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Abstract—To reduce the storage requirements, remote sensing
(RS) images are usually stored in compressed format. Exist-
ing scene classification approaches using deep neural networks
(DNNs) require to fully decompress the images, which is a
computationally demanding task in operational applications. To
address this issue, in this paper we propose a novel approach
to achieve scene classification in JPEG 2000 compressed RS
images. The proposed approach consists of two main steps: i)
approximation of the finer resolution sub-bands of reversible
biorthogonal wavelet filters used in JPEG 2000; and ii) char-
acterization of the high-level semantic content of approximated
wavelet sub-bands and scene classification based on the learnt
descriptors. This is achieved by taking codestreams associated
with the coarsest resolution wavelet sub-band as input to approx-
imate finer resolution sub-bands using a number of transposed
convolutional layers. Then, a series of convolutional layers models
the high-level semantic content of the approximated wavelet sub-
band. Thus, the proposed approach models the multiresolution
paradigm given in the JPEG 2000 compression algorithm in an
end-to-end trainable unified neural network. In the classification
stage, the proposed approach takes only the coarsest resolution
wavelet sub-bands as input, thereby reducing the time required
to apply decoding. Experimental results performed on two
benchmark aerial image archives demonstrate that the proposed
approach significantly reduces the computational time with
similar classification accuracies when compared to traditional
RS scene classification approaches (which requires full image
decompression).

. Index Terms—Deep neural networks (DNNs), JPEG 2000,
compressed image domain, scene classification, remote sensing.

I. INTRODUCTION

A
DVANCEMENTS in satellite technologies have led to

a huge increase in the volume of remote sensing (RS)

image archives up to an unprecedented level. Subsequently,

the extent of information that can be inferred from these

massive archives is also increasing, enabling applications.

Considering the volume of such massive archives as well

as the complexity of RS images, developing efficient scene

classification methods is one of the most important research

topics in RS.
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Scene classification aims to assign a class label to a given

RS image based on the analysis of descriptors that characterize

its semantic content. The performance of any scene classifi-

cation method mainly depends on its ability to characterize a

given RS image with efficient feature representations. In the

last decade, several handcrafted features were introduced in the

RS literature [1–8]. However, exploiting the aforementioned

handcrafted features for scene classification tasks in massive

RS image archives that contain petabytes of data is inefficient,

time-demanding and computationally-complex. Moreover, the

discriminative power of these handcrafted features is often

shallow and requires human intelligence, which incurs ad-

ditional labor costs. To address these limitations, in recent

years several deep learning (DL) algorithms were introduced

in RS community [9–13]. Among them convolutional neural

networks (CNNs) have demonstrated their remarkable ability

to learn the high-level semantic content of RS image resulting

in high classification accuracies. These networks hierarchically

learn the intrinsic patterns within the images through several

convolution and pooling operations to obtain distinctive feature

descriptors. Several studies have shown very good perfor-

mance of CNNs in the RS domain for several applications,

including scene classification [4], [9], [14]. In the early years,

CNN models were trained from scratch with a considerable

amount of training data. However, recent experiments have

shown that using pretrained DL networks (e.g. ImageNet [15],

VGG16 [16], GoogLeNet [17], CaffeNet [18]) in RS domain

has remarkably improved classification performance. In [19], it

is shown that the classification accuracy of a CNN model with

a considered pre-trained network outperforms what obtained

when a model is trained from scratch. This mainly depends

on the small number of training samples usually available in

RS applications.

Recently, several studies were conducted in order to enrich

the discriminative power of the image descriptors obtained

through conventional CNN models. As an example, com-

bining features obtained at multiple resolutions to represent

a scene provides significant improvement in classification

accuracies [20]. Although this approach is rotation as well

as translation invariant, it is time-demanding to train images

at several resolutions using a simple CNN model. Zheng et

al. [21] proposed a deep representation where the multiple-

scale features are obtained from the image feature maps

using multiscale pooling (MSP) to improve the classification

performance at a faster rate. To improve the classification
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performance, features obtained from relevant image areas can

be considered. This can be done by introducing the attention

mechanisms. In [22], local image descriptors are obtained with

recurrent attention to perform multi-label RS scene classifica-

tion. Attention mechanism avoids irrelevant areas and focus to

obtain features from relevant image regions thereby reducing

the number of parameters as well as the computational time

required to perform a specific task. Guo et. al. [23] have

proposed a network where both local and global features are

learned through a local global attention framework.

To mitigate the problem of overfitting that generally arises

due to the limited availability of annotated data, generative

adversarial networks (GANs) became popular to address scene

classification problems in RS. GANs learn the hidden structure

in the given input data and consists of a generator (that learns

the semantic contents of the data) and a discriminator (that

classifies the generated and input images) [24–29]. MARTA-

GAN proposed in [27], was one among the first efforts to

learn feature representations to perform unsupervised aerial

scene classification. The performance of GAN models depends

on the quality of the modelling of the structure of generated

images. In [28], GAN-NL has proposed to effectively model

the non-local dependencies in the generated images and has

shown remarkable improvements in the classification accura-

cies. Roy et al. [26] proposed a semantic fusion GAN, where

the feature representations are obtained using a standard Deep

Convolutional GAN (DCGAN) combined with an external

deep network. In [29], two CNNs are integrated that serve

as the generator and discriminator model of GAN to classify

hyperspectral images. The authors proposed 1D-GAN and

3D-GAN that are used to classify the spectral and spatial-

spectral information, respectively. Although the current state-

of-the-art GAN networks demonstrate an improvement in

classification performance, their optimization and training are

time demanding.

To reduce the storage required for huge amounts of

data, RS images are compressed before storing them in the

archives [30]. Several image compression algorithms such

as Differential Pulse Code Modulation (DPCM), Adaptive

DPCM (ADPCM), Joint Photographic Experts Group (JPEG),

JPEG 2000 were introduced in RS [30]. Among several

compression algorithms, JPEG 2000 [31] became very popular

in RS due to its multiresolution paradigm, scalability and

high compression ratio. JPEG 2000 algorithm is used to

compress RS images acquired by most of the recent applied

satellites (such as Sentinel-2 and PRISMA) in their archives.

Thus, before performing any scene classification of images in

compressed archives, the image decompression task should be

performed. This is computationally-demanding and ineffective

when considering real large-scale RS image archives that may

contain petabyte scale data. Considering the complexity and

size of RS image, the amount of time required to decompress

any image cannot be neglected in real large-scale RS image

archives.

To address the aforementioned limitation, in this paper, we

propose a novel approach based on DNNs for scene classifica-

tion of compressed RS images. We assume that the images in

the archive are compressed using JPEG 2000. The proposed

approach aims to minimize the amount of decompression

required for the classification of compressed RS images while

maintaining similar accuracies when compared to the con-

ventional state-of-the-art scene classification approaches. To

achieve this, the proposed approach consists of two main

steps: i) approximation of the finer (higher) resolution wavelet

sub-bands used in JPEG 2000 compression algorithm; and ii)

feature extraction and scene classification of the approximated

finer resolution wavelet sub-bands. The proposed approach

initially obtains the codestreams associated with the coarsest

resolution wavelet sub-bands of the considered JPEG 2000

compressed RS image. Then, in the first step, finer resolution

wavelet sub-bands (image) are approximated through a series

of transposed convolutional layers. The second step aims to

obtain the features associated with the approximated finer

resolution wavelet sub-bands and perform scene classification

based on the learnt descriptors. This is obtained by introducing

a loss function that learns the parameters associated with both

approximation and scene classification in an end-to-end uni-

fied neural network. In the classification phase, the proposed

approach requires only the codestreams associated with the

coarsest wavelet resolution sub-bands and thereby reduces the

time required to preform decompression of the images. The

proposed approach explores the hierarchical multiresolution

feature space in a unified framework and achieves optimal

resource utilization for scene classification. The effectiveness

of the proposed approach was evaluated by using two different

aerial benchmark image archives: NWPU-RESISC45 [32] and

AID [19]. Please note that the aim of this study is not to

introduce a compression algorithm but to propose a novel DL

approach that requires minimally decoded wavelet subband in-

formation to obtain optimal classification, thereby significantly

minimizing the computational cost of the decoding step.

The remainder of this paper is organized into five sections:

Section II gives a brief review of the related works. Section III

explains the proposed approach. Section IV describes the data

sets and the experimental setup, while Section V illustrates

the experimental results with discussion. Finally, Section VI

draws the conclusion of the work.

II. RELATED WORKS

A. JPEG 2000 Algorithm

JPEG 2000 is one among the most popular compression

algorithms and image coding systems that rely on the wavelet-

based approach. Figure 1 illustrates the block scheme in the

encoding and decoding of JPEG 2000 compression algorithm.

It includes: i) Discrete Wavelet Transform (DWT); ii) Quan-

tization; and iii) Embedded Block Coding with Optimized

Truncation. DWT when applied to a given image helps to

achieve multiresolution image description and decomposes

the given image into one approximation (LL) sub-band and

three detail sub-bands (LH, HL and HH). The LL sub-

band is further decomposed to approximation and detail sub-

bands, if one requires more than one decomposition level. The

wavelet coefficients of each sub-band are quantized using a

step-size quantizer as selected by the user. As we consider

lossless compression for the images in the archive, we do not
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Fig. 1. General block scheme of the JPEG 2000 compression and decompression algorithm.

perform quantization and thus this step is neglected. The sub-

bands are then sub-divided into rectangular blocks referred as

precinct and each precinct is again subdivided into codeblocks

that are usually of size 64 × 64. The minimum size of a

codeblock should be 32 × 32. These codeblocks, which are

represented using bitplanes, are then entropy coded using the

EBCOT algorithm. Entropy coding in JPEG 2000 compression

algorithm is separated into Tier-1 and Tier-2 coding. In Tier-1

coding, each codeblock is coded using i) Context Modelling

and ii) Arithmetic Coding. The probability of occurrence

of a particular bit can be determined from the contextual

information, which is obtained from three passes: significance

propagation pass, refinement pass and cleanup pass. In Tier-

2 coding, the bitstreams obtained after arithmetic coding are

organized into several packets and layers. A given packet

includes the codestream associated with a particular precinct

and allows to access data based on the quality, resolution

or band. This packet structure organization allows to access

progressively and hierarchically to the information of a given

image.

B. JPEG 2000 based Feature Descriptors

Features that can be obtained from JPEG 2000 compressed

images for scene classification are broadly divided into two

categories: header-based and wavelet-based features. Header-

based features are directly obtained from the bitstreams of

a JPEG 2000 compressed image, where one can acquire

information such as the number of bytes B used to entropically

encode a given image or the maximum number of significant

bitplanes MB in a given codeblock [33]. In [34], Mallat

illustrates that these features represent the singularities present

in an image, which can be utilized for image classifica-

tion/retrieval.

Wavelet-based features are obtained after the partial de-

compression of a given compressed image. They efficiently

model spectral, texture and shape information obtained from

the approximation and detail (horizontal, vertical, diagonal)

wavelet sub-bands. The problem of obtaining features from

wavelets has been studied extensively during the last decade.

By observing that the detail sub-bands have a near-Gaussian

behavior, most of the early research works on image classifi-

cation/retrieval focused on modelling the detail wavelet sub-

bands using Generalized Gaussian Distribution (GGD) [35],

Gaussian Mixture Model (GMM) [36], Generalized Gamma

Density (GTD) [37] and their variants. Although these sta-

tistical representations are highly discriminative, they are

computationally-complex and time-consuming. The energy

and mean descriptor obtained from the detail sub-bands were

also used as the texture features [38]. In addition, features

extracted by the co-occurrence matrix (i.e. contrast, homo-

geneity, energy, variance, correlation) were considered to

model the texture features. The histogram obtained from the

probability of joint distribution of bitplanes that are obtained

directly from the JPEG 2000 codestreams have been used for

image retrieval [38]. In [39], the spectral information obtained

from the approximation sub-band exploited to perform image

retrieval in a JPEG 2000 compressed archive. In [40], the

moduli as well as angle of the wavelet coefficients obtained

from the horizontal and vertical wavelet sub-bands were found

very effective in modelling the edge features for image clas-

sification. In [41], morphological operations such as dilation

and erosion applied to wavelet sub-bands were used to obtain

shape based features to perform image retrieval from JPEG

2000 compressed images. However, these handcrafted features

are unable to capture the high-level semantic information

when compared to deep features. Thus this work focuses

on developing a novel approach that benefits from DNNs

to achieve efficient scene classification performance in JPEG

2000 compressed image archives.

III. PROPOSED SCENE CLASSIFICATION

APPROACH IN THE JPEG 2000 COMPRESSED

DOMAIN

A. Problem Formulation

Let X = {Xi}
N
i=1

be an archive that contains N JPEG 2000

compressed RS images, where Xi represents the ith image.

The main objective of the proposed approach is to assign a

class label yi ∈ Y, where Y is a set of class labels, to a given
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Fig. 2. Block scheme of the proposed approximation approach in the compressed domain.

input image Xi ∈ X. Let us assume that all the images in the

archive are decomposed up to L resolutions. Each image in

the archive will be represented as one approximation sub-band

and 3L detail sub-bands (i.e. horizontal, vertical and diagonal).

In JPEG 2000 compressed image archive, the straightforward

approach to perform scene classification is to: i) apply entropy

decoding to the code streams associated with all the images

in the archive; and ii) obtain the image descriptors. However,

decoding all the images from a compressed archive is time-

demanding and computationally-expensive. Thus, we propose

a novel approach based on DNNs that efficiently approximates

a decompressed image to perform scene classification in a

large scale JPEG 2000 compressed image archive. Our objec-

tive is: i) to implement a novel DL approach that performs

scene classification in the compressed domain with minimal

decompression; and ii) to reduce the computational time when

compared to models that require fully decoded images. To

achieve this, the proposed approach consists of two main

steps: i) approximation of the finer (higher) resolution wavelet

sub-bands used in JPEG 2000 compression algorithm; and ii)

feature extraction and scene classification of the approximated

finer resolution wavelet sub-bands. Figure 2 shows the block

scheme of the proposed approach and each step is explained

in the following subsections.

B. Approximation of the Wavelet Coefficients

This step aims to approximate the finer (higher) resolution

wavelet sub-bands (or the image itself) through a series of

transposed convolutional layers. To this end, the proposed

approach considers m transposed convolutional layers, where

m corresponds to the number of wavelet decomposition levels

that were initially used to compress a given image Xi ∈ X.

Given a compressed image Xi, we initially obtain the code-

stream associated with the coarsest level wavelet sub-band

(see Fig. 2) that provides the global scale information of any

given image. Let GL = {aLXi
, hL

Xi
, vLXi

, dLXi
} denote the

approximation, horizontal, vertical and diagonal sub-bands of

an image Xi at the Lth wavelet decomposition level (coarsest

wavelet sub-band). Let AL−1 = {aL−1

Xi
, hL−1

Xi
, vL−1

Xi
, dL−1

Xi
}

be the finer level approximated sub-bands at level L− 1.

We consider ’convolution’ operation as a matrix multipli-

cation between the flattened input and a sparse matrix C.

As an example, GL can be obtained by applying convolution

operation on AL−1 as follows:

GL = C ·AL−1. (1)

The non-zero elements in the sparse matrix C can be con-

structed using the kernel coefficients of the convolution oper-

ation as follows:

C =















k11 ... k1q 0 ... k2q ... kpq 0 ...

0 k11 ... k1q 0 ... k2q ... kpq ...

0 0 k11 ... k1q 0 ... k2q ...

... ...

0 0 0 0 ... kpq















(2)

where p and q represent the kernel size and kij is the

element of the kernel (where i and j are the row and column

indices of the kernel, respectively). Convolution operation
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Fig. 3. Example of approximation of a finer level wavelet sub-bands using
transposed convolution.

takes the input matrix AL−1 which is then flattened into a

vector and multiplies the flattened input with C. The matrix

multiplication result is reshaped to obtain the final output GL.

It is worth noting that during the forward and backward passes

of CNNs, convolution operations are applied with C and CT ,

respectively. In computer vision, transposed convolution has

proved to be an efficient algorithm that uses the gradient of the

convolution operation (for a given image) to perform image

restoration and reconstruction [42]. Our proposed approach

approximates the finer wavelet sub-bands using transposed

convolution as shown in Fig. 3. Given a kernel, the transposed

convolution operation multiplies the flattened input vector

GL with CT during the forward pass and multiplies with

(CT )T = C during the backward pass to obtain AL−1. The

finer level wavelet sub-bands can be obtained as:

AL−1 = CT ·GL, (3)

where we swap the backward and forward passes of the

convolution operation which is used in standard CNNs. Ac-

cordingly, using m transposed convolutional layers, the pro-

posed approach allows to approximate the image Am. For the

transposed convolutional layers, if we use a stride S, padding

P and kernel size k, then the size of the approximated wavelet

sub-bands (AL−1

size ) obtained from the coarser level wavelet sub-

bands (AL
size) is given by:

AL−1

size = S ∗ (AL
size − 1) + k − 2P. (4)

The proposed approximation approach reflects the inherent

multiresolution paradigm within the JPEG 2000 compression

algorithm within an end-to-end unified framework. While

approximating sub-bands, we consider two scenarios.

1) Scenario 1: Minimal Decoding: In this scenario, the pro-

posed approach obtains only the codestreams associated with

the coarsest level (Lth level) wavelet sub-bands to approximate

the finer level sub-bands (image itself). Here, the aim is to

minimize the amount of decompression time required to per-

form scene classification by approximating wavelet sub-bands

(image) using only the coarsest level sub-band. The coarsest

level wavelet sub-band provides global scale information of the

considered image. Thus, in this scenario, although the amount

of time required for decompression is significantly reduced,

the quality of approximation is moderately diminished. Fig.

4 illustrates the case when the proposed approach takes the

codestreams associated with 32 × 32 coarsest level wavelet

sub-band to approximate the image Am using m transposed

convolutional layers.

2) Scenario 2: Partial Decoding: In this scenario, the

proposed approach takes the coarsest level (Lth level) wavelet

sub-band information to decode the finer level (L− 1th level)

wavelet sub-band, which is exploited to approximate the finest

level wavelet sub-bands (image itself). In this scenario, the

amount of required decompression time is reduced moderately

to achieve favourable performance, when compared to the case

where the images require full decompression. The finer level

wavelet sub-bands provide fine scale information of a given

image. Thus, the wavelet sub-bands (image) approximated

from the finer level sub-bands incorporate the detailed fine

scale information that enhance the classification accuracy with

moderate reduction in time. Fig. 5 illustrates the case when a

32×32 coarsest level wavelet sub-band is employed to decode

the finer level sub-bands of size 64× 64. Then, deconvolution

is applied to the decoded finer level wavelet sub-bands to

approximate the finest level wavelet sub-bands (image).

C. Feature Extraction and Classification

The feature extraction and classification step aims to obtain

features from the approximated wavelet sub-bands (image).

To this end, we consider a neural network with five con-

volutional layers with a number of filters similar to that of

the AlexNet [43] and two fully connected (FC) layers. By

modifying the feature extraction and classification steps, we

can obtain powerful discriminative features. To demonstrate

the effectiveness of recent DL models when used in the

compressed domain wavelet subband information, we selected

the ResNet50 [44] architecture to compare with the results

obtained by the AlexNet. Then, the output obtained from the

final FC layer is mapped into classification scores. To reduce

information loss, we considered zero padding and stride of 1 in

each convolutional layer, which is followed by a max-pooling

layer except the third and fourth.

The total loss (Ltotal) of the proposed approach is the sum

of the approximation loss (Lapproximation) and classification

loss (Lclassification), which is obtained as:

Ltotal = Lclassification + Lapproximation. (5)

The approximation loss Lapproximation is obtained by calcu-

lating the sum of mean squared errors (MSE) between the

approximated wavelet sub-bands and decoded wavelet sub-

bands at each level l as follows:

Lapproximation =

1
∑

i=L

M
∑

j=1

N
∑

k=1

||Ai(w[j, k])−Di(w[j, k])||
2

(6)
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where M × N represents the size of the considered wavelet

sub-bands at level l, w[j, k] denote the wavelet coefficient at

position [j, k] and Di represents the decoded wavelet sub-band

at any given level i. The classification loss Lclassification is

the cross-entropy loss function, which is predominantly used

for scene classification problems and defined as follows:

Lclassification = −

Q
∑

i=1

yilogŷi (7)

where ŷi denote the predicted class label. To improve the clas-

sification performance, batch normalization (BN) and dropout

were carried out after each convolutional layer. To overcome

vanishing gradient problem, Rectified Linear Unit (ReLU)

activation was used after both the convolutional and transposed

convolutional layers. Section IV provides the more detailed

information regarding the training details and the parameters.

IV. DATASET DESCRIPTION AND EXPERIMENTAL

SETUP

Several experiments were performed to evaluate the perfor-

mance of the proposed approach on two benchmark archives.

The first one is the NWPU-RESISC45 [32] benchmark archive

that consists of 31,500 images associated with 45 different

categories (i.e. airplane, airport, baseball diamond, basketball

court, beach, bridge, chaparral, church, circular farmland,

cloud, commercial area, dense residential, desert, forest, free-

way, golf course, ground track field, harbor, industrial area,

intersection, island, lake, meadow, medium residential, mobile

home park, mountain, overpass, palace, parking lot, railway,

railway station, rectangular farmland, river, roundabout, run-

way, sea ice, ship, snowberg, sparse residential, stadium,

storage tank, tennis court, terrace, thermal power station and

wetland). Each category has 700 scene classes and each image

in the archive has the size of 256 × 256 with a varying

spatial resolution between 0.2m to 30m per pixel. The reader

is referred to [32] for detailed information.

The second archive is the AID [19] benchmark archive

that contains 10,000 images associated with 30 different

categories (i.e. airport, bare land, baseball field, beach, bridge,

center, church, commercial, dense residential, desert, farm-

land, forest, industrial, meadow, medium residential, mountain,

park, parking, playground, pond, port, railway station, resort,

river, school, sparse residential, square, stadium, storage tanks,

viaduct). Each image has the size of 600 × 600 pixels with

a spatial resolution in the range from 0.5m to 8m. For more

detailed information, the reader is referred to [19].

To assess the effectiveness of the proposed model, the

images of both archives were compressed using the JPEG

2000 algorithm. TensorFlow deep learning library was utilized
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TABLE I
NUMBER OF IMAGES CONSIDERED FOR EACH ARCHIVE IN

THE TRAINING, VALIDATION AND TEST DATA.

Image Archive Training Validation Test

NWPU-RESISC45 25200 3150 3150

AID 8000 1000 1000

for the proposed model. Due to the minimum codeblock size

constraint (see Section II-A), we considered a three level

wavelet decomposition for both image archives (L = 3). The

codestreams associated with the coarsest wavelet sub-band

(l = 3) is used as the input to the proposed approach. The

number of transposed convolutional layers (m) is equivalent

to the number of wavelet decomposition levels used in the

considered image archive. To avoid information loss, we

selected the size of the filter as 1×1 with stride 1 and padding

0. The number of filters used for approximating the wavelet

sub-bands is 12× 12 and the image is 3× 3. For scenario 2,

we considered decoding up to (m−1) wavelet decomposition

levels. Both image archives were initially divided into three

subsets: training (80%), validation (10%) and test (10%)

as shown in Table I. Images included in each subset were

randomly sampled. The training of the proposed approach

was carried out with the Stochastic Gradient Descent (SGD),

which uses the Adaptive Moment Estimation (Adam). During

training, the Xavier initialization method was used for the

parameter initialization. As there is no pre-trained models to

perform scene classification in the compressed domain, all the

experiments were performed starting from scratch. In addition,

to achieve accurate performance, experiments were carried out

varying learning rate between 0.1 to 0.0001. The performance

of the proposed architecture was assessed quantitatively and

qualitatively by using: 1) classification accuracy; 2) compu-

tational time (in sec) of training, validation and test phases;

and 3) Root Mean Square Error (RMSE) of the approximated

sub-band images. It is worth noting that computational time

of the test phase was considered as classification time. All the

experiments were performed with Nvidia Tesla V100.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach,

we performed several experiments to: i) assess the quality of

the proposed approximated images compared to the decoded

wavelet sub-bands (image); ii) analyze the performance of the

proposed approach for scenarios 1 and 2 (mentioned in Section

III-A-1 and III-A-2); and iii) compare the performance and

computational gain with respect to a standard CNN. To this

end, we considered two different cases under scenario 1 and

2 where:

1) Scenario 1 - the coarsest level wavelet sub-bands are used

to approximate the image level information;

2) Scenario 1 - the coarsest level wavelet sub-bands are used

to approximate the intermediate finer level wavelet sub-

bands;

3) Scenario 2 - decoded finer level wavelet sub-bands are

used to approximate the image level information;

4) Scenario 2 - decoded finer level wavelet sub-bands are

used to approximate intermediate finest level wavelet sub-

bands.

In the first set of experiments, we assess the qualitative as

well as quantitative performances of the proposed approach

for scene classification on both NWPU-RESISC45 and AID

image archives.

A. Qualitative Analysis of the Approximated Images

This subsection provides a qualitative analysis of the images

obtained by the proposed approximation approach for the

NWPU-RESISC45 archive. Fig. 6-9 show the approximated

images obtained for LL, LH, HL and HH wavelet sub-

bands for the images of NWPU-RESISC45 archive that are

associated to the building class. To qualitatively analyze the

efficiency of the proposed approach, we provide the RMSE

value between the approximated image and the decoded image.

Given a coarser level wavelet sub-band (64×64) of the image

from the NWPU-RESISC45 archive (Scenario 2), one can

notice that the proposed approach is efficient to model the

finer level wavelet sub-band (128 × 128). It converges fast

(around Epoch 50) for all the wavelet sub-bands. The RMSE

values obtained for LL sub-bands are 157.86, 165.62, 166.96

for Red (R), Green (G) and Blue (B) bands, respectively.

Transposed convolution used to approximate the finer level

wavelet sub-bands (image) introduces a loss to the fine-scale

detailed information. This is visible from the LL sub-band

finest approximated images (128 × 128) (see Fig. 6). The

RMSE values for the HL (vertical) sub-bands are 8.38, 8.64

and 8.74 for RGB bands, respectively. In addition, we also

notice decreased RMSE values for the detail wavelet sub-

bands (which are LH, HL and HH) when compared to the

approximation wavelet sub-band (which is LL). Thus, we can

see that the transposed convolution efficiently approximates

the detail wavelet sub-bands. The same behavior is replicated

when AID image archive is used, however, they are not

repeated due to space constraints.

B. Quanitative Results of the Proposed Approximation Ap-

proach

This subsection presents the classification accuracies and

the computational time required by the proposed approach.

For the following experiments, the feature extraction and

classification steps of the proposed approach have been based

on the AlexNet model. Table II reports the performance of

the proposed approach (for scenarios 1 and 2) for the NWPU-

RESISC45 benchmark archive. Note that the computational

time includes the decoding time required for the considered

images. From the numbers in Table II associated to Scenario

1, one can notice that the proposed approach employs the

coarsest level wavelet sub-bands (32× 32) to approximate: i)

the image (256×256) after applying three transposed convolu-

tional layers; ii) the finest level wavelet sub-band (128× 128)

after applying two transposed convolutional layers; and iii) the

finer level wavelet sub-band (64×64) after applying one trans-

posed convolutional layer. As one can observe, approximating

the finest level wavelet sub-band (128 × 128) achieves the
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Fig. 6. Qualitative results of sub-band approximations associated to LL wavelet sub-band of an image belonging to building category (NWPU-RESISC45
archive).
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Fig. 7. Qualitative results of sub-band approximations associated to LH wavelet sub-band of an image belonging to building category (NWPU-RESISC45
archive).
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Fig. 8. Qualitative results of sub-band approximations associated to HL wavelet sub-band of an image belonging to building category (NWPU-RESISC45
archive).
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Fig. 9. Qualitative results of sub-band approximations associated to HH wavelet sub-band of an image belonging to building category (NWPU-RESISC45
archive).
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TABLE II
CLASSIFICATION ACCURACY AND COMPUTATIONAL TIME FOR THE PROPOSED APPROXIMATION APPROACH (NWPU-RESISC45 ARCHIVE).

Proposed Approximation Approach Accuracy (%)
Computational Time (sec)

Train Validation Test

Scenario 1

Approximating image
(32× 32) → (64× 64) → (128× 128) → (256× 256)

73.27 8770.76 6.13 5.17

Approximating finest level wavelet sub-bands
(32× 32) → (64× 64) → (128× 128)

74.05 6739.87 5.28 5.68

Approximating finer level wavelet sub-bands
(32× 32) → (64× 64)

65.42 568.99 0.38 0.51

Scenario 2

Approximating image
(64× 64) → (128× 128) → (256× 256)

80.09 8630.20 106.37 106.51

Approximating finest level wavelet sub-bands
(64× 64) → (128× 128)

79.92 8393.79 102.03 101.81

Approximating image
(128× 128) → (256× 256)

78.54 8853.99 207.24 206.81

TABLE III
CLASSIFICATION ACCURACY AND COMPUTATIONAL TIME FOR THE PROPOSED APPROXIMATION APPROACH (AID ARCHIVE).

Proposed Approximation Approach Accuracy (%)
Computational Time (sec)

Train Validation Test

Scenario 1

Approximating image
(75× 75) → (150× 150) → (300× 300) → (600× 600)

74.64 14539.87 14.26 14.03

Approximating finest level wavelet sub-bands
(75× 75) → (150× 150) → (300× 300)

76.92 13598.14 13.87 14.91

Approximating finer level wavelet sub-bands
(75× 75) → (150× 150)

77.34 10115.91 8.62 9.90

Scenario 2

Approximating image
(150× 150) → (300× 300) → (600× 600)

79.91 14183.46 253.98 279.28

Approximating finest level wavelet sub-bands
(150× 150) → (300× 300)

79.24 13847.33 224.36 227.34

Approximating image
(300× 300) → (600× 600)

78.52 14964.64 326.34 331.65

best classification performance when compared to the other

two cases. This is due to the fact that when the coarsest

level wavelet sub-bands are used to approximate image (which

requires three transposed convolution layers), the details of

the approximated fine-scaled objects are reduced. Nonetheless,

when the finest level wavelet sub-bands (128×128) are approx-

imated (which requires only two transposed convolution lay-

ers), we gain in terms of both performance and computational

time. Thus, we can conclude that, as the number of layers

used for approximation decreases, the performance increases.

In the third case, where the finer level sub-bands (64× 64) is

approximated (using one transposed convolutional layers), the

size of the approximated wavelet sub-bands does not provide

enough image information for accurate classification. Thus,

the resulting classification accuracy is the lowest (i.e. 65.42%)

when compared to the other two cases.

From the numbers in Table II associated to scenario 2, one

can see that the proposed approach has used the decoded finer

level wavelet sub-bands (64×64) to approximate: i) the image

(256×256) after applying two transposed convolutional layers;

and ii) the finest level wavelet sub-bands (128 × 128). In

the third case, the proposed approach uses the decoded finest

level wavelet sub-bands (128×128) to approximate the image

(256× 256). As one can see, all the three cases report almost

similar classification accuracies with very small differences.

However, if we compare the computational times, we can

observe that the training time required for approximating

the finest level wavelet sub-bands is lower than the time

required to approximate the images. The training time required

when the finest level wavelet sub-bands are used is 6739.87

sec. In the classification phase, the proposed approach takes

206.81 sec when the image is approximated after decoding

two wavelet decomposition levels. In the first case, where the

image is approximated using the the finer level wavelet sub-

bands (64×64), the required computational time is only 106.51

sec. The overall gain is achieved when the finest level wavelet

sub-bands (128× 128) is approximated.

When we compare scenarios 1 and 2 (Table II), we can

notice that the proposed approach attains good classification

accuracies when the finest level wavelet sub-bands are used.

If we analyze the performance of the proposed approach when

the finest level wavelet sub-bands (128 × 128) are obtained,

it achieves an accuracy of 74.04% when the coarsest level

wavelet sub-bands are used with a required classification time

(i.e. test time) as 5.68 sec. In the other case, approximating

the finest level wavelet sub-bands (128 × 128) after decod-

ing results in 79.92% classification accuracy with a higher

computational time of 101.81 sec. We can observe that the

proposed approach obtains accuracy of 74.05% when only the

coarsest level wavelet sub-bands are used with a significantly

reduced computational time 5.68 sec. If we perform one

level wavelet decoding to obtain the finer level (64 × 64)

wavelet sub-bands, which is used to approximate the finest

level wavelet sub-bands (128× 128), we notice an increase of

5.87% in classification accuracy. This shows that the proposed

approach achieves reasonable classification performance with
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the coarsest wavelet sub-bands. Thus, the experimental results

demonstrate that the finest level wavelet sub-bands (partially

decoded domain) provide sufficient information for an efficient

scene classification with reduced computational time.

Table III reports the performance of the proposed approach

on the AID benchmark archive. From Table III (Scenario 1

and 2), the proposed approach employs the coarsest and the

decoded finer level wavelet sub-bands (75×75) to approximate

the finer level wavelet sub-bands (the image itself). While

analyzing the part of Table III associated to scenario 1, we

can notice that the proposed approach employs the coarsest

level wavelet sub-band to approximate: i) the image level

information (600 × 600); ii) the finest level wavelet sub-

bands (300 × 300); and iii) the finer level wavelet sub-band

(150 × 150). From the results, we can observe an accuracy

of 77.34% when we approximate the finest level wavelet sub-

band (150×150). This is because the size of the coarsest level

wavelet sub-band employed provides sufficient information to

approximate finer level sub-bands (150 × 150) without large

information loss with only one transposed convolutional layer.

However, when we use two or more transposed convolutional

layers to approximate finer level wavelet sub-bands (the image

itself), the accuracy is reduced. This is because the coarsest

level wavelet sub-bands (75× 75) introduce checkerboard ar-

tifacts when two or more transposed transposed convolutional

layers are included. In addition, the training and classification

times required are 10115.91 sec and 9.90 sec, respectively.

Thus, it requires minimum decoding, which reduced the addi-

tional overhead required before classification.

In the part of Table III associated to scenario 2, the proposed

approach employs: i) the finer level wavelet sub-bands (150×
150) to approximate the image level information (600× 600);

ii) the finer level wavelet sub-bands (150 × 150) finest level

wavelet sub-bands (300×300); and iii) the finest level wavelet

sub-bands (300× 300) to approximate the image (600× 600).

If we compare the classification accuracies, we can observe

that the highest classification accuracy of 79.91% is achieved

when the finer level wavelet sub-bands (150 × 150) are used

to approximate the image (600× 600). However, the training

time required to approximate the finest level wavelet (300 ×
300) from the finer level wavelet sub-bands is lower when

compared to the other two cases and the classification accuracy

is 79.24% which is very close to the highest one. In addition,

this last case has also the lowest classification time. From

the experimental results, we can conclude that, if the size of

the coarsest level wavelet sub-bands is large enough (e.g. as

in the case of (75× 75) AID archive), the proposed approach

requires only one approximation level to achieve an acceptable

classification accuracy.

C. Comparison of the Proposed Approach with a Standard

CNN.

In this subsection, we compare the effectiveness of the

proposed approach with: i) a standard-CNN model where

full decompression of images is required; and ii) a standard-

CNN model that takes as input the coarsest level wavelet

sub-bands (which can be obtained from the codestreams of

the compressed image). For the following experiments, the

feature extraction and classification parts are based on the

ResNet50 model. Tables IV and V report the classification

accuracies and computational times for the NWPU-RESISC45

and AID image archives, respectively. It is worth noting that

during classification the proposed approach requires only the

codestreams associated with the coarsest level wavelet sub-

bands, whereas the standard-CNN model requires the fully

decompressed images. By analyzing the tables one can observe

that the computational time required by the proposed approach

is significantly reduced when compared to that of the standard-

CNN model. In addition, we can also notice that the proposed

approach attains almost similar classification accuracies when

compared to the standard-CNN model that uses fully decom-

pressed images. On the contrary, if we perform classification

using the coarsest level wavelet sub-bands, the classification

accuracy is significantly reduced.

By analyzing the AlexNet model results for NWPU-

RESISC45 archive (Table IV), we can notice that the classifi-

cation accuracy obtained by using fully decompressed images

with a standard CNN is 80.11%, with a classification time

(i.e. test time) of 306.24 sec. The proposed approach results

in a very similar classification accuracy of 79.92% when only

one level of decoding is performed with a lower classification

time of 101.81 sec. When the coarsest level wavelet sub-bands

(32 × 32) are used to approximate finest level wavelet sub-

bands (128× 128), the required classification time is of more

than an order of magnitude smaller at the cost of almost

5% lower classification accuracy. When the coarsest level

wavelet-subbands are used in the standard CNN, we obtain

the lowest classification accuracy with the lowest classification

time. By analyzing the ResNet50 model results for the AID

archive (Table IV), the classification accuracy obtained by

fully decompressing the images is 94.85% with a classification

time of 325.98 sec. The proposed approach results again in

a very similar classification accuracy of 93.98% by reducing

classification time (i.e. test time) to 125.64 sec.

By analyzing the AlexNet model results for NWPU-

RESISC45 archive (Table V), we observe that the proposed ap-

proach results in a classification accuracy of 77.34% when the

coarsest level wavelet sub-bands are used, with a classification

time of 9.90 sec. When we compare the performance of the

proposed approach with the standard-CNN, although the clas-

sification accuracy is reduced by 2.20%, there is a significant

gain in terms of the classification time that is reduced to 9.90

sec. Also, it is important to note that the proposed approach

reaches a classification accuracy of 79.24% which is similar to

that obtained by the standard-CNN approach that requires fully

decompressed images. By analyzing ResNet50 model results

for the AID archive (Table V), the classification accuracy

obtained by fully decompressing the images is 93.01% with

a computational time of 444.12 sec. The proposed approach

results in a similar classification accuracy of 92.24% with a

computational time 299.50 sec. By analyzing the results, one

can conclude that the proposed approach minimizes the com-

putational time considerably when compared to the standard-

CNN model. In addition, by using a powerful CNN model like

ResNet50, the performance is also improved. However, this is
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TABLE IV
CLASSIFICATION ACCURACY AND COMPUTATIONAL TIME FOR THE PROPOSED APPROXIMATION APPROACH AND A STANDARD CNN (NWPU-RESISC45

ARCHIVE).

Model Method Accuracy (%)
Computational Time (sec)

Train Validation Test

AlexNet

Proposed Approximation
Approach

Approximating finest level wavelet sub-bands
(32× 32) → (64× 64) → (128× 128)

74.05 6739.87 5.28 5.68

Approximating finest level wavelet sub-bands
(64× 64) → (128× 128)

79.92 8393.79 102.03 101.81

Standard CNN

Fully decompressed image
(256× 256)

80.11 7478.89 305.13 306.24

Without any decompression
(32× 32)

54.01 314.20 0.13 0.12

ResNet50

Proposed Approximation
Approach

Approximating finer level wavelet sub-bands
(75× 75) → (150× 150)

85.91 16953.31 15.61 16.01

Approximating finest level wavelet sub-bands
(150× 150) → (300× 300)

93.98 18992.71 124.32 125.64

Standard CNN

Fully decompressed image
(600× 600)

94.85 17234.51 326.63 325.98

Without any decompression
(75× 75)

76.31 763.24 3.64 3.98

TABLE V
CLASSIFICATION ACCURACY AND COMPUTATIONAL TIME FOR THE PROPOSED APPROXIMATION APPROACH AND A STANDARD CNN (AID ARCHIVE).

Model Method Accuracy (%)
Computational Time (sec)

Train Validation Test

AlexNet

Proposed Approximation
Approach

Approximating finer level wavelet sub-bands
(75× 75) → (150× 150)

77.34 10115.91 8.62 9.90

Approximating finest level wavelet sub-bands
(150× 150) → (300× 300)

79.24 13847.33 224.36 227.34

Standard CNN

Fully decompressed image
(600× 600)

79.54 12582.21 412.37 422.84

Without any decompression
(75× 75)

61.91 946.23 7.90 8.25

ResNet50

Proposed Approximation
Approach

Approximating finer level wavelet sub-bands
(75× 75) → (150× 150)

84.92 17256.34 14.32 14.13

Approximating finest level wavelet sub-bands
(150× 150) → (300× 300)

92.24 b24356.75 298.26 299.50

Standard CNN

Fully decompressed image
(600× 600)

93.01 21731.25 443.91 443.12

Without any decompression
(75× 75)

69.78 1231.24 13.56 13.14

achieved at the cost of increasing the computational time.

VI. DISCUSSION AND CONCLUSION

In this paper, a novel approach has been presented to

perform RS image scene classification in the JPEG 2000

compressed domain by using DNNs. The proposed approach

minimizes the amount of image decoding by a DNN, which

approximates the finer level wavelet sub-bands from the code-

streams associated to the coarser level wavelet sub-bands. To

this end, the proposed approach initially takes the codestreams

associated to the coarsest level wavelet sub-bands in order to

approximate the finer level wavelet sub-bands with a series

of transposed convolutional layers. The aim of the trans-

posed convolutional layers is to approximate the finer level

wavelet sub-bands without requiring to decode the images

(in order to obtain the features for scene classification). This

significantly reduces the decoding time required for scene

classification, which is the dominant aspect while performing

scene classification in compressed RS image archives. Then,

the features obtained from the finer level wavelet sub-bands are

obtained through the convolutional layers. Then, the proposed

approach performs scene classification based on the obtained

features. During training, in addition to the classification loss,

the approximation loss is also optimized that is calculated

between the approximated wavelet coefficients and the original

wavelet coefficients. Thanks to the approximation of finer-level

wavelet sub-bands, the time required to decode the images is

considerably minimized.

Experimental results in terms of scene classification ac-

curacy and computational gain on two benchmark archives

demonstrate the effectiveness of the proposed approach. This

is mainly related to the significant reduction of the decoding

time associated with the use of a large amount of compressed

images. Since there is a trade-off between the computational

gain and the classification accuracy based on the number of

transposed convolutional layers, one can always choose the

number of layers depending on the requirements in compu-

tational time and accuracy. The qualitative images obtained

from the approximations show that the proposed approach ef-

ficiently operates only with the original coarsest level wavelet

coefficients as input source. The results obtained from the

experiments demonstrate the ability of the proposed approach:

1) To accurately perform image scene classification in the

JPEG 2000 compressed domain.



13

2) To significantly improve the computational gain by min-

imizing the required amount of decompression compared

to the existing scene classification methods (which oper-

ates on uncompressed images).

In view of the growth of RS big data archives, this work

introduces a research direction for operating scene classifica-

tion with DNNs directly on the compressed archives. Note

that the proposed approach is not limited to JPEG 2000

compressed archives but can be directly applied to any image

archive that considers wavelet based compression approach.

In addition, the introduced concept can be adapted to be

used in the framework of other compression algorithms by

properly modifying the technique used for approximating the

compressed domain features. As a future development of this

work, we plan to explore scene classification in the context of

GANs in the compressed domain. Moreover, we plan to study

the development of specific models that can extract features

within a deeply compressed domain.

APPENDIX

A list of notation and symbols used throughout this paper

is provided in Table VI.
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