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Summary
Beginning in 1970, the potential of remote sensing (RS) techniques, coupled with geographical
information systems (GIS), to improve our understanding of the epidemiology and control of
schistosomiasis in Africa, has steadily grown. In our current review, working definitions of RS,
GIS and spatial analysis are given, and applications made to date with RS and GIS for the
epidemiology and ecology of schistosomiasis in Africa are summarised. Progress has been made
in mapping the prevalence of infection in humans and the distribution of intermediate host snails.
More recently, Bayesian geostatistical modelling approaches have been utilized for predicting the
prevalence and intensity of infection at different scales. However, a number of challenges remain;
hence new research is needed to overcome these limitations. First, greater spatial and temporal
resolution seems important to improve risk mapping and understanding of transmission dynamics
at the local scale. Second, more realistic risk profiling can be achieved by taking into account
information on people's socio-economic status; furthermore, future efforts should incorporate data
on domestic access to clean water and adequate sanitation, as well as behavioural and educational
issues. Third, high-quality data on intermediate host snail distribution should facilitate validation
of infection risk maps and modelling transmission dynamics. Finally, more emphasis should be
placed on risk mapping and prediction of multiple species parasitic infections in an effort to
integrate disease risk mapping and to enhance the cost-effectiveness of their control.
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Introduction
Schistosomiasis continues to exert pressure against social and economic development,
particularly in sub-Saharan Africa where more than 80% of the total number of infected
individuals and the global burden of this often neglected tropical disease are concentrated
(WHO, 2002; Steinmann et al. 2006). Despite considerable progress made in morbidity
control of schistosomiasis in several African countries – facilitated through large-scale
administration of praziquantel to school-aged children and other high-risk groups
(Kabatereine et al. 2007; Koukounari et al. 2007) – the disease has expanded elsewhere and
the transmission has intensified in areas where water resources have been developed, such as
large dams and irrigation systems (Fenwick, 2006; Steinmann et al. 2006).

Important to the transmission biology of schistosomiasis in Africa are several species of
aquatic snails that act as intermediate hosts for the development of the parasite to an
infective free-swimming larval stage, i.e. cercariae. Humans acquire an infection through
cercarial skin penetration during water contact. There are several principal intermediate host
snails belonging to two genera; Bulinus transmitting Schistosoma haematobium and
Biomphalaria transmitting S. mansoni (Brown, 1994). It follows that the transmission of
schistosomiasis is spatially and temporally restricted to water bodies inhabited by
intermediate host snails when humans get in contact with the water infested with cercariae
during occupational or recreational activities. Schistosomiasis has therefore been defined as
an environmental disease (Malone, 2005; Liang et al. 2007). Hence, a deeper knowledge of
ecological factors, permissive to the development of the parasite-intermediate host snail
system, is important to target control interventions.

In 1970, the potential of aerial pictures and other remote sensing (RS) techniques to enhance
our understanding of the epidemiology and control of tropical diseases was first highlighted
(Cline, 1970). Fourteen years later, the first RS applications to predict the occurrence of
human schistosomiasis in the Caribbean and the Philippines were published (Cross and
Bailey, 1984; Cross et al. 1984). In 1994, the first successful application of remotely-sensed
temperature data, coupled with geographical information system (GIS) for prediction of
human schistosomiasis was presented for the Nile delta, Egypt (Malone et al. 1994).

The past 15 years have seen a considerable growth of RS and GIS applications in human and
veterinary epidemiology (Robinson, 2000; Brooker, Clements and Bundy, 2006; Hay et al.
2006; Rinaldi et al. 2006), including human schistosomiasis (Brooker, 2002; Yang et al.
2005). To illustrate this issue, we accessed PubMed (http://www.ncbi.nlm.nih.gov/sites/
entrez) in early 2009, and entered the following combination of terms and Boolean
operators: “remote sensing” OR “geographical information system” OR “mapping” OR
“prediction” AND “schistosomiasis” AND “Africa”. We temporally restricted our search
back to 1996, which revealed 41 hits, of which 32 were of relevance. Fig. 1 shows the yearly
number of publications between 1996 and 2008. Several reviews have already been
published that emphasise the potential of RS and GIS technologies, particularly in
conjunction with spatial analysis, for the ecology, epidemiology and control of
schistosomiasis (Brooker and Michael, 2000; Brooker, 2002, 2007; Malone, 2005; Yang et
al. 2005). Here, we summarize progress made to date with the application of RS and GIS
with a focus on Africa, for risk mapping and prediction of (1) patterns of human
schistosome infection, and (2) intermediate host snail distributions. Our review builds on the
recent discussion by Brooker (2007) on the spatial epidemiology of schistosomiasis in
Africa and highlights remaining challenges. Finally, it discusses opportunities for integrating
risk mapping of schistosomiasis with a number of other tropical diseases and therefore
complements Brooker and colleagues' (2009) review on integrated rapid survey methods for
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schistosomiasis and other neglected tropical diseases, published in the same issue of
Parasitology.

Working Definitions
Box 1 provides a summary of common definitions for key terms utilized in the current
review. These working definitions might help to better understand the potential applications
of RS and GIS for the mapping of human schistosome infections and the distribution of
intermediate host snails at various spatial and temporal scales.

Why RS and GIS Applications Lend Themselves for Schistosomiasis Risk
Mapping

Schistosomiasis is amenable to risk mapping since the development and survival of the
parasite within the intermediate host snail and the snails themselves are sensitive to climatic
factors, principally temperature (Appleton, 1978; Brooker and Michael, 2000; Zhou et al.
2008). Roughly, the optimal temperature range for Bulinus spp. and Biomphalaria spp.
development is between 20 °C and 30 °C, with thermal death occurring at temperatures
either below 16 °C or above 40 °C. Since temperature and altitude are strongly correlated,
the latter is often used as a proxy of transmission, although the precise level varies according
to setting (Brooker and Michael, 2000). Several studies have also found an association
between snail distribution, abundance and rainfall; without water snails cannot survive,
whereas too much water can wash away snail populations. All of these climatic determinants
of transmission are readily available from RS sources (for a review see Hay et al. (2006)),
and hence can be used to develop risk models.

Man-made ecological transformations, such as deforestation (Walsh, Molyneux and Birley,
1993), changes in agricultural practices (Matthys et al. 2007), water resources development
and management (Fenwick, 2006; Steinmann et al. 2006; Yang et al. 2006) and climate
change (Martens, Jetten and Focks, 1997; Zhou et al. 2008), also determine transmission and
can be captured by RS technologies as shown in some of the references cited above.
However, there are several other important factors that determine localized transmission that
cannot readily be captured by RS data. These include demographic features and socio-
economic status (Raso et al. 2006), access to clean water and adequate sanitation and
educational attainment (Arinola, Arinola and Ojewale, 1996; Taylor et al. 1999). Such a
complexity of factors contributes to the well-known focality of schistosomiasis, and
suggests that patterns are more easily predicted at regional and national scales and that either
more complex models are required to predict patterns at local scales or that field surveys are
still required to finely target treatment and other interventions (Brooker, 2007; Brooker et al.
2009; Vounatsou et al. 2009).

Predicting Patterns of Human Infection
Using climatic determinants of parasite transmission, several studies have developed Africa-
wide risk maps for malaria transmission (Craig, Snow and le Sueur, 1999; Hay and Snow,
2006; Guerra et al. 2007) and lymphatic filariasis (Lindsay and Thomas, 2000). In theory it
should also be possible to develop a climate-based risk model for schistosomiasis across the
continent, although to date, no such map exists. An on-going project has employed GIS to
develop a comprehensive database of schistosome (and other helminth) infections in Africa
and provides district-level spatial descriptions, which highlights the paucity of empirical
data in much of the continent (Brooker et al. 2000). A recent initiative, CONTRAST (see:
http://www.eu-contrast.eu), has brought together existing electronic information (published
and unpublished data) into a single database (Fig. 2). By displaying data on Google Earth
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and using an open-source platform accessible from the web, data management and sharing
of information could become a useful tool for schistosomiasis control managers and for
long-term surveillance of the disease (Stensgaard et al. 2009).

A particular challenge in developing a continent-wide, climate-based schistosomiasis risk
map lies in the variation in biotic requirements of different intermediate host snail species
that occur throughout Africa. This feature was previously emphasised in connection with
separate schistosomiasis climatic-suitability risk models developed for Cameroon and
Tanzania and an attempt to apply each model to the other setting. It was found that, while
each model provided a reasonable prediction in the setting where they were developed, they
were unable to predict risk in other settings reliably. However, each model could be
extrapolated within the same ecological zone, presumed to reflect the distribution of
different intermediate host snail species (Brooker, Hay and Bundy, 2002a). Therefore, in
order to develop a continental risk map for schistosomiasis, there would be the need to
construct a composite risk map, which takes into account different ecological zones and
differential snail distributions and compatibilities thereof. The above-mentioned EU-funded
CONTRAST project has taken up the challenge of developing schistosomiasis climatic
suitability risk maps as well as empirical maps based on spatial statistical models and
detailed knowledge of the local snail fauna.

Such a continental risk map can be characterized as a macro-level description of
schistosomiasis risk. Thus far, models of schistosomiasis have mainly been developed at
regional and national scales; the latter of which is considered meso-level. Further models
have been developed at local scales (unit of a single village or district), so-called micro-level
models. Table 1 provides an overview of studies which have investigated the risk of human
schisto-some infection, emphasizing the scale, what kind of RS environmental data were
utilized and the application of GIS and spatial analysis.

Employing a variety of statistical approaches, national-level or sub-national models of
schistosomiasis risk have been developed in Cameroon (Brooker et al. 2002b), Egypt
(Malone et al. 1994; Abdel-Rahman et al. 2001), Ethiopia (Malone et al. 2001), South Africa
(Moodley et al. 2003), Tanzania (Brooker et al. 2001, 2002a; Clements et al. 2006a),
Uganda (Kabatereine et al. 2004; Stensgaard et al. 2005), Zimbabwe (Mukaratirwa et al.
1999) and Zambia (Simoonga et al. 2008). The earliest of these studies were based on
simple threshold analysis or traditional regression modelling to predict infection risk; more
recently, studies have adopted a Bayesian platform of analysis. Using a Bayesian
geostatistical method of inference, a regional-scale map of the intensity of S. mansoni
infection has been developed for East Africa (Clements, Moyeed and Brooker, 2006b), and
for high-risk areas of S. haematobium in West Africa (Clements et al. 2008b). As indicated
above, other factors may also determine infection patterns, including demographic,
educational and socio-economic status and ecological transformations, which could be
included into available meso-level models. However, such complex models are not currently
available.

At the micro-scale, a number of studies have been carried out in the region of Man, western
Côte d'Ivoire and in different parts of Kenya. In Côte d'Ivoire, for example, one
investigation focused on the spatial distribution of S. mansoni among school-children from a
single village and concluded that there was no clear pattern of infection risk, probably
explained by a limited number of transmission sites that are accessed by most of the
schoolchildren (Utzinger et al. 2003). In-depth studies focusing on over 50 rural schools
covering an area of 40 × 60 km allowed developing an integrated risk profiling approach for
prediction of high-risk areas of S. mansoni. A variety of data sources (i.e. demographic data
obtained from readily available school registries, RS environmental data and digitized
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ground maps, and socio-economic data collected through a cross-sectional questionnaire
survey administered by teachers), was utilized for setting up a comprehensive GIS,
including a digital elevation model. Bayesian geostatistical models were fitted to probe for
significant associations between an infection with S. mansoni and demographic,
environmental and socio-economic factors. With regard to environmental data, at the unit of
the school, significant correlations were found between the infection prevalence of S.
mansoni and stream order of the nearest river, water catchment area and altitude (Raso et al.
2005, 2006; Beck-Wörner et al. 2007).

In Kenya, a number of studies have been carried out to assess the risk of schistosomiasis at a
micro-scale (Handzel et al. 2003; Booth et al. 2004; Clennon et al. 2004). Along the
southern coast of Kenya, for example, high S. haematobium infection intensities were
clustered around water bodies containing high numbers of infected intermediate host snails
(Clennon et al. 2004). The prevalence of intestinal schistosomiasis among children attending
schools near Lake Victoria was positively associated with proximity to the lake shore and
specific water-related activities such as swimming, fishing and collecting water (Handzel et
al. 2003; Stothard et al. 2005).

A clear inference from the studies summarized in Table 1 is the importance of considering
the snail species involved in schistosome transmission. The next section reviews studies
which have attempted to predict the distribution of intermediate host snail species across
Africa.

Predicting Intermediate Host Snail Distributions
Reviewing the literature has revealed that only a few studies have utilized GIS and RS for
mapping and modelling schistosome intermediate host snail distribution in different parts of
Africa (Table 2). Most of these studies have used GIS in conjunction with RS environmental
data proxies, to produce climatic suitability maps for the intermediate host snails. As with
the human infection predictions, most studies using GIS and RS to map the snail
distributions, have been conducted at the national (meso-) scale, a few at the micro-scale
(Clennon et al. 2006) – but none so far has attempted a continent-wide mapping.

The first study to include snail data in relation to schistosomiasis risk was carried out by
Kristensen and colleagues (Kristensen, Malone and McCarroll, 2001) in Ethiopia.
Subsequent studies that used climatic and environmental data to predict human schistosome
infection could be improved by the addition of snail-specific distribution data. For example,
the use of disease and temperature data facilitated the delineation of areas permissible for S.
mansoni and S. haematobium transmission in South Africa. It has been speculated that the
models could have been validated and further refined by using snail distribution maps as an
integral part in the models. Since the distribution of freshwater snails in South Africa is well
documented, it would seem logical and straightforward to combine this information with
previous results published in the peer-reviewed literature (Moodley et al. 2003).

We conjecture that investigations that will shed light on the ecological requirements of the
intermediate host snails are essential, because they will deepen our understanding of basic
factors for schistosomiasis transmission. Using environmental or climatic data such as land
surface temperature (LST), rainfall or normalized difference vegetation index (NDVI) to
predict the risk of schistosomiasis, in effect, one is predicting the environmental
requirements for a particular snail species (infected with a particular parasite species) – and
not the human parasitic infection per se. A further refinement of the prediction is to include
human infection predictors such as socio-economic status and behaviour, as has been
stressed in the previous section. Furthermore, the mapping of infected snails – not just snail
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or human infection – could help clarify the complex interaction between snail, parasites and
the environmental factors that are usually employed to predict their distributions.

There are a number of challenges that must be overcome in order to further improve the
GIS-based mapping of intermediate host snails at a continental scale. An important
shortcoming is the scarceness of geo-referenced quality data even on the presence/absence
of snails, let alone parasite-snail compatibilities. Another complication is the fact that in
certain areas the complete understanding of species identity and its capability as
intermediate host snails has yet to be fully understood (Stothard et al. 2002). It would be
recommended to build more on the experiences and methodologies of the bio-geographical
(macro-ecological) sciences in mapping species distribution and diversity. An overview of
these methodologies, together with their strengths and weaknesses can be found in a recent
review by Elith et al. (2006). However, until now only few researchers have taken up the
task of relating intermediate host snails and snail diversity to environmental factors, disease
prevalences, demographic and socioeconomic profiles of the local population through the
opportunities GIS and RS offer.

Conclusions
The use of GIS and RS technologies – increasingly employed in concert with spatial
analysis – to further our understanding of the ecology and epidemiology of schistosomiasis
in sub-Saharan Africa, and hence spatial targeting of control interventions has been
harnessed for sometime now. We believe that these tools can make an important
contribution towards optimized schistosomiasis control efforts at different spatial scales.
Indeed, the use of RS and GIS have been instrumental for identification of high-risk areas in
order to prioritize subsequent control interventions of national schistosomiasis control
programmes of Uganda, Tanzania and in West Africa (Brooker, 2007; Clements et al.
2008a,b). In Uganda, for example, early geographical analyses concluded that no S. mansoni
transmission occurred in areas characterized by annual precipitation below 850 mm or at
altitudes above 1400 m (Kabatereine et al. 2004). On the other hand, high S. mansoni
prevalences (>50%) were consistently observed in areas within 5 km of Lake Victoria and
Lake Albert, and hence these areas were selected for mass treatment with praziquantel
without further surveys. Rapid parasitological mapping was conducted in the remaining
areas, using the lot quality assurance sampling (Brooker et al. 2009 – in this issue of the
journal). A small team collected stool samples from only about 15 children per locality; if
more than 7 children were infected with S. mansoni, mass treatment was initiated. It will be
interesting to monitor the spatial distribution of schistosome infections as control efforts are
further intensified, so that spatial targeting of control interventions can be readily adapted
and areas at highest risk identified and prioritized for subsequent control interventions. In
Burkina Faso, Mali and Niger, Bayesian spatial modelling of field data was used to create
maps of the probability of prevalence with S. haematobium being >50% (Clements et al.
2008b). In addition to guiding treatment implementation, the maps also provided an estimate
of the uncertainty in spatial predictions, enabling control managers to assess the reliability of
the predictions.

It should also be noted that over the years of application, major elements of the RS and GIS
technologies have not met current needs and expectations for this cause and some
researchers have aired their growing frustration (Herbreteau et al. 2007). Constraints have
been identified under this review to include the spatial resolution. This has generally
affected usefulness of the developed models and maps for reducing micro-scale transmission
through improved resource targeting.
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Other predictors such as socio-economics and demographics, wherever investigated in this
review were useful in explaining spatial heterogeneity in schistosomiasis transmission,
particularly focal loci. Socio-economic factors such as availability of sanitary facilities and
safe water supply may better explain different levels of transmission at local-scale than for
instance poverty quintiles as seen in a micro-level study in Côte d'Ivoire (Raso et al. 2005).
This topic warrants further investigation.

The advance towards integrated spatial risk maps needs to be explored further. Benefits are
obvious in sub-Saharan Africa if already over-stretched health-care delivery systems are to
be used to sustainably deploy control interventions targeting schistosomiasis and other so-
called neglected tropical diseases (Brooker and Utzinger, 2007; Brooker et al. 2009). This
has to be approached with caution, particularly where the desire for integration of different
intervention packages reduces the effectiveness of single interventions. To help target an
integrated package of preventive chemotherapy there is a requirement to explore the
possibility of developing multiple risk maps for a number of different neglected tropical
diseases. Such maps need to be based on detailed and standardised survey data with which
to develop separate risk models; these are generally not available at present. Integrated
surveys of neglected tropical diseases are currently planned or are underway for a number of
countries, including Burundi, Ethiopia, Southern Sudan and Zambia, and provide an
opportunity to investigate the possibility of developing integrated risk maps (Brooker et al.
2009).

Effective application of GIS and RS for schistosomiasis and other neglected tropical
diseases in sub-Saharan Africa now needs to be improved and finitely-scaled maps and
models developed that will provide accurate spatial estimates of the disease burden and risk
of infection in order to support control efforts cost-effectively. This can be achieved through
the iterative analysis of important spatial predictors of transmission dynamics, in a GIS.
Therefore, projects such as CONTRAST allow such important opportunities to address the
challenges of applying GIS and RS technologies in sub-Saharan Africa in order to optimize
control and surveillance of schistosomiasis and other tropical diseases that remain more or
less neglected.

Box 1

Working definitions used in the current review

Remote sensing (RS), in the broadest sense, refers to the acquisition of information of an
object or phenomenon, employing either a real-time sensing device that is not in physical
or intimate contact with the object itself, e.g. by means of an aircraft or a satellite. In the
current review, we refer to the use of imaging sensor technologies aboard satellites
primarily for the acquisition of environmental data.

Geographical information system (GIS) has been defined as “an organized collection of
computer hardware, software, geographical data, and personnel designed to efficiently
capture, store, update, manipulate, analyze, and display all forms of geographically
referenced information” (ESRI, 1990). For disease epidemiology at an exploratory level,
GIS is well suited for the study of associations between location, disease, vector/
intermediate host and environment, due to its display capabilities.

Spatial analysis in relation to GIS, in broad terms, can be described as the ability to
manipulate spatial data into different forms and extract additional meaning as a result. In
a spatial epidemiology context, one can distinguish between three types of spatial
analysis tasks, namely (1) visualization/mapping, (2) exploratory data analysis, and (3)
modelling (Bailey and Gatrell, 1995).
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Visualization/mapping can be used in a variety of ways to explore the results of
traditional statistical analyses that have been undertaken in more powerful statistical
analysis software. With regard to GIS applications, the primary visualization tool is the
map, which can help display for policy and strategic planning and aid in the validation of
model predictions.

Exploratory data analysis aids in the detection of patterns, anomalies and the formulation
of new hypotheses about the processes that gave rise to the data. Although exploratory
data analysis is closely related to visualization, it often includes simplified statistical tests
to explore potential predictors of the disease, smoothing/interpolation techniques as well
as simplified modelling to highlight spatial patterns and empirical variogram estimation
(for continuous outcome disease data) to explore spatial correlation.

Modelling involves techniques for estimating transmission parameters over the earth's
surface. Model complexity varies from climatic suitability (e.g. niche) models to spatial
statistical models. The later aim (1) to assess statistical significance between predictors
and spatially correlated disease outcome data, (2) to establish a mathematical relation
between the disease and its predictor, and (3) to obtain model-based predictions (with
uncertainty estimates) of the disease outcome at non-sampled locations (kriging) in case
the disease data are available at fixed locations (geostatistical data) instead of being
aggregated over adjacent area units (area data). Geostatistical models have large number
of parameters (at least as many as the number of locations). For non-continuous data such
as prevalence or count data maximum likelihood-based approaches (frequentist
inference) are possible only via asymptotic approximations (Gemperli and Vounatsou,
2004). Bayesian geostatistical models overcome asymptotic inference via Markov chain
Monte Carlo (MCMC) simulation methods. Spatial statistical capabilities of GIS
software are limited to continuous data and are not appropriate for prevalence or count
disease data.
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Fig. 1.
Number of publications pertaining to RS and GIS with application to schistosomiasis in
Africa, published between 1996 and 2008.
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Fig. 2.
Map of Africa depicting the countries where GIS and RS applications have been used for the
mapping and prediction of human schistosomiasis and intermediate host snails (and human
infection).
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