can be taken as

constants.69 According to the measurement of Liu et al.,70 Zom;s and do;s were taken as

0.0058 and 0 m, respectively. In addition, Zoh;s can be estimated as Eqs. (54) and (55)71

shown in the Appendix.

3.6 Calculation of Component Surface Resistance

The flowchart of the third step (Sec. 3.6) of our RS-PM model is shown in Fig. 6, which

demonstrates the calculation process of component surface resistance.

For vegetation surface resistance, Mu et al.23 have proposed to calculate the canopy surface

resistance using the stomatal conductance, which can be expressed as follows:

EQ-TARGET;temp:intralink-;e034;116;567gs ¼ CL ×mðTminÞ ×mðVPDÞ; (34)

EQ-TARGET;temp:intralink-;e035;116;536gc ¼ gs × LAI; (35)

EQ-TARGET;temp:intralink-;e036;116;510rs;v ¼
1

gc
; (36)

where gs is the stomatal conductance, CL is the potential stomatal conductance per unit LAI, gc is

the canopy stomatal conductance, rs;v is the canopy surface resistance, and mðTminÞ and

mðVPDÞ are the constraints for minimum air temperature and vapor pressure, respectively,

which can be expressed as Eqs. (56) and (57)23 shown in the Appendix.

Fig. 6 Flowchart of the third step (step 3) of the urban RS-PM model, detailed in Sec. 3.6.
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3.7 Calculation of the Component Net Radiation Flux

The flowchart of the fourth step (Secs. 3.7–3.8) of our model, which is the calculation processes

for component net radiation flux and soil heat flux, is shown in Fig. 7.

3.7.1 Algorithm of the component net radiation flux

The net radiation flux is the sum of net shortwave radiation and net longwave radiation received

by land surface, which can be given by the following equation:22,42,72

EQ-TARGET;temp:intralink-;e037;116;231Rn ¼ ð1 − aÞSd þ εairσT
4
air − εσT4

sur; (37)

where a is the land surface albedo, Sd is the incident solar radiation on ground, εair is the

effective emissivity of the atmosphere, and σ is the Stefan Boltzmann constant with

σ ¼ 5.67 × 10−8 W · m−2 · K−4. Based on Eq. (37), Zhang et al.39 have proposed a new algo-

rithm for calculating the component net radiation flux of vegetation and soil, which can be

expressed as follows:

EQ-TARGET;temp:intralink-;e038;116;139Rn;v ¼ ð1 − avÞSd þ εairσT
4
air − εvσT

4
v; (38)

EQ-TARGET;temp:intralink-;e039;116;113Rn;s ¼ ð1 − asÞSd þ εairσT
4
air − εsσT

4
s ; (39)

where Rn;v and Rn;s refer to the component net radiation flux of vegetation and soil, respectively;

av and as refer to the land surface albedos of vegetation and soil, respectively; εv and εs refer to

Fig. 7 Flowchart of the fourth step (step 4) of the urban RS-PM model, detailed in Secs. 3.7–3.8.
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the component typical emissivity of vegetation and soil, respectively; and Tv and Ts refer to

the component surface temperature of vegetation and soil, respectively.

3.7.2 Algorithm of incident solar radiation

The incident solar radiation Sd contributes mostly to the net radiation flux and largely determines

the latent heat and sensible heat fluxes. It is a function of the solar constant Isc (1367 W · m−2),

the solar zenith angle θ, the relative Earth–Sun distance dm, and the atmospheric broadband

transmissivity τb, which can be expressed as follows:73,74

EQ-TARGET;temp:intralink-;e040;116;627Sd ¼ Iscd
2
m cos θτb; (40)

EQ-TARGET;temp:intralink-;e041;116;600 cos θ ¼ sin φ sin δþ cos φ cos δ cos ω; (41)

where φ is the latitude of the study area, δ is the solar declination, and ω is the solar hour angle.

Note that d2m, δ, and ω are given by Eqs. (58) to (64)75 shown in the Appendix.

3.7.3 Algorithm of atmospheric effective emissivity

Atmosphere effective emissivity εair is determined by atmospheric water vapor pressure e and the

atmospheric temperature Tair. Note that εair can be estimated as follows under the cloudless

condition:

EQ-TARGET;temp:intralink-;e042;116;477εair ¼ 1.24ðe∕TairÞ
1∕7: (42)

3.7.4 Algorithm of component surface albedo

Land surface albedo a is the ratio of the solar radiation reflected by the ground to the incident

solar radiation. Liang et al.76 has proposed a linear relationship between the broad albedo and

the reflectance in the six bands of Landsat TM/ETM data. Because Landsat 8 OLI data have

similar bands, a can be estimated as follows:

EQ-TARGET;temp:intralink-;e043;116;361abro ¼ 0.366b2 þ 0.130b4 þ 0.373b5 þ 0.085b6 þ 0.072b7 − 0.0018; (43)

where bx (x ¼ 2, 4, 5, 6, 7) is the reflectance in band x of Landsat 8 data. Then, the broad band

albedo with the pure pixels of vegetation and soil obtained in LSMA (Sec. 3.2) is overlaid, and

the average component surface albedo of vegetation and soil can be obtained, which is shown in

Table 6.

3.8 Calculation of Soil Heat Flux

Soil heat flux is a part of net radiation energy received and stored by the soil component. Friedl77

analyzed the relationship between the net radiation flux and the soil heat flux, and reported that

the soil heat flux Gs is a function of the component net flux of soil Rn;s and the solar zenith angle

θ, which can be expressed as follows:

EQ-TARGET;temp:intralink-;e044;116;197Gs ¼ 0.25Rn;s cos θ: (44)

Table 6 Typical albedo of the vegetation and soil components for the study

area.

Component Component albedo

Vegetation 0.18

Soil 0.28
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4 Results

4.1 Inversion Results of the Urban Remote Sensing
Penman–Monteith Model

To improve calculation efficiency, we coded the urban RS-PM model in the IDL (interface

description language) environment. By entering the meteorological data and the intermediate

parameters obtained from Secs. 3.2–3.8, the code returned the component transpiration of veg-

etation (λEv) and the component evaporation of soil (λEs) separately and rapidly. By summing

λEv and λEs [Eqs. (14) and (17)], we obtained the urban surface ET in the study area from

2014 to 2016 (Fig. 8). Because the result was instantaneous ET and had a very small order of

magnitude, the latent heat flux LE was used to represent ET.

Pixels with the value of LE > 0 were extracted from the 2014 to 2016 ET maps as shown in

Fig. 8, before the statistics on the resultant LE were produced (Table 7).

By overlaying the ET map of each date with the corresponding component fractions of veg-

etation, soil, and impervious surface, we observed that the characteristics of the spatial distri-

bution of urban surface ETare as follows: (1) the areas with high ETwere mainly concentrated in

the pixels with high vegetation fractions and had relatively few distributions in the areas with

high soil fractions; (2) the areas with low ET were mainly distributed in the pixels with high

impervious surface fractions, and the areas with LE ¼ 0 were mainly concentrated in the pure

impervious surface pixels; and (3) the average ET was higher in warm months (September 02,

2016, May 01, 2014, October 24, 2014, September 02, 2016, and October 04, 2016) of the study

area than in cold months (December 21, 2015, February 16, 2016, March 10, 2016, and

November 05, 2016).

4.2 Validation of the Urban Remote Sensing Penman–Monteith Model

Note that the value of a pixel in the ET maps inferred from remote sensing data (Fig. 8) was

averaged ET of a geographical area of pixel size (i.e., 30 m × 30 m for Landsat data in this

study). Remote sensing inferred ET cannot be directly compared with the ground measured

ET for validation due to their different spatial scales78—the spatial scale of the ground measured

ET is determined by the height of EC, atmospheric stability, wind direction, wind speed, and land

surface coverage.48 To solve this problem, the footprint model79 was applied in the validation.

The contribution of the turbulent flux from the surrounding areas to the ET observation values

can be simulated by the footprint model, and the flux footprint (or the source area) fECðx; y; zmÞ

Fig. 8 The urban surface ET (represented by the latent heat flux LE) of the study area from 2014

to 2016 (open water bodies have been masked out and displayed in dark blue in the maps).
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of the ET observation can be obtained.80–82 The Eulerian analytic footprint model can be

expressed as follows:79

EQ-TARGET;temp:intralink-;e045;116;499fECðx; y; zmÞ ¼ Dyðx; yÞf
yðx; zmÞ; (45)

where x is the downwind distance pointing against the average horizontal wind direction, y is the

lateral wind distance, zm is the height of EC observation, fyðx; zmÞ is the lateral wind integral

footprint function, and Dyðx; yÞ is the Gaussian lateral wind spread function.48 Figure 9 shows

the source area with contribution weights for the EC measurements simulated by the foot-

print model.

After obtaining the spatial distributions and the contribution weights of the source areas, we

calculated the ET weighted average of all pixels in the source area by the following equation:

EQ-TARGET;temp:intralink-;e046;116;383LEF ¼
X

n

i¼1

ðxi × LEiÞ; (46)

Table 7 The statistics on urban surface ET in the study area from 2014 to 2016.

Date
Minimum LE
(W · m−2)

Maximum LE
(W · m−2)

Average LE
(W · m−2)

Standard deviation
(W · m−2)

May 01, 2014 0.01049 373.54 206.13 80.16

October 24, 2014 0.00024 234.66 147.26 51.37

December 21, 2015 0.00015 130.26 60.01 29.34

February 16, 2016 0.00100 137.72 71.32 31.33

March 10, 2016 0.00161 182.02 61.11 42.67

September 02, 2016 0.00210 402.23 209.14 104.54

September 04, 2016 0.00058 272.21 174.80 71.57

November 05, 2016 0.00042 151.40 71.28 39.00

Fig. 9 Schematic diagrams of remote sensed ET (gray-scale images) overlaid with the source

areas (colorful areas) of EC from 2014 to 2016. Purple arrows indicate wind directions for different

dates.
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where LEF is the weighted average value of the latent heat flux in the source area (henceforth

referred to as the source area latent heat flux), which has the same spatial scale with the latent

heat flux measured by ground EC (LEEC); xi is the value of contribution weight for pixel i in the

source area, n is the total number of the pixels in the source area, and LEi is the latent heat flux

inferred by remote sensing data for pixel i. The differences and variation trends of the source

latent heat flux LEF and the measured latent heat flux LEEC for the eight dates are shown in

Fig. 10(a). It is shown that the variation trends of the source area LEF and the EC measured LEEC

were basically consistent with each other.

Table 8 shows the statistics on the difference between LEF and LEEC for the eight dates: the

maximum error and the maximum error rate were −42.85 W · m−2 (September 02, 2016) and

52.11% (November 05, 2016), respectively, and the minimum error and the minimum error

rate were 4.52 W · m−2 (March 10, 2016) and 9.67% (May 01, 2014), respectively. Our com-

parative analysis indicates that the ET inferred by the urban RS-PM model is acceptable in

general.

To further evaluate the accuracy of the ET inferred by the urban RS-PM model, three error

assessment indices were used here: the RMSE, which reflects the dispersion degree of the

inferred value to the measured value; the mean relative error (MRE), which reflects the relative

deviation degree of the inferred value from the measured value; and the correlation coefficient

(r), which reflects the similarity degree between the variation trends of the inferred value and

the measured value. Equations for calculating these indices are expressed as Eqs. (65)–(67) in

the Appendix. The results of accuracy assessment showed that the RMSE, MRE, and r are

Fig. 10 (a) Variation trends comparison between the source area LEF and the EC measured

LEEC; and (b) scatterplot of the source area LEF against the EC measured LEEC. The source

area LEF agrees well with the EC measured LEEC.

Table 8 Error statistics on the source area LEF in relation to the EC measured LEEC.

Date LEF (W · m−2) LEEC (W · m−2)
Error LEF − LEEC

(W · m−2) Error rate (%)

May 01, 2014 115.84 128.25 −12.41 9.67

October 24, 2014 127.97 106.57 21.40 20.08

December 21, 2015 32.91 24.99 7.92 31.69

February 16, 2016 73.39 56.72 16.67 29.39

March 10, 2016 43.19 38.67 4.52 11.68

September 02, 2016 133.03 175.88 −42.85 24.36

September 04, 2016 253.52 228.47 25.05 10.97

November 05, 2016 43.90 28.86 15.04 52.11
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24.14 W · m−2, 18.5%, and 0.9546, respectively. By plotting the source area LEF against the EC

measured LEEC and fitting them [Fig. 10(b)], we noticed that the fitting line was very close to

the 1:1 line, and that the goodness of the linear fitting result R2 was 0.8965. This further proves

that the urban RS-PM model can estimate reliable urban ET at high accuracy.

5 Discussion

5.1 Parameter Sensitivity Analyses

5.1.1 Sensitivity analyses of component fractions

Compared with the parameters in the traditional RS-PM model, four major parameters have

been included in the urban RS-PM model, namely the component fractions of vegetation fv
and of soil fs, and the component net radiation flux of vegetation Rn;v, and of soil Rn;s. It is

necessary to analyze how sensitive the RS-PM model is to the variations of these parameters.

Based on Eqs. (38) and (39), for a given remote sensing image, av, as, εv, and εs are constants,

and Sd and Tair are affected mainly by the acquisition time of the remote sensing image data,

the location of the study area, and the local meteorology. Therefore, Rn;v and Rn;s are deter-

mined mainly by the component surface temperatures Tv and Ts. According to Eq. (24), Tv and

Ts are calculated by Tsur—Rn;v and Rn;s, therefore, can be represented by Tsur for sensitivity

analysis.

The modeled ET of October 24, 2014, is used as the reference data for sensitivity analysis.

For the sensitivity analysis of fv and fs, we assume that all other parameters are stable when

the controlled variable changes.39 In the component fraction image of vegetation (or soil), a

change ranging from −0.3 to 0.3 with an increase of 0.1 in fv (or fs) is set, and four testing

areas with the initial fv (or fs) values between 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.6, and 0.6 to 0.7,

respectively, were selected for sensitivity analysis. As the sum of the component fractions in a

pixel is one for the fully constrained LSMA [i.e., Eq. (11)], each time when fv (or fs) changes,

the variation value of fv (or fs) should be assigned to the other components based on the initial

proportions of each component, which can be expressed as follows (using fv variation as

an example):

EQ-TARGET;temp:intralink-;e047;116;357fv_va ¼ fv_ini þ Δfv; (47)

EQ-TARGET;temp:intralink-;e048;116;325fs_as ¼ fs_ini − Δfv

�

fs_ini

fs_ini þ fimp;h_ini þ fimp;l_ini

�

; (48)

where fv_va is the vegetation component fraction after adding a change value of Δfv; fs_as is

the soil component fraction when the vegetation component fraction obtains an addition of

Δfv; and fv_ini, fs_ini, fimp;h_ini, and fimp;l_ini are the initial component fractions of vegetation,

soil high- and low-albedo impervious surface, respectively. The average value of the corre-

sponding ET in each testing area for each change of fv (or fs) is recorded and shown in Fig. 11.

Figure 11 shows that the resultant ET is positively linearly correlated with the variation value

of vegetation or the soil fraction. However, the RS-PMmodel is more sensitive to the variation of

vegetation fraction as large slopes can be observed for the fitting lines in Fig. 11(a). Table 9

shows that as the vegetation fraction increases by 0.1, the growth rates of the average correspond-

ing ET in the four testing areas are 8.28%, 7.95%, 7.85% and 8.02%, respectively; as soil fraction

increases by 0.1, the average growth rates of the corresponding ET in the four testing areas are

0.23%, 0.45%, 0.66%, and 0.66%, respectively. These indicate that the vegetation fraction has

a greater influence on the ET estimation by the urban RS-PM model.

5.1.2 Sensitivity analysis of land surface temperature

As the urban RS-PM model is proven sensitive by its variation, we control the fv value within a

certain range to reduce its effect on the result of the sensitivity analysis of Tsur. In the land surface

Zhang et al.: Remote sensing estimation of urban surface evapotranspiration based on a modified. . .
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temperature image of October 24, 2014, we first extract the total testing area with the fv value

that was limited to the range of 0.45 to 0.55 (the following four testing areas were extracted from

the total testing area). A change ranging from −5 to 5 K with an increase interval of 1 K was set,

and the four testing areas with the initial Tsur value from 295 to 296 K, 298 to 299 K, 301 to

302 K, and 304 to 305 K, respectively, were selected from the extracted areas for sensitivity

analysis. The average value of the corresponding ET of each testing area for each change of

Tsur is recorded and shown in Fig. 12.

Figure 12 shows that there is a negative correlation between the corresponding ET and the

variation value of the land surface temperature and that the corresponding ET is less sensitive to

the variation of the land surface temperature. Table 10 shows that as the land surface temperature

increases by 1 K, the mean growth rates of the average corresponding ETof the four testing areas

are appropriately −0.37%, −0.31%, −0.58%, and −0.65%, respectively. This indicates that the

variation of the land surface temperature has less influence on the ET estimation by the urban

RS-PM model—the urban RS-PM model is not that sensitive to this parameter. As such, it is

acceptable to use the empirical algorithm for estimating the component temperatures (Sec. 3.4)

even if the estimations are not that accurate.

5.2 Accuracy Assessment

As previously mentioned, urban ET estimations remain scarce and we here compare our urban

RS-PMmodel with other remote sensing-based ET estimation models for natural surfaces. In our

Fig. 11 Sensitivity of the RS-PM model with the variation of (a) vegetation fraction and (b) soil

fraction.

Table 9 Statistics of the variation rates of the corresponding ET for Δf v or Δf s.

Δf v or Δf s

Testing area

Variation rate of corresponding
ET for Δf v (%)

Variation rate of corresponding
ET for Δf s (%)

1 2 3 4 1 2 3 4

−0.3 24.83 23.85 23.56 24.07 0.69 1.36 1.97 1.99

−0.2 16.55 15.90 15.71 16.05 0.46 0.91 1.31 1.33

−0.1 8.28 7.95 7.85 8.02 0.23 0.45 0.66 0.66

0.1 −8.28 −7.95 −7.85 −8.02 −0.23 −0.45 −0.66 −0.66

0.2 −16.55 −15.90 −15.71 −16.05 −0.46 −0.91 −1.31 −1.33

0.3 −24.83 −23.85 −23.56 −24.07 −0.69 −1.36 −1.97 −1.99
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case study of Xuzhou, the urban RS-PM model estimated urban ET with an RMSE of

24.14 W · m−2, an MRE of 18.5%, and a correlation coefficient of 0.9546. This is consistent

with the study by Jia et al.48 who used the footprint model to validate their 30-m resolution ET

estimation at different sites and time with the RMSE of 8.99 to 28.07 W · m−2, the r of 0.84 to

0.98, and the MRE of 7.59% to 19.58%, respectively. Some reports83–85 indicate that most

remote sensing-based ET estimations have achieved an MRE ranging from 20% to 30%.

Kalma et al.86 has concluded the accuracy of different remote sensing techniques for estimating

ET with an average RMSE of 50 W · m−2 and with an MRE of 15% to 30%; the details are

shown in Table 11.86

Compared with other models, the accuracy ranking of our model is relatively high, thus,

it can be concluded that the urban RS-PM model is reasonable and feasible.

Fig. 12 Sensitivity of the RS-PM model with the variation of land surface temperature.

Table 10 Statistics of the variation rates of the corresponding ET for ΔT sur.

ΔT sur (K)

Testing area

Variation rate of corresponding ET for ΔT sur (%)

1 2 3 4

5 −2.05 −1.50 −2.81 −3.30

4 −1.60 −1.22 −2.27 −2.67

3 −1.16 −0.92 −1.72 −2.02

2 −0.76 −0.62 −1.16 −1.33

1 −0.37 −0.31 −0.59 −0.69

−1 0.35 0.32 0.60 0.65

−2 0.68 0.63 1.20 1.29

−3 1.00 0.95 1.78 1.88

−4 1.31 1.28 2.37 2.51

−5 1.60 1.60 2.97 3.17
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6 Conclusions

As an algorithm that was developed particularly for estimating the ET of urban areas with

a heterogeneous underlying surface, our urban RS-PM (remote sensing Penman–Monteith)

model has made three major modifications based on the traditional RS-PM model: (1) the

interference of impervious surface components in urban areas was excluded, using the com-

ponent fractions of vegetation and soil extracted through linear spectral mixture analysis to

replace the vegetation cover fraction index, which can accurately calculate the proportions of

vegetation and soil; (2) the component latent heat flux was estimated by the modified multi-

source parallel model, which considered the effect of the component fraction on all energy

components in the SEB; and (3) the calculation of the component net radiation flux was

optimized by considering the component surface characteristics. In addition, an empirical

approach was included in the urban RS-PM model to simplify the calculation of component

temperatures.

The successful application of the urban RS-PM model in the case study of Xuzhou, which

achieved an acceptable accuracy, proves that our model is effective in estimating urban ET.

Parameter sensitivity analyses indicated that both vegetation and soil component fractions

are important parameters in the RS-PM model, which is more sensitive to the vegetation com-

ponent fraction than to the soil component fraction. It is noted that the model is insensitive to

the component land surface temperature, which justifies the use of the empirical algorithm for

estimating the component temperature.

Due to the discontinuity of the EC observations, only eight appropriate Landsat 8 images of

the study area can be selected during the observation periods in this study, which may weaken

our validation compared with the validation based on more samples. Future work should inves-

tigate the applicability and robustness of the urban RS-PM model on areas at the regional and

national scales using lower-resolution image data.

Table 11 Accuracy reports of different remote sensing models for estimating ET.

Model Source Satellite data Time step r

MRE
(%)

RMSE
(W · m−2)

One-source
SEB

Su et al.87 Mast 30 min 0.92 to 0.94 40 to 47

McCabe and
Wood88

ASTER Instant 0.81 to 0.87 68 to 99

Two-source
SEB

Kustas and
Norman89

Masts and
aircraft

Instant 12 to 15 37 to 47

Norman et al.90 Masts 30 min 27 105

Li et al.91 Landsat 7 ETM 30 min 10 to 15 50 to 55
Landsat 5 TM

T rad-VI Gillies et al.92 Aircraft Satellite
transit time

0.89 to 0.95 10 to 30 25-55

Jiang and Islam93,94 AVHRR Satellite
transit time

0.80 to 0.95 15 to 30 59-85

ALEXI Anderson et al.95 GOES and
MODIS

Satellite
transit time

25 58

SEBAL French et al.96 ASTER 30 min 15 55

S-SEBI Verstraeten et al.97 AVHRR 30 min 24 35

Empirical
method

Wang et al.98 MODIS 16 days 0.90 36 32
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7 Appendix: Equations of the Intermediate Parameters

EQ-TARGET;temp:intralink-;e049;116;704LM ¼ u2�Tair∕kcgT�; (49)

EQ-TARGET;temp:intralink-;e050;116;685u� ¼
kcuz

ln½ðZ − dÞ∕Zom;i�
; (50)

where u� is the friction velocity, g is the gravitational acceleration with g ¼ 9.8 m · s−2, and

T� is the temperature scale with T� ¼ Tsur − Tair:

EQ-TARGET;temp:intralink-;e051;116;621Zom;v ¼ hv∕8; (51)

EQ-TARGET;temp:intralink-;e052;116;590do;v ¼ 2hv∕3; (52)

where hv is the average height of vegetation; in urban areas, hv can be given a value of 5 m:39

EQ-TARGET;temp:intralink-;e053;116;552Zoh;v ¼ Zom;ve
−SkbuzjTv−Tair j; (53)

where Tv is the vegetation component surface temperature and Skb is the empirical coefficient

with Skb ¼ 0.13:68

EQ-TARGET;temp:intralink-;e054;116;495Zoh;s ¼ Zom;se
−½2.46ðRe�Þ

0.25−2�; (54)

EQ-TARGET;temp:intralink-;e055;116;462Re� ¼
u�Zom;s

v
; (55)

where Re� is the roughness Reynolds number and v is the kinematic molecular viscosity with

v ¼ 1.48 × 10−7 m2 · s−1:

EQ-TARGET;temp:intralink-;e056;116;401mðVPDÞ ¼

8

<

:

1 VPD ≤ VPDopen
VPDclose−VPD

VPDclose−VPDopen
VPDopen < VPD < VPDclose

0.1 VPD ≥ VPDclose

; (56)

EQ-TARGET;temp:intralink-;e057;116;331m
�

Tmin

�

¼

8

<

:

1 Tmin ≥ Tmin _open
Tmin−Tmin _close

Tmin _open−Tmin _close
Tmin _close < Tmin < Tmin _open

0.1 Tmin ≤ Tmin _close

; (57)

where “close” means nearly complete suppression with full stomatal closure, and “open” means

no suppression for transpiration. The threshold values of VPDopen, VPDclose, Tmin _open, and

Tmin _close for different biomes have been given in the biome properties look-up table

(BPLUT).23,99 For soil surface resistance, Mu et al.23 have also proposed an estimation method

that is shown as Eqs. (5)–(7):

EQ-TARGET;temp:intralink-;e058;116;216d2m ¼ 1.000110þ 0.034221 cos β þ 0.001280 sin β þ 0.000719 cos 2β þ 0.000077 sin 2β;

(58)

EQ-TARGET;temp:intralink-;e059;116;171

δ ¼ 0.006918 − 0.399912 cos β þ 0.070257 sin β − 0.006758 cos 2β

þ 0.000907 sin 2β − 0.002697 cos 3β þ 0.00148 sin 3β; (59)

EQ-TARGET;temp:intralink-;e060;116;126ω ¼
π

12
ðST − 12Þ; (60)

where β is the day angle and ST is the real solar time, which can be calculated as follows:39,100
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EQ-TARGET;temp:intralink-;e061;116;735βd ¼ 2π
Dn − 1

365
; (61)

EQ-TARGET;temp:intralink-;e062;116;699ST ¼ hb þ
ðλ� − λ�sÞ × 4þ 229.183η

60
; (62)

EQ-TARGET;temp:intralink-;e063;116;656η ¼ 0.000043þ 0.002061 cos θ − 0.032040 sin θ − 0.014974 cos 2θ − 0.040685 sin 2θ;

(63)

where Dn is the number of days in the year, hb is the Beijing time (UTC + 8), λ�s is the longitude

of local standard time (the longitude of Beijing is 120°E), λ� is the local longitude (the central

longitude of the study area is 117.3°E), and η is the time lag (rad).

Long et al.74 have found incident solar radiation Sd is most sensitive to the variation of the

atmospheric broadband transmissivity τb, which can be estimated using the model proposed by

Allen et al.:101

EQ-TARGET;temp:intralink-;e064;116;544τb ¼ 0.35þ 0.627 exp

�

−0.00146PA

Kt cos θ
− 0.075

�

w

cos θ

�	

; (64)

where Kt is the atmospheric turbidity coefficient with 0 < Kt ≤ 1: for clean atmosphere Kt ¼ 1;

and for polluted or turbid atmosphere Kt ¼ 0.5:

EQ-TARGET;temp:intralink-;e065;116;470RMSE ¼

�

1

N

X

N

i¼1

ðLEF;i − LEEC;iÞ
2

	0.5

; (65)

EQ-TARGET;temp:intralink-;e066;116;418MRE ¼
1

N

X

N

i¼1

jLEF;i − LEEC;ij

LEEC

× 100%; (66)

EQ-TARGET;temp:intralink-;e067;116;371r ¼
X

N

i¼1

ðLEF;i − LEFÞðLEEC;i − LEECÞ∕

�

X

N

i¼1

ðLEF;i − LEFÞ
2
X

N

i¼1

ðLEEC;i − LEECÞ
2

	

; (67)

where LEF;i is the source area latent heat flux for each date i (i ¼ 1 to 8), LEEC;i is the EC

measured latent heat flux for each date i, N is the total number of the EC measured data

with N ¼ 8, LEF is the average source area latent heat flux of all dates, and LEEC is the average

EC measured latent heat flux of all dates.
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