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Abstract: Multispectral and panchromatic images are the outcomes of optical satellite technology. Because of the different levels in spatio-spectral 
resolutions, they can also be regarded as spectrally-superior-spatially-inferior-resolution image and spatially-superior-spectrally-inferior-resolution image 
respectively. When acquired for the same geographic scenario, the fusion of these two images is also referred to as ‗Pansharpening‘. It has emerged as 
a promising solution to fulfill the demand of simultaneous high levels of spatio-spectral resolutions in remote sensing imagery. Continuous attempts while 
proposing different approaches to produce efficient fused image are reported in literature. The approaches are mostly differentiated based on way of 
spatial detail extraction from panchromatic image and its injection to multispectral image. In this paper, we propose to use morphological half-gradient for 
the first task and iterative regression approach at high resolution for the second one. The performance measurement is carried out on two real datasets 
made available by Deimos-2 and IKONOS satellite sensors using low- and high-resolution evaluation techniques. The performance analysis involves 
comparison with the most recent algorithms. With respect to the evaluated quality metrics, the proposed algorithm proves to be the best among others.  
 
Index Terms: High-resolution scale regression, half-gradient, image fusion, multispectral image, panchromatic image, remote sensing.   

——————————      —————————— 

 

1. INTRODUCTION 
THE advancements in satellite technology have lead to a 
continuous exploration along with analysis of the earth surface 
at wide scale [1]. This has resulted in many application tasks 
which help groundwater prospects mapping, forecast of 
agricultural output, forest cover mapping, snow & glacier 
studies, wasteland mapping, object recognition, change 
detection, scene interpretation and visual image analysis, etc. 
[2]. The benefits are of-course totally dependent on the 
accurateness of the accessed image. Today, the satellites like 
GeoEye, WorldView, QuickBird, IKONOS, Deimos, OrbView, 
Landsat, SPOT, etc. which sense the optical region of 
electromagnetic spectrum, provide a bundle of multispectral 
(MS) and panchromatic (PAN) images [3]. Mostly, the spatial 
richness of PAN imagery is four-times greater than that of MS 
imagery. On the another hand, MS imagery usually features 
four to eight spectral components over visual and near-infrared 
wavelengths separately as compared to a single band of PAN 
imagery. Due to the different levels of such spatio-spectral 
resolutions, they can also be regarded as spectrally-superior-
spatially-inferior-resolution image and spatially-superior-
spectrally-inferior-resolution image respectively. The physical 
constraints of imaging sensors mounted on board of satellite 
cannot provide unique product rich in both spatial and spectral 
resolutions [4]. But, the demand for simultaneous high levels 
of spatio-spectral resolutions is continuously growing. The 
promising way to fulfill this demand is seen in terms of ‗image 
fusion‘ [5]. The fusion of MS image with PAN image (whereas, 
they are acquired on the same location) is also referred to as 
‗Pansharpening‘ that produces a compound image rich with 
both spatial and spectral resolutions [6]. Detailed literature of 
image fusion algorithms is surveyed in [7]–[9]. The algorithms 
are mostly categorized under a spectral class of Component 
Substitution (CS) [10], a spatial class of Multi-Resolution 
Analysis (MRA) [11] and hybrid approaches. As the intended 
fused image is expected to feature spatial and spectral-

richness from PAN and MS images respectively, the 
differentiation of one approach from another is based on the 
way of spatial detail extraction from first image and its injection 
to the second image. In this paper, we propose an image 
fusion algorithm denoted by ‗MHG-Reg‘. The algorithm exploit 
the morphological half-gradient for the first task of spatial detail 
extraction and further use iterative regression for the second 
task of spatial detail injection. Most of the conventional 
algorithms are found injecting the spatial detail at low 
resolution (i.e. at the size of original MS image) while following 
the Wald‘s protocol [12] in the absence of the reference fused 
image. Here, we successfully utilize the regression carried out 
at high resolution scale i.e. at the size of expected fused 
image. The performance measurement is carried out on two 
real datasets made available by Deimos-2 and IKONOS 
satellite sensors using low- and high-resolution evaluation 
techniques. The performance analysis involves a comparison 
with other nine the most recent algorithms belonging to CS 
and MRA approach with linear and nonlinear decomposition 
schemes.  
The remaining paper is presented in the sequence as: Section II 

briefs the methodology of the proposed image fusion algorithm. 
Application of fusion algorithms to image datasets and 

performance measurement is shown in Section III. The results 
are analyzed in Section IV. Lastly, conclusion is noted in Section 

V. 

 
2 THE PROSED WORK 
As per the conventional CS approach, MS image undergoes a 
transformation to other domain with the assumption that 
spatial contents are grouped separately from the spectral 
information. Next, the component containing the spatial 
structure is subsequently substituted by the PAN image. Using 
an inverse transform, the data is finally brought back to the 
original space. Image fusion using this approach is 
mathematically generalized as:  

)( Lup IPGMF                             (1) 

Where, F  holds the result of image fusion produced by P  as 

input PAN image and upM  as the input MS image interpolated 
to the dimensions of P . G  is the gain factor for spectral 

bands ),...,1( Ni   in MS image and LI  is the synthetic 
intensity component representing spatial structure of MS 
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image derived from the its spectral components as: 





N

i

iupiL MwI
1

)(                              (2) 

Here, N  denotes total number of frequency bands of MS 

image overlapped by PAN image. w  is a weighting factor for 
th

i  band calculated by multiple regression of PAN and MS 

image. 
On the another hand, MRA involves an iterative 

decomposition scheme that constructs a chain of 2D-signals 
with progressive reduced contents. Here, the content of 

information is considered as spatial frequency. The 
decomposition can range from single level to more complex 

techniques. Image fusion using MRA approach is 
mathematically generalized as: 

)( Lup PPGMF                              (3) 

Where, the meanings of upM , P , F  lies the same. LP  is 

the low-pass form of PAN image computed as: 





N

k

kupkL MwP
1

)(                              (4) 

Here, w  represent optimal weights for spectral bands of MS 

image denoted as Nk ,...,1 . So in MRA, the result of 
image fusion exploits computation of subtracting the low-pass 

filtered PAN image from itself as shown in (3).To look at both 
of these image fusion approaches, two important steps: 1) 

spatial detail extraction and 2) spatial detail injection to MS 
image are highlighted. For the first step, we propose to use the 

potential of morphological image processing operations which 
are popular for manipulating spatial contents of input image. 

For an image I , let  

B  and  B  denotes dilation and erosion operations 

respectively using a structuring element B  on a local 
neighborhood. The definitions of morphological internal 

gradient ( ig ) i.e. residual of applying erosion and 
morphological external gradient ( eg ) i.e. residual of applying 

dilation can be mathematically expressed as: 

 

Big I        (5) 
 

IBeg         (6) 
 

A more precise morphological gradient can be expressed in 
terms of ig  and eg  as: 

 
)(5.0 egighg    (7) 

 
Where, constant value of 0.5 shows a normalization factor. 

Applying a morphological analysis filter, we get, 
 

hghg If      (8) 
 

Using substitutions from equations (5), (6) and (7), 
 

)(5.0 BBhgf      (9) 
 

 Thus, the result of filtering is the half summation of erosion 
and dilation operations. Hence, hg  is referred to as 

‗Morphological Half-Gradient‘ (MHG) operator [13]. It is very 
clear from the mathematical representations, that the MHG 
based filtering results in spatial detail extraction from the input 

image. We take the advantage of this potential MHG based 
filtering in the proposed algorithm summarized at the end of 

this section.Now, with respect to both of the CS and MRA 
approaches, for the second step of spatial detail injection to 

MS image, the computation of gain G  as denoted in (1) and 
(3) is very important. The different formulations of G  

corresponding to variety of algorithms belonging to CS and 
MRA approaches can be cited in [8]. Because of the lack of 

reference fused image, the conventional computations are 
usually made on low resolution scale i.e. at the size of original 

MS image. Its generalized mathematical form is shown as: 
 

)var(

),cov(

L

Lup
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P

PM
G     (10) 

 

Where, the subscript lr  is to denote low resolution scale 
computation.Recently, the concept of computing the gain G  

at high resolution scale i.e. at the size of intended fused image 
is proposed in [14]. The calculation for such gain is 

mathematically expressed as: 
 

)var(

),cov(

P

PF
Ghr     (11) 

 

Where, the subscript hr  is to denote high resolution scale 
computation. 

Due to unavailability of F  at this stage, the initial estimate of 

hrG  is considered as: 

 

),cov(
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0
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G
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Next to this, the iterations are to be carried out for 0j  to 

1X , where X  is a fixed number. 
Thus, the improved fusion equations of CS and MRA approach 

respectively become: 
 

)(
1

L

j

hrup

j IPGMF 
  (13) 
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1

L

j

hrup

j PPGMF 
  (14) 

 

Because of above fusion structures, the fused image is 
improved with every iteration. 

For MRA approach, Generalized Laplacian Pyramid with 
Modulation Transfer Function matched filter (MTF-GLP) [8], 

[15], [16] fusion procedure using such regression at high 
resolution scale is successfully demonstrated in [14] and is 

denoted as ‗GLP-Reg‘.In this work, using the spatial detail 
extraction by MHG based filtering and spatial detail injection 

by high resolution scale iterative regression approach with 
MTF-GLP procedure, we achieve more efficient fusion of MS 

to PAN imagery. This proposed algorithm is denoted as ‗MHG-
Reg‘ and is summarized in following steps: 

 
Algorithm: MHG-Reg 

Input: upM , P   Output: F  
Step-1: MHG based filtering of P .  

Step-2: Equalization of P  to match upM  scale.  
Step-3: LP  = Gaussian filtering of upM  matched with MTF of 

MS sensor.  
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Step-4: Determination of gain 
hrG  (defined in (11)) through 

iterations for 0j  to 1X  over (12)).  
Step-5: MHG based filtering of [ )( Lhr PPG  ].  

Step-6: Compute F  as per (14). 

 
3 RESULTS & PERFORMANCE 

MEASUREMENT 
The performance evaluation of MHG-Reg algorithm along with 
its comparison to performances of CS based image fusion 
algorithms viz. Intensity-Hue-Saturation (IHS) [17], Principal 
Component Analysis (PCA) [18], Gram-Schmidt-Adaptive 
(GSA) [19], context-adaptive segmentation approach (SEGM) 
[20], [21] and MRA based algorithms listed as MTF-GLP [8], 
[15], [16], MTF-GLP using Context-Based Decision (MTF-
GLP-CBD) [8], [15], [16], Additive Wavelet Luminance 
Proportional (AWLP) [8], [22], Morphological Half-Gradient 
based fusion with nonlinear decomposition scheme (MF-HG) 
[13], [23], GLP-Reg [14] is reported in this section. Two 
remotely sensed image datasets acquired by two different 
satellite sensors are used in this experimentation. The 
performance is measured using the latest MATLAB R2019b 
installed on the system configuration of core i5 3rd generation 
processor with 6 GB RAM. 
 
3.1 Datasets 
The details of datsets are shown in Table I. MS images of both 
the datasets hold four spectral bands viz. Blue (B), Green (G), 
Red (R), Near-IR1 (NIR1); while PAN image holds the single 
band. Performance evaluation is carried on a selected region 

of size 256256  pixels for MS and 10241024  pixels for 

PAN image of both the datasets. Fig. 1 shows MS and PAN 
images from the corresponding datasets. 

 

3.2 Image Fusion Results 
For the two datasets, we perform two experiments applying 
the image fusion algorithms to Deimos-2 and IKONOS 
images. The PAN to MS ratio considering spatial resolutions is 
4. Result images after fusion are displayed in Fig. 2 and Fig. 3 
for two datasets respectively. Here, the spectral band 
combination of only R, G, and B is used for display purpose. 
Also, the magnification of a small region outlined in (a) of both 
of these Fig.s is respectively represented at bottom left and 
top right in every fused image to help the visual distinction. 

 
Table- I: Dataset Specifications for Deimos-2 and IKONOS 

imagery 

Specifications Dataset-1: Barcelona Dataset-2: São Paulo 

Satellite Sensor Deimos-2 IKONOS 

Spectral Bands 4 MS & 1 PAN 4 MS & 1 PAN 

Specifications Dataset-1: Barcelona Dataset-2: São Paulo 

Spatial 
Resolutions 

MS: 4 m & 

PAN: 1 m 

MS: 3.2 m & 

PAN: 82 cm 

Location Barcelona, Spain São Paulo, Brazil 

Data Format 16-bit 16-bit 

Dimensions of 
MS 

429283249   422402228   

Dimensions of 
PAN 

1171212996  89608912  

Provided by [23] [23] 

 

 

Fig. 1. Dataset-1: Barcelona (a) MS and (b) PAN images. 
Dataset-2: São Paulo (c) MS and (d) PAN images. (The 

spectral band combination of only R, G, and B is used for 
display of MS images.) 

3.3 Performance Measurement 

The performances of applied image fusion algorithms are 

quantified by measurement of quality metrics. The numerical 
values for Root Mean Square Error (RMSE) [25], Erreur 

Relative Global Adimensionnelle De Synthese (ERGAS) [25], 
[26], Spatial Correlation Coefficient (SCC) [27] and Quality 

index Q4 [25], [26] are computed using low-resolution 
evaluation technique also known as reduced-resolution 

assessment [28].  
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Fig. 2. Experimentation with Dataset-1: Barcelona. Resultant fused images of (a) IHS, (b) PCA, (c) GSA, (d) SEGM, (e) MTF-
GLP, (f) MTF-GLP-CBD, (g) AWLP, (h) MF-HG, (i) GLP-Reg, (j) MHG-Reg.  

 
Table- II: Measurement of performance metrics and Execution Time for Dataset-1: Barcelona. 

Algorithm 
High-Resolution Evaluation Low-Resolution Evaluation 

Time (s) 
RMSE ERGAS SCC Q4 QNR D  

SD  SAM )(


 

IHS 407.9157 2.1539 0.7958 0.7864 0.8265 0.0598 0.1209 1.3129 0.0415 

PCA 848.4473 2.7930 0.7417 0.8068 0.8700 0.0704 0.0640 2.7607 0.3208 

GSA 517.5843 1.9930 0.7448 0.8708 0.8705 0.0461 0.0874 1.1830 1.3251 

SEGM 518.6228 2.1333 0.7463 0.8777 0.8901 0.0432 0.0698 1.1550 0.3934 

MTF-GLP 556.3843 2.2321 0.7317 0.8655 0.8577 0.0567 0.0907 1.0792 1.6508 

MTF-GLP-CBD 501.4898 1.9331 0.7581 0.8904 0.8765 0.0473 0.0800 1.0885 1.5724 

AWLP 666.9871 2.3477 0.6860 0.8615 0.8938 0.0408 0.0681 1.1783 1.9220 

MF-HG 637.5674 2.7525 0.7453 0.8343 0.8384 0.0720 0.0965 1.1830 0.7948 

GLP-Reg 500.6709 1.9457 0.7586 0.8893 0.8740 0.0486 0.0814 1.0841 1.4890 

MHG-Reg  358.0364 1.6939 0.8696 0.9277 0.9005 0.0442 0.0578 1.0521 1.8765 
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Fig. 3. Experimentation with Dataset-2: São Paulo. Resultant fused images of (a) IHS, (b) PCA, (c) GSA, (d) SEGM, (e) MTF-

GLP, (f) MTF-GLP-CBD, (g) AWLP, (h) MF-HG, (i) GLP-Reg, (j) MHG-Reg.  
 

Table- III: Measurement of performance metrics and Execution Time for Dataset-2: São Paulo. 

Algorithm 
High-Resolution Evaluation Low-Resolution Evaluation 

Time (s) 
RMSE ERGAS SCC Q4 QNR D  

SD  SAM )(


 

IHS 45.3878 3.7375 0.5657 0.5963 0.7030 0.1219 0.1995 1.8589 0.0423 

PCA 48.2325 4.0462 0.5587 0.6047 0.7106 0.1086 0.2028 2.2762 0.3251 

GSA 50.6445 4.1532 0.5217 0.6776 0.7259 0.1165 0.1784 1.6628 0.8154 

SEGM 50.1578 4.0964 0.5253 0.7043 0.7516 0.1015 0.1635 1.6433 0.3999 

MTF-GLP 48.3749 3.9391 0.5644 0.7031 0.7179 0.1310 0.1738 1.4582 1.5502 

MTF-GLP-CBD 46.9917 3.8507 0.5730 0.7204 0.7393 0.1140 0.1656 1.4636 1.5713 

AWLP 47.4570 3.7990 0.5748 0.7297 0.7431 0.1178 0.1577 1.4294 1.8755 

MF-HG 53.8270 4.4291 0.5745 0.6926 0.7205 0.1349 0.1672 1.5489 0.7953 

GLP-Reg 47.2382 3.8623 0.5716 0.7202 0.7398 0.1139 0.1651 1.4592 1.5170 

MHG-Reg  31.3156 2.5745 0.7467 0.8250 0.8350 0.1047 0.0674 1.4807 1.5452 

Quality w/ No Reference (QNR) [26], Spectral Distortion ( D ) 

[26], Spatial Distortion ( SD ) [26] and Spectral Angle Mapper 

(SAM) [25], [26] are obtained using high-resolution evaluation 

also known as full resolution assessment [28]. The 
mathematical formulae of all these quality metrics are 
available in provided citations. Table II shows all these quality 
metric values for experimentation with Dataset-1: Barcelona. 
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Table III correspondingly show performance metric values for 
experimentation with Dataset-2: São Paulo. Here, the best 
achieved results are shown in bold, the second most desired 
results are highlighted with underline and the results at third 
most desired level are shown in italics. 

 
4 OBJECTIVE AND SUBJECTIVE ANALYSES 
The previous section reported quantitative results obtained 
corresponding to the performances of ten image fusion 
algorithms. Now, the objective and subjective analysis carried 
on the obtained results are discussed as under: 
 
4.1 Objective Analysis 
Based on the low-resolution evaluation technique used in the 
experimentation, a comparison is made for average RMSE 
values (average is computed corresponding to both the 
datasets) as plotted in Fig. 4 (Note: MTF-GLP-CBD is denoted 
by GLP-CBD for compactness in graphical representations of 
Fig. 4 and onwards). Here, the proposed algorithm MHG-Reg 
is found to be superior than PCA, AWLP, MF-HG, MTF-GLP, 
SEGM, GSA, GLP-Reg, MTF-GLP-CBD and IHS. It has 
calculated this error metric at the most desired low level than 
calculated by all other image fusion algorithms. 
 

 

Fig. 4. Comparative measurement of average RMSE against 
all the image fusion algorithms. 

Along with RMSE, we calculate ERGAS which is again an 
error value and its comparison with respect to average values 

is plotted in Fig. 5. Here also, the potential of proposed 
algorithm MHG-Reg is proved. It has achieved the most lowest 

value of ERGAS than all other algorithms. The performance of 
other algorithms is improved in the order MF-HG, PCA, SEGM, 

MTF-GLP, AWLP, GSA, IHS, GLP-Reg and MTF-GLP-CBD 
considering ERGAS measurement.  

 

Fig. 5. Comparative measurement of average ERGAS against 
all the image fusion algorithms. 

SCC computes percentage of spatial details injected to final 
resultant images. A comparison of average SCC values is 

plotted in Fig. 6. On comparison, MHG-Reg is successful to 
compute the highest value of SCC index. IHS stands with the 

second most desired SCC value and MTF-GLP-CBD stands at 
the third place. The performance of GLP-Reg is very 

competitive to that of MTF-GLP-CBD. Here, AWLP lags the 
most in injecting more spatial details to corresponding fused 

image. 

 

Fig. 6. Comparative measurement of average SCC against all 
the image fusion algorithms. 

Quality content among the fused images can also be 
measured in terms of Q4 index. Average Q4 index is plotted 

against image fusion algorithms and the plot is shown in Fig. 
7. Here also, MHG-Reg is proved to compute the best value 

for Q4 index. Comparatively, IHS and PCA respectively stand 
at the last to maintain quality content in terms of Q4. Using the 

high-resolution evaluation procedure, we have obtained D , 

SD , QNR and SAM. D  represents spectral distortion and it 

is a measure of loss. A comparison of average D  values 
computed on both the datasets can be seen in Fig. 8. 

Whereas, a comparison of spatial distortion in resultant 
images can be seen in terms of average SD  values in Fig. 9. 

Both of these distortions are ideally undesired in resultant 
images producing values to be 0.  
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Fig. 7. Comparative measurement of average Q4 against all 
the image fusion algorithms. 

 

Fig. 8. Comparative measurement of average D  against all 

the image fusion algorithms. 

 

Fig. 9. Comparative measurement of average SD  against all 

the image fusion algorithms. 

Undoubtedly, the proposed image fusion using MHG-Reg is 
successful to have the least spatial distortion in resultant fused 

image. Whereas, the SEGM is proved to be more superior 
than MHG-Reg in reducing spectral distortion. MHG-Reg 

stands with the second most desired value of D  index.  

 

Fig. 10. Comparative measurement of average QNR against 
all the image fusion algorithms. 

 

Fig. 11. Comparative measurement of average SAM against 
all the image fusion algorithms. 

 

Fig. 12. Comparative measurement of average execution time 
against all the image fusion algorithms. 

These distortions further contribute to a hybrid quality metric 
QNR, whose desired value is ideally 1. A comparison of 
average QNR value calculated on both the datasets with 
respect to performances of all the fusion algorithms is plotted 
in Fig. 10. To observe the comparative plot, it is noticed that 
MHG-Reg is successful with the highest most desired value of 
QNR than measured for others. Among the others, fusion 
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quality seems to degrade in the order SEGM, AWLP, GLP-
CBD, GLP-Reg, GSA, PCA, MTF-GLP, MF-HG, IHS. The 
desired SAM index is ideally zero. Measurements of average 
SAM are compared in Fig. 11. The comparison shows MHG-
Reg outwitting the performances of all others. Here, it is also 
noticed that GLP-Reg and MTF-GLP have very similar 
performance next to it. The spectral distortion in terms of SAM 
increases in the order GLP-CBD, AWLP, MF-HG, SEGM, GSA, 
IHS, PCA. Finally, a comparison of average time taken by 
image fusion algorithms to generate high resolution resultant 
image is plotted in Fig. 12. IHS being simplest in structure, has 
resulted with very fast fusion result. PCA and SEGM have also 
achieved fast image fusion next to IHS. MHG-Reg though 
requires more time for image fusion results than produced by 
MF-HG, GSA, GLP-Reg, MTF-GLP-CBD and MTF-GLP, it has 
more economical computational complexity than that of AWLP. 
 
4.2 Subjective Analysis 
The variations in values corresponding to quality- and error-
metrics analyzed in previous subsection underline the 
suitability of metrics to image fusion algorithms still being an 
open research problem. Also, user is the ultimate judge of 
results at end use. Hence, a visual inspection of resultant 
images is necessary. It is observed that PCA results in the 
most distortion in fused images. Upon considering the overall 
spectral-spatial distortions along with clear distinction of 
objects, it is noted that visualization of MHG-Reg fused image 
is optimal among other resultant images. 

 
5 CONCLUSION 
Use of morphological half-gradient and high-resolution scale 
regression approach for producing efficient image fusion is 
attempted in this paper. The successful demonstration of the 
proposed MHG-Reg image fusion algorithm is made while 
compared to the nine other most recent image fusion 
algorithms from CS and MRA approaches. Two real datasets 
from Deimos-2 and IKONOS are utilized for the 
experimentation. The objective analysis along with subjective 
analysis i.e. visual inspection helped the wide comparison. 
The MHG-Reg has resulted with overall the most desired 
values of quality metrics involved in evaluation techniques. 
The MHG-Reg seems more successful to lower the spatial 
distortion than the spectral distortion. Also, the MHG-Reg is 
found computationally complex than eight other image fusion 
algorithms except AWLP. The development of more efficient 
image fusion algorithm along with possibly lower 
computational complexity is still an open research problem. 
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