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ABSTRACT Arbitrarily-oriented object detection is a challenging task. Since the object orientation in
remote sensing images is arbitrary, using horizontal bounding boxes will lead to low detection accuracy.
Existing regression-based rotation detectors can lead to the problem of boundary discontinuity. In this paper,
we propose a remote sensing image object detection method based on angle classification that uses rotation
detection bounding boxes with angle information to detect objects. Specifically, we incorporate the neural
architecture search framework with feature pyramid network (NAS-FPN) module in a dense detector
(RetinaNet) and use a binary encoding method in angle classification. This method reduces the background
influence, so that there is almost no overlap between detection boxes. Based on the angles of the detection
boxes, we can infer the information of the motion direction of the target and further determine the motion
trajectory of the target. We conducted ablation experiments on a large publicly available dataset for object
detection in an aerial imagery (DOTA) dataset to verify the effectiveness of each module in the method and
compared the method with several other detection methods. The experimental results demonstrate the
effectiveness of our method.

INDEX TERMS Remote sensing image, Angel classification, Rotation detection frame, Object detection,
Deep learning.

I. INTRODUCTION
Objection detection is a fundamental task in computer vision,
and many researchers have applied the horizontal bounding
boxes to locate objects in images. The use of horizontal
bounding boxes can make the representation of candidate
regions more concise and intuitive. In many methods based
on deep learning [1]-[5], a large number of labeled samples
are often needed to train the object detector model, and using
an axis-parallel labeling frame can greatly improve the
efficiency of labeling, to quickly obtain a large number of
labeled samples quickly. In addition, the horizontal bounding
boxes involve fewer parameters, simplifying the training
process of the detection model. Therefore, in most object
detection methods, a horizontal bounding box is used to
represent the approximate range of the target in remote
sensing images, as shown in Fig. 1.

(a) (b)

FIGURE 1. Horizontal detection frame.

However, objects in aerial images are often arbitrarily
oriented. Therefore, the use of horizontal bounding boxes to
detect objects [6]-[9], will give rise to several problems. First
this type of object detection frame often contains many
background areas. As shown in Fig. 1(a), approximately 60%
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of the pixel area in the figure belongs to the background area.
The presence of too many background regions in the
detection frame not only increases the difficulty of the
classification task, but also leads to the problem of inaccurate
representation of the target range. Second, the horizontal
bounding boxes will lead to strong overlap between detection
frames, as shown in Fig. 1(b), reducing detection accuracy.
Finally, since the objects in images such as aircraft, ships,
and vehicles contain motion direction information,
information regarding the direction of motion of the targets
cannot be obtained if the horizontal bounding boxes are used.
The above three problems can be effectively solved by

using a rotation detection frame with angle information, as
shown in Fig. 2. First, rotation detection can precisely locate
the targets in the images, and the bounding boxes contain
almost no background area, thus greatly reducing the
influence of background on object classification. Second,
there is almost no overlap between the rotating detection
frames, so that the objects contained in the frames can be
more clearly identified. Finally, the motion direction
information of the object can be roughly obtained from the
rotating detection frame, so that the motion trajectory of the
object can be judged. In summary, the use of rotation
detection with angle information in remote sensing image
object detection task obtains superior performance.

(a) (b)

FIGURE 2. Rotation detection frame.

A. RELATED WORK
Most of the classical target detection methods use horizontal
detection frames. Object detection methods using deep
learning can be broadly classified into two categories: two-
stage detectors and single-stage detectors. Two-stage
detectors first extract candidate regions from images, and
then predict and classify objects within the candidate
regions.R-CNN [1] applies complex neural networks to the
target detection task, followed by Fast-RCNN [2] and Faster-
RCNN [3] that, are faster and have higher detection speed.
Single-stage detectors predict the bounding box and class
probability of the parent with only one evaluation of the
image. In the field of single-stage detectors, the
representative methods include SSD [10] and YOLO [11].
Single-stage methods have higher detection speed than two-
stage methods. However, the objects in remote sensing
images have the characteristics of small size, large scale

difference and diverse directions, so that horizontal detection
frame cannot detect the target accurately.
Rotation detectors are used in a wide range of applications

in aerial images and scene texts. [12,13] use rotation
detection frames to detect ships in aerial images. In recent
years, deep learning techniques have developed rapidly, and
many researchers have applied these techniques to target
detection in remote sensing images. [14] adds the angle
regression function into the detector to achieve the detection
of arbitrary angle objects, and [15] improves the two-stage
detection algorithm to generate the rotation bracketing box
using regression to improve the detection accuracy. The
scenes in remote sensing images are generally complex, with
a large number of objects and uncertain angles. To solve
these problems, some robust algorithms have been developed,
such as some current state-of-the-art algorithms SCRDet [16],
and ROI-Transformer [17]. However, most of the
abovementioned algorithms have boundary problems due to
the regression approach [18,19]. In this paper, we propose to
avoid the boundary problem by using classification
algorithms instead of regression algorithms.

B. CONTRIBUTION
In this paper, we hope to find a method to avoid the boundary
problem and at the same time be able to improve the
accuracy of object detection. Specifically, we propose an
object detection algorithm for remote sensing images based
on angle classification. The method uses a deep residual
network to extract features in remote sensing images,
employs the long-edge definition method and uses a neural
structure search-based feature pyramid network (NAS-FPN)
[20] for fusion of feature maps at different scales. The long-
edge definition method is then used to represent the rotation
detection frame and the binary-valued coded labeling
technique from the dense coded labeling technique is utilized
in the detection frame regression task. This technique
transforms the angle regression problem into an angle
classification problem, which can avoid the problem of
boundary discontinuity that exists in the long-edge definition
method. The main contributions of this paper are as follows.
(1)We use the IoU smooth L1 loss function on the angle-

based classification method in the regression loss part of
calculating the bounding box, which measures the
intersection ratio between the predicted and true value boxes.
We validate the effectiveness of the network on a large
publicly available dataset for object detection in an aerial
imagery (DOTA) dataset and the detection accuracy of the
network is better than that of some current remote sensing
image based target detection methods.
(2)We use a rotation detector based on angle classification

to avoid the boundary discontinuity problem that occurs with
parametric regression methods, and we use a binary encoding
tag-based encoding method for angle classification, which
has a shorter encoding length compared to other encoding
methods and can improve the model efficiency.
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II. OBJECT DETECTION METHOD BASED ON ANGLE
CLASSIFICATION

A. METHODOLODY ARCHITECTURE

FIGURE 3. Block diagram of the overall network.

The proposed rotation object detector framework is presented
in Fig 3. Our network is based on the RetinaNet framework.
The feature maps labeled C2, C3, and C4 in the figure are
extracted by the deep convolutional neural network. The
overall steps of the method are as follows: first, the feature
extraction network is used to extract the features in the
remote sensing images, and the NAS-FPN is used to fuse the
extracted features to obtain the feature maps at different
scales. Then, we use the long-edge definition method to
represent the rotation detection frame, and the binary
encoding labeling technique is used to transform the angle
regression problem into an angle classification problem in the
frame regression task. Some of the important structures in the
method are described in detail below.
The backbone network RetinaNet used in this paper is an

end-to-end target detection algorithm, and based on this
network, we replace the obsolete parts of the RetinaNet
network with new techniques that do not harm the end-to-end
learning approach. We apply this method to the rotation
detection task, and from the experimental results, the method
in this paper performs well in all 15 classes of images in the
DOTA dataset, and has the best overall performance.
Moreover, this paper verifies the effectiveness of each
module of the network by ablation experiments.

B. NAS-FPN MODULE
In recent years, deep learning has been widely used in a
variety of automated tasks. The success of deep learning
relies heavily on the powerful learning capability of the
technique, the huge amount of data, and the evolving

hardware capabilities. The most critical task in deep learning
techniques is the design of the neural structure, such as
designing the number of layers of the network. The design of
neural architecture is also known as neural architecture
search (NAS) [21]. Most of the NAS still relies on manual
analysis that does not guarantee the stability of the neural
structure. To address this problem, researchers have started to
focus on the study of neural architecture search that can learn
autonomously.
A feature pyramid network can fuse feature maps at

different scales, but the network focuses too much on low-
level features and neglects the optimization of high-level
features, leadings to a decrease in the detection accuracy of
large objects. Moreover, the network is based on manual
design, and since the number of combinations of feature
maps at different scales increases exponentially with the
number of the layers in the network, the manual design
approach will lead to a huge design space, making the
performance of the feature pyramid network not necessarily
optimal. To obtain a feature pyramid network with better
performance and more variability, Ghaisi et al. combined the
idea of cross-layer connectivity to find a feature pyramid
network structure with optimal performance in a
deterministic search space. The structure is called NAS-FPN.
In NAS-FPN, the most important structure is the merged

cell structure that consists of a collection of feature graph
nodes, a pool of operations, and a search termination
condition. Below, the search process of the feature graph is
briefly described in the context of Fig. 4.
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FIGURE 4. Structure of the merging unit.

(1) A feature map is randomly selected from the feature
map node set as one of the inputs. The initial set of feature
map nodes contains five scales of feature maps, denoted as
{C1, C2, C3, C4, C5}.
(2) Randomly select another feature map from the feature

map node set as another input.
(3) Select the resolution of the output feature map.
(4) Select an operation in the operation pool to operate on

the feature map nodes selected in (1)(2) to produce a feature
map with the same resolution as the output feature map and
add this feature map to the feature map node collection for
selection.
(5) The above steps are repeated cyclically. The

termination condition of the search is to generate five feature
pyramid networks with the same resolution as the initial
feature map, which is denoted as {P1, P2, P3, P4, P5}.
Step (4) consists of two operations, namely sum and global

pooling. The sum operation scales the smaller of the two
input feature maps to the same size as the larger feature map,
and then fuses the two feature maps by using pixel-by-pixel
summing. The global pooling operation pools the smaller
feature map, multiplies the larger feature map by pixel after
the sigmoid operation, and then adds the obtained feature
map with the smaller feature map for fusion. The feature
pyramid network obtained by the NAS-FPN module achieves
a certain improvement in the detection accuracy of the object
detection method.

C. ROTATION DETECTION FRAME
There are three typical angle coding methods, including two
five-parameter methods for different angle ranges [22] and
an eight-parameter method [23]-[25]. The details are as
follows:
(1) Five-parameter method with 90° angular range

(OpenCV definition method): its schematic diagram is shown
in Fig. 5. This definition method contains five parameters [x,
y, w, h, θ]. Here, x and y are the center coordinates of the
rotating frame, θ is the acute angle between the rotating
frame and the x-axis, and the counterclockwise direction is
specified as the negative angle, so that the angle range is [-
90°,0); the width w of the rotating frame is the side where the

rotating frame is located in the angle, and the height h of the
rotating frame is the other side.

FIGURE 5. Five-parameter definition method for the 90° range.

(2) Five-parameter method with 180° angular range (long-
side definition method): its schematic diagram is shown in
Fig. 6. The definition method also contains five parameters [x,
y, w, h, θ], x and y represent the center coordinates of the
rotation frame. The difference between the two definition
methods is that this definition method first specifies that the
long side of the rotating frame is the height h and the short
side is the width w. It also specifies that the counterclockwise
direction is the negative angle and the clockwise direction is
the positive angle, while the angle θ represents the angle
between the height h and the x-axis of the rotating frame, and
the angle range is [-90°,90°).

FIGURE 6. Five-parameter definition method for the 180° range.

(3) Eight-parameter method: The schematic diagram of
this definition method is presented in Fig. 7, and shows that
the definition method contains eight parameters [a1, a2, b1,
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b2, c1, c2, d1, d2], and the point in the upper left corner of
the definition is the starting point, and the remaining points
are sorted counterclockwise.

FIGURE 7. Eight-parameter quadrilateral definition method.

The representation of the rotating frame is not limited to
the above three methods, but the representation of the rest of
the rotating frame can be obtained by transforming the above
three methods.

D. ANGLE CODING METHOD
Parametric regression is currently a popular method for
rotation object detection. However, the parametric
regression-based rotation detection method has some
fundamental drawbacks. These methods often suffer the
boundary discontinuity problem, leadings to inconsistent
regression forms of the model at the boundary. The boundary
discontinuity problem is mainly caused by the periodicity of
angles and the exchangeability of edges. The periodicity of
the angle and the commutativity of the edge will be
explained in detail in the following section by combining the
above three representation modes of the rotating frame.
(1) Five-parameter definition method for the 90° range:

The boundary discontinuity problem of this rotating frame
representation is sketched in Fig. 8.

FIGURE 8. Problems with the five-parameter definition method for the
90° range.

In Fig. 8, the green box is the bounding box of the truth
label that can be represented by a five-parameter definition of
the 90° range as a value of [0,0,25,100, -22.5°], indicating
that the width w is 25, the height h is 100, and the angle is -

22.5°. The blue box is the proposed bounding box that can be
expressed as [0,0,100,25, -90°] using the five-parameter
definition method for the 90° range, indicating that the width
w is 100, the height h is 25, and the angle is -90°. The red
box is the prediction box, which can be expressed as
[0,0,100,25, -112.5°], indicating that the width w is 100, the
height h is 25, and the angle is -112.5°. This angle is the
angle between the rotating box and the x-axis. It is observed
from the figure, that the most ideal angle regression should
be obtained by rotating the blue proposed box
counterclockwise by 22.5° to obtain the red predicted box, at
which the target offset is [0, 0, log(1/4), log(4),67.5°] and the
predicted offset is [0, 0, 0, 0, 0, -22.5°]. The total loss is the
difference between the predicted offset and the target offset
after the smooth L1 function, and the total loss value is much
larger than 0. From the above analysis, it is clear that the loss
value of this rotating frame representation is not continuous,
and the loss value at the boundary will increase suddenly.
There are two main reasons for this phenomenon: first, the
problem of the periodicity of the angle. Although angle
rotation is a continuous process physically, the process has a
large impact on the loss calculation. The second is the
exchangeability of the edges. In the five-parameter definition
method in the 90° range, the width w and height h may
switch with each other, leading to a mismatch between the
width and height of the proposed box, the true value box and
the prediction box that give rise to a further increase in the
loss value. To reduce the loss value, the network must adopt
a more complex regression method, for example rotating the
blue proposal box 67.5° clockwise and scaling the width w
and height h However, this method will greatly increase the
difficulty of angle regression.
(2) Five-parameter definition method for the 180° range:

The boundary discontinuity problem of the representation of
this rotated box is illustrated in Fig. 9.

FIGURE 9. Problems with the five-parameter definition method for the
180° range.

In Fig. 9, the green box is also the bounding box of the
truth label that can be represented by a five-parameter
definition of the 180° range as a value of [0,0,100,25,67.5°],
indicating that the width w is 100, the height h is 25, and the
angle is 67.5°. The blue box is the proposed bounding box
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that can be expressed as [0,0,100, 25, -90°] using the five-
parameter definition method for the 180º range, indicating
that the width w is 100, the height h is 25, and the angle is -
90°. The red box is the prediction box that can be expressed
as [0,0,100, 25, -112.5°], indicating that the width w is 100,
the height h is 25, and the angle is -112.5°. This angle
represents the angle between the rotating box and the x-axis.
It is observed from the figure that the optimal angle
regression should be obtained by rotating the blue proposed
box counterclockwise by 22.5° to obtain the red predicted
box, the target offset is [0,0,0,0,157.5°] and the predict offset
is [0,0,0,0, -22.5°]. It is obtained from the above analysis that
the loss value of this rotated box representation also increases
abruptly at the boundaries, but the only reason for this
phenomenon is the periodicity of the angles and not the
exchangeability of the edges, because this approach fixes the
long and short sides of the rectangular box to be specified as
w and h. Nevertheless, the loss in this method is still much
larger than 0. To reduce the loss value, the network must use
a more complex regression method, for example rotating the
blue proposed box clockwise by 157.5°, but this method will
also greatly increase the difficulty of the angle regression.
(3) Eight-parameter quadrilateral definition method: The

problem of boundary discontinuity in the representation of
the rotated box is shown in Fig. 10. The blue box is the
proposed bounding box. If the red box is the truth label, after
defining the distance and sorting the points according to the
angle regression, the ideal is consistent with the actual angle
regression as [(a1→a2), (b1→b2), (c1→c2), (d1→d2)].
When the green box is the truth label, the ideal and actual
angle regressions are not consistent after the distance is
defined and the points are sorted according to the angle
regression. The ideal regression should be [(a1→b3),
(b1→c3), (c1→d3), (d1→a3)], but the actual situation is
[(a1→a3), (b1→b3), (c1→c3), (d1→d3)]. The problem also
arises because of the existence of angular periodicity.

FIGURE 10. Problems with the eight-parameter quadrilateral definition
method.

Rotation object detection methods based on angle regression
have achieved good performance in various advanced vision
tasks, and provide inspiration for many detection methods.

However, these methods inevitably suffer from the boundary
discontinuity problem that is usually caused by the angular
periodicity and edge exchangeability in the five-parameter
definition method and the angular point arrangement order in
the eight-parameter definition method. The boundary
discontinuity will cause problems such as the sudden
increase in the loss value of the model at the boundary and
the inconsistency of the regression form at the boundary and
at the non-boundary. Although some special tricks are
incorporated in many rotation object detection methods based
on angle regression to alleviate the boundary discontinuity
problem, these tricks increase the computational cost of the
model and the difficulty of boundary prediction making these
models unsuitable for the high-precision rotation object
detection task, and reduce the detection accuracy of large
aspect ratio objects. The boundary discontinuity problem that
occurs with the rotation detection method based on angle
regression usually arises because of the angular periodicity or
corner ordering. and the root cause is not limited to a specific
representation of the bounding box; therefore, to avoid the
boundary discontinuity problem, we adopt the detection
method based on angle classification.
Angle classification is to encode each angle. Each angle is
considered a category, and the angle prediction problem is
transformed into an angle classification problem. The
commonly used angle encoding methods are shown in Fig.
11.

FIGURE 11. Angle coding methods.
There are two types of commonly used angle coding

methods: sparse coded labels [19] and dense coded labels
[26]. The sparse coding labels contain one-hot labels and
circular smoothing labels (CSL), while the dense coding
labels contain binary coding labels (BCL) and grayscale
coding labels (GCL). It has been experimentally
demonstrated that the object detection performance of the
angle coding method based on binary coding labels is better
than those of the other angle coding methods [26]. Other
encoding methods require a longer number of bits for the
encoding, while the binary encoding tag-based encoding
method has a shorter encoding length compared to other
methods, thus improving model efficiency. Therefore, the
following section focuses on the binary encoding labeling
process in dense encoding labels.
Table 1 shows the encoding process of the binary encoded

tag, and Table 2 shows the decoding process of the binary
encoded tag.
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TABLE 1. Encoding process of binary encoded tags.

Input: angular range AR, discretized granularityω.
Output: list containing all encoded binary labels L.
Initialized list L=[]，Encoding length n=log2(AR/ω)；
for i in AR do

result=bin(i,n)=bin(-round((i-90º)/ω)) # Convert angle I to n-bit
binary result

L.append(result) # Add the binary number result to the list L
end for
return L

TABLE 2. Decoding process of binary encoded tags.

Input: list of predicted probabilities p at each position in the encoded
binary numbers, discretized at granularityω.

Output: predicted angle θpred.
Initialize the list B=[],the list of known predicted probabilities p；
for j in p do：

result=round(sigmoid(log(j/(1-j)))) #Convert each predicted
probability j in list p to a binary number 0 or

B.append(result) # add the binary number result to the list B
θpred=90 º -int(B)*ω # int(B) means convert list B to a decimal

number
end for
return θpred

Below, we provide a specific example in order to illustrate
the encoding and decoding process of binary encoded tags, as
shown in Fig.12.

FIGURE 12. Binary encoding and decoding example.

In the encoding process, it is assumed that the angle
GT=88° for the true value label box; and it is assumed that
the angle size ω=180°/256≈0.703125° for each category
because we use the five-parameter definition method of 180°
range to represent the rotation box, then the angle range
AR=180°; the encoding length n=log2(AR/ω) =log2256=8,
representing the use of an 8-bit binary number for encoding.
The result of -round((GT-90°)/ω) is converted to a binary
number and the final code is 00000011.
In the decoding process, the predicted probabilities at each

position of an encoded binary number are assumed to be

[0.41,0.12,0.28,0.32,0.22,0.28,0.98,0.99]. Each probability
was rounded by round(sigmoid(log(j/(1-j)))) to obtain a
binary list [0,0,0,0,0,0,0,1,1] that was converted to a
predicted angle of 87.890625° and rounded to 88°.

E. LOSS FUNCTION
We use a multitask loss function to describe the difference
between the true value and the predicted value. The multitask
loss function contains three components: the regression loss
of the bounding box, the classification loss of the angle, and
the classification loss of the category, as descried in Eq 1.
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λ1 is the weight coefficient, N represents the number of
proposal boxes, objn is the binary value, objn=0 for
background and objn=1 no regression for background, x, y, w,
h is the center coordinates, width and height of the proposal
box, v’ nj represents the prediction vector of x , y, w, h; v’
nj is the truth vector of x, y, w, h, as expressed by Eqs 2 and 3;
Lreg(v’ nj,vnj) is calculated using the smooth L1 function, and
IoU is the intersection ratio between the prediction frame and
the truth frame.
In the regression loss part of the bounding box, the IoU

smooth L1 function is used to calculate the loss value to
further eliminate the discontinuity problem at the boundaries.
In the categorical loss of angle part, λ2 is the weight
coefficient; N represents the number of proposed boxes; objn
also represents a binary value, and Lcls(pn,tn) is calculated by
binary coded label loss function, as expressed by Eq 4.
In the classification loss part of the category, λ3 is the

weight coefficient; N represents the number of proposal
frames, pn represents the predicted probability distribution of
each category, tn represents the true value label, and Lcls(pn,tn)
is specifically calculated using the focus loss function.
In this paper, the hyperparameters λ1, λ2, and λ3 of the

three components of the loss function are taken as 4, 1, and 2,
respectively. The values of the three weight coefficients are
derived from experiments, and we focus on the detection
effect of the network after adding some new models. While
there is no specific index to measure the angle prediction
accuracy, the angle prediction accuracy and the target
detection accuracy are consistent, and the more accurate
angle prediction implies a more accurate target detection.
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( , ) ( ( ), )bcl gt bcl gtL logits FL Encode logits  (4)

In Eqs. 2 and 3, x, y, w, and h are the central horizontal
coordinate, central vertical coordinate, width and height of
the box respectively. The variables x, xa, x’ are the central
horizontal coordinates of the true value box, the proposed
box and the predicted box, respectively, y, ya, y’ are the
central vertical coordinates of the true value box, the
proposed box and the predicted box, respectively, wa, w’ are
the width of the proposed box and the predicted box,
respectively, and ha, h’ are the height of the proposed box
and the predicted box, respectively.
In Eq. 4, θgt is the angle of the truth frame; logits is the list

of angular prediction probabilities of the prediction frame, as
shown in Eq. 5, where p is each prediction probability in the
list, FL is the focal loss function, and Encodebcl is the binary
encoding function, as shown in Table 1.

log
1

plogits
p




(5)

III.EXPERIMENTAL PARAMETERS AND EVALUATION
INDEXES

A. EXPERIMENTAL DETAIL
The experimental environment for our work is shown in
Table 3.

TABLE 3. Experimental environment.

Items Setting
Operating System Ubuntu16.04
CPU Intel Xeon E5-2680, 3.3GHz
Memory 128GB
GPU Nvidia TITAN V, 11GB
GPU corresponding driver Nvidia Driver 435.21, CUDA 10.0
Programming Languages Python3.5
Deep Learning Framework Tensorflow1.13.1

We use the DOTA dataset in this paper. DOTA is one of
the largest aerial image detection benchmarks with
quadrangle annotations. DOTA contains 2806 aerial images
from different sensors and platforms and the size of the
image ranges from approximately 800×800 to 4000×4000
pixels. The fully annotated DOTA benchmark contains
188282 instances of 15 object categories: plane (PL), ship
(SH), storage tank (ST), baseball diamond (BD), tennis court
(TC), basketball court (BC), ground field track (GTF), harbor
(HA), bridge (BR), small vehicle (SV), large vehicle (LV),
roundabout (RA), swimming pool (SP), helicopter (HC), and
soccer ball field (SBF).

Instead of the horizontal labeling method and the five-
parameter labeling method, the DOTA dataset was chosen to
use the quadrilateral labeling method to label the four
vertices of the object that can be combined with Fig. 13 to
understand the labeling method of this dataset.

FIGURE 13. DOTA dataset annotation method.

Specifically, the starting point is marked first. Usually, the
head of objects such as a baseball field, an airplane, or a
vehicle is used as the starting point, but for objects such as a
basketball court or a soccer field that do not have an obvious
head, the top-left point is usually used as the starting point,
and the remaining three vertices are then labeled clockwise.
The spatial resolution of the DOTA dataset is very high,

giving rise to some difficulty in model training. Second, the
size of the various types of objects in this dataset varies
greatly, and most of the objects are small. For example, a car
can be as small as 30 pixels and a bridge can be as large as
1200 pixels, which is 40 times the size of a car, as seen in
Table 4. The DOTA dataset requires the model to be
sufficiently flexible to handle both small and large objects. In
addition, the objects in this dataset show a large variation in
aspect ratio, further enhancing the difficulty of target
detection in this dataset.

TABLE 4. Comparison of the proportion of targets of different sizes
among the data sets.

Dataset 10-50 pixels 50-300 pixels ＞300 pixels
PASCAL VOC 0.14 0.61 0.25
MSCOCO 0.43 0.49 0.08
NWPU VHR-10 0.15 0.83 0.02
DOTA 0.57 0.41 0.02

B. EXPERIMENTAL PARAMETERS AND EVALUATION
INDEXES
Table 5 lists the important experimental parameters of our
method. The batch size is 1, corresponding to 1 image per
training. We experimentally found that the best training
results are achieved when the batch size is set to 1, so that we
set the batch size to 1. The total number of training rounds
(epochs) is 20; the momentum is 0.9; the initial learning rate
is 0.0001; the Learning Rate Decay Rate is 10, indicating the
decay rate of the learning rate, and the decay step of the
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learning rate is 5, meaning that after every 5 rounds of
training, the learning rate will decay by a factor of 10.

TABLE 5. Experimental parameters setting.

Parameter Value
Batch Size 1
Epoch 20
Momentum 0.9
Learning Rate 0.0001
Learning Rate Decay Rate 10
Learning Rate Decay Step 5

The experiments still use the common evaluation metrics
of object detection to evaluate the performance of our
method, including the single-class average accuracy (AP),
the multiclass average accuracy (mAP), precision, recall, and
the F1-score.

C. EXPERIMENTAL PROCEDURE AND ANALYSIS OF
RESULTS
Due to the large size of the images in the DOTA dataset, the
images were cropped into smaller images of 600 pixel × 600
pixel for training prior to the training process. We generate
new label information for the cropped images to facilitate the
model training later. There are approximately 27,000 small
images obtained after cropping. In the experiment, the
training loss is reduced to less than 0.06 and we consider that
the model has converged correctly. To verify the
effectiveness of each module in our method, ablation
experiments among the modules, including the NAS-FPN
module, the binary coded label BCL module, and the IoU
smooth L1 loss function, are performed first. Then, the
method is compared with six existing high-performance
rotating frame object detection methods to demonstrate the
detection performance.

TABLE 6. AP, mAP results for ablation experiments on the DOTA dataset.

backbone NAS-FPN BCL
IoU

smooth L1
PL SH ST BD TC BC GTF HA BR SV LV RA SP HC SBF mAP

ResNet50 × × × 88.03 68.20 78.28 74.49 86.39 77.12 66.34 50.82 38.02 60.24 46.56 61.15 60.21 49.99 52.50 63.89
ResNet152 × × × 88.92 72.19 74.92 77.82 89.88 78.65 61.86 52.47 41.50 67.32 53.97 58.41 68.85 62.78 53.25 66.85
ResNet152 √ × × 88.34 85.84 81.68 74.12 90.01 76.66 66.25 57.23 47.54 74.61 73.99 60.69 66.88 51.02 57.59 70.16
ResNet152 √ √ × 88.91 72.53 85.67 83.18 89.61 85.95 69.32 63.80 47.01 70.74 57.89 64.77 72.66 66.38 63.87 72.15
ResNet152 √ √ √ 88.70 86.41 86.31 82.46 90.02 85.37 68.75 67.80 52.81 78.51 81.45 65.20 69.29 64.83 65.10 75.53

Note: Bolded font indicates the best results in each column, and the units of the values in the table are all %

In Table 6, when the base method uses ResNet50 as the
feature extraction network, the average detection accuracy
mAP is only 63.89%. When ResNet152 is used as the
feature extraction network, the average detection accuracy
(mAP) can reach 66.85%, which is an improvement of
2.96%. Therefore, ResNet152 is used as the feature
extraction network in our method. After adding the NAS-
FPN module, the mAP is improved by another 3.31%, when
the binary coding module BCL is added again, the mAP is
further improved by 1.99%, and finally, after adding the
IoU smooth L1 loss function, the mAP reaches the highest
value of 75.53%. Table 6 shows that the detection accuracy
of most of the objects increases after the modules are added
one by one. According to the above ablation experimental
results, each module added to the basic method helps to
improve the detection accuracy of the remote sensing image
objects, illustrating the effectiveness of each module.
TABLE 7. Precision, recall, and F1-score before and after the method
improvement.

Method Precision Recall F1-score

Basic Method 28.93% 87.96% 40.31%
Our Method 42.30% 83.07% 52.56%

According to Table 7, compared with the basic method,
the precision and F1-score have improved significantly,
although the recall has decreased slightly, indicating that our
method can detect the objects more accurately and
comprehensively, and the detection performance is better
than that of the basic method.
Fig. 14 shows the detection results of the basic method and

our method on some images in the DOTA dataset, and only
some of the original images are captured here to make the
detection results more obvious. From the figure, we can see
that the basic method is prone to mis-detection, such as the
roundabout intersection and port in the figure; and the angle
prediction of the basic method is not accurate enough, such
as for the soccer field and tennis court in the figure. By
contrast, our method can detect most of the objects with
higher object detection accuracy, and more importantly, it
can mark the location of the object using a rotating detection
frame with a more accurate angle.
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FIGURE 14. Comparison of the detection results of the basic method and our method.

We compared our method with eight existing high-
performance methods, including R2CNN (Rotational Region
CNN) [27], RRPN (Rotation Region Proposal Networks)
[28], RetinaNet [29], ICN [30], RoI Transformer [17],
CADNet [31], MFIAR-Net [32] and DRN [33]. The results
of the comparison experiments are shown in Table 8, which
includes the average detection accuracy AP and the

multiclass average detection accuracy mAP for each type of
target in the DOTA dataset. Since the publisher of the DOTA
dataset does not publish the truth labels of the test set, the AP
and mAP values discussed here are obtained by submitting
the prediction files to the official DOTA evaluation server for
evaluation.

TABLE 8. AP, mAP results of each method on the DOTA dataset.

Method PL SH ST BD TC BC GTF HA BR SV LV RA SP HC SBF mAP
R2CNN 80.94 55.81 72.39 65.67 90.67 66.92 67.44 55.14 35.34 59.92 50.91 52.23 53.35 48.22 55.06 60.67
RRPN 88.52 57.25 67.38 71.20 90.81 72.84 59.30 53.08 31.66 51.85 56.19 52.84 51.94 53.58 56.69 61.01

RetinaNet 88.92 75.24 75.07 67.67 90.87 73.95 56.83 51.05 33.55 66.11 73.28 56.72 55.86 21.46 43.77 62.02
ICN 81.40 70.00 78.20 74.30 90.80 79.10 70.30 67.00 47.70 64.90 67.80 62.90 64.20 50.20 53.60 68.20

RoI Transformer 88.64 83.59 81.46 78.52 90.74 77.27 75.92 62.83 43.44 68.81 73.68 53.54 58.93 47.67 58.39 69.56
CADNet 87.80 76.60 73.30 82.40 90.90 79.20 73.50 62.00 49.40 71.10 63.50 60.90 67.00 62.20 48.40 69.90

MFIAR-Net 89.62 77.81 86.86 84.03 90.85 85.40 70.30 66.25 52.41 70.13 67.64 66.68 70.21 62.11 63.21 73.49
DRN 89.71 85.84 84.89 82.34 90.57 86.18 64.10 69.30 47.22 76.22 74.43 61.93 69.63 58.48 57.65 73.23

Our Method 88.70 86.41 86.31 82.46 90.02 85.37 68.75 67.80 52.81 78.51 81.45 65.20 69.29 64.83 65.10 75.53

Note: Bolded font indicates the optimal results in each column, and the units of the values in the table are all in %

As illustrated in Table 8, our method not only has the
optimal multiclass average accuracy compared with the eight
object detection methods, but also has improved the single-
class average accuracy for most of the objects. This reflects
the greater ability of our method to use more accurate rotated
detection frames to indicate the location and class of objects
in remote sensing images.

As shown in Fig. 15, due to the large size of the measured
images, small images containing typical scenes are
selectively shown here. It is observed from the figure, that
our method can accurately detect the position of the objects
by using a rotating frame with an angle, and can also give the
approximate angle value of the rotating frame.
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FIGURE 15. Object detection results of some images.

Our approach is an improvement for on RetinaNet. Since
there is no precedent for combining these techniques, it is
unclear whether their combination will produce better
detection results. We performed ablation experiments and
compared the accuracy with some other methods. According
to the above experimental results, our proposed method
(ResNet152+ NAS-FPN+ BCL+ IoU smooth L1) is superior
to the other methods.

IV.CONCLUSION
In this paper, we proposed a rotation detector based on angle
classification. The embodiment is improved on the basis of
RetinaNet. First, we use the residual network to extract the
features in images, and the feature pyramid network based on
neural structure search is used to fuse the extracted feature
maps to obtain feature maps of different scales. Then angle
classification is used to avoid the problem of periodicity of
angle, while the five-parameter definition method with 180º
range is adopted to solve the problem of exchangeability of
edges. Finally, the IoU smooth L1 function is added to the
loss function to further eliminate the boundary discontinuity
problem. The effectiveness of our method is verified by
ablation experiments and comparison experiments, and the
dataset used is the DOTA dataset. The results of the ablation
experiments show that each proposed module contributes to
improving the object detection accuracy. The results of the
comparison experiment further demonstrate that the proposed

method has higher accuracy in remote sensing image object
detection compared with the comparison methods, and also
can locate the objects with more accurate rotation detection
frames.
In the field of machine learning, learning tasks can be

broadly classified into the two categories of supervised
learning and unsupervised learning. Usually, both need to
learn predictive models from training datasets containing a
large number of training samples. Although current
supervised learning techniques have achieved great success,
it is important to note that it is difficult to obtain strongly
supervised information such as full truth labels for many
tasks due to the high cost of the data labeling process.
Unsupervised learning is quite difficult due to the slow
development of the learning process. Therefore, weakly
supervised learning has been gradually attracting attention.
Several studies using weakly supervised learning in
combination with perspective regression algorithms have
already been reported. From the point of view of training, the
difference between classification models and regression
models is their loss functions. Some work on detection using
weakly supervised learning with angle regression algorithms
has been carried out [34], and we believe that detection
methods based on angle classification can also be
implemented using a deep learning approach of supervised
learning; we expect to conduct research in this area in future
work.
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