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Abstract This review surveys current and emerging drought monitoring approaches using satellite

remote sensing observations from climatological and ecosystem perspectives. We argue that satellite

observations not currently used for operational drought monitoring, such as near-surface air relative

humidity data from the Atmospheric Infrared Sounder mission, provide opportunities to improve early

drought warning. Current and future satellite missions offer opportunities to develop composite and

multi-indicator drought models. While there are immense opportunities, there are major challenges

including data continuity, unquantified uncertainty, sensor changes, and community acceptability. One of

the major limitations of many of the currently available satellite observations is their short length of record.

A number of relevant satellite missions and sensors (e.g., the Gravity Recovery and Climate Experiment)

provide only a decade of data, which may not be sufficient to study droughts from a climate perspective.

However, they still provide valuable information about relevant hydrologic and ecological processes linked

to this natural hazard. Therefore, there is a need for models and algorithms that combine multiple data sets

and/or assimilate satellite observations into model simulations to generate long-term climate data records.

Finally, the study identifies a major gap in indicators for describing drought impacts on the carbon and

nitrogen cycle, which are fundamental to assessing drought impacts on ecosystems.

1. Introduction

Drought poses significant water and food security concerns, and may lead to economic risks and financial

challenges, especially for developing economies [Wilhite, 2005; Godfray et al., 2010]. The phenomenon of

meteorological drought is a consequence of regional variability in the global water cycle, a process tightly

associatedwith climatic circulation patterns [Piechota andDracup, 1996;Hidalgo, 2004; Rasmusson et al., 1983;

Keyantash and Dracup, 2004; Golian et al., 2014]. For this reason, a global perspective on drought conditions

is often necessary to study the cause of specific regional droughts. For example, a recent study links global

droughts during the late 1990s and early 2000s towarmand cold sea surface temperatures in thewestern and

eastern tropical Pacific, respectively [Hoerling andKumar, 2003]. Conversely, a regional or continental drought

can also lead to global impacts. For example, the 2010 Russian drought and heat wave led to an increase in

global food prices [Wegren, 2011], resulting in indirect impacts far beyond the drought-affected region. These

issues highlight the importance of global, rather than regional, drought monitoring to understanding the

biophysical processes involved [Grasso and Singh, 2011].

Droughts arebroadly classified into four groups includingmeteorological (deficit in precipitation), agricultural

(deficit in soil moisture), hydrological (deficit in runoff, groundwater, or total water storage), and socioeco-

nomic (consideringwater supply, demand, and social response) droughts [Wilhite, 2005]. All types of droughts

can be associated with a sustained precipitation deficit. However, different elements of the hydrologic cycle

respond to droughts differently.

Historically, droughts have beenmonitored and investigated using ground-based point observations or inter-

polated grids [Hayes et al., 1999; Shen and Tabios, 1996; Santos et al., 2010; Aghakouchak et al., 2014; Sheffield

et al., 2012], primarily frommeteorological [Palmer, 1965] and agricultural perspectives [Gallagher et al., 1976].
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Globally, however, many areas used for agricultural production are not well instrumented (e.g., at least one

climate station per 5000 km2) to provide ground-based observations of precipitation, near-surface air tem-

perature, wind speed, atmospheric water vapor, relative humidity, and atmospheric evaporative demand that

are consistent over the long term (i.e., at least 30 years of observation). In many other regions, the available

observations are not sufficient to capture the spatiotemporal variability of drought-related variables such as

precipitation [Easterling, 2013]. Furthermore, observations from different meteorological stations often have

different record lengths and variable data quality [Easterling, 2013], which makes consistent global drought

analysis using ground-based observations challenging [AghaKouchak and Nakhjiri, 2012].

Satellite remote sensing of the Earth’s weather began in earnest with the Television and Infrared Observa-

tion Satellite (TIROS-1) mission in 1960 [NASA, 1987]. The success of this mission led to a series of additional

weather- and climate-oriented satellite remote sensing missions. Remote sensing satellites can be broadly

categorized into two types: geostationary (GEO) and low Earth orbit (LEO) satellites [Kiladze and Sochilina,

2003]. GEOs orbit at an altitude of 35,786 km [McVicar and Körner, 2013] and their orbits are synchronized

with Earth’s rotation, allowing them to provide information for a fixed field of view over a portion the Earth’s

surface. LEOs orbit at altitudes of 200–1200 km [NASA, 1995], and are typically placed in Sun-synchronous

orbits to obtain more than one observation per day over a given location. Current GEOs carry multispectral

radiometers that typically collect information in the visible and infrared (VIS/IR) portion of the electromag-

netic spectrum,while LEOs carry adiverse rangeof sensors, includingmultispectral andhyperspectral sensors,

laser altimeters,microwave (MW) sensors andothers. BothGEOandLEO satellite observations havebeenused

extensively for drought monitoring and impact assessment [Anderson and Kustas, 2008; Karnieli et al., 2010;

Fensholt et al., 2006;Wang and Qu, 2007;McVicar and Jupp, 1998].

Remote sensing observations have been used to monitor drought-related variables from a climatological

viewpoint and also to assess and quantify drought impacts from an ecosystem perspective. In the former,

satellite multispectral, thermal infrared, or microwave data are used to retrieve a drought-related variable

including precipitation [Sorooshian et al., 2011], soil moisture [Entekhabi et al., 2004; Cashion et al., 2005], or

evapotranspiration [Running et al., 1989; Allen et al., 2007; Anderson et al., 2011b; Price, 1982]. The specific

hydrologic variable is then converted into a drought indicator by calculating the extent of an anomaly or

departure from the longer-term environmental baseline. Those data are used to quantitatively assess and

categorize drought severity.

Satellite observations have also been used to assess drought ecosystem impacts—including vegetation

health and growth—by assessing the photosynthetic capacity of plants [Tucker and Choudhury, 1987; Asner

andAlencar, 2010]. Precipitation deficits can lead to reduced photosynthetic capacity and changes in absorp-

tion of solar radiation in photosynthetically active wavelengths by plants [Asrar et al., 1984]. Combinations

of satellite visible (VIS) and infrared (IR) images have been widely used to monitor plant changes and water

stress [Asrar et al., 1989; Hatfield et al., 1984; Tucker and Choudhury, 1987;Wardlow et al., 2012].

In the past decade, the science community has been able to access unprecedented new remote sensing

data sets for precipitation, snow, soil moisture, land surface temperature, evaporation, total water stor-

age, vegetation, and land cover [NASA, 2010; Wardlow et al., 2012; Krajewski et al., 2006]. These satellite

observations have openednewavenues in global droughtmonitoring fromdifferent perspectives (e.g.,mete-

orological, agricultural, hydrological, and ecological). The advantages of satellite-based sensors relative to

traditional ground-based observations include global, near-real-time observations, consistent data records,

and improved spatial resolution [Heumann, 2011; Barrett et al., 1990; Barrett andHerschy, 1989;Morgan, 1989].

The increasing volume of satellite observations and data products has led the science community into the

era of big data [Sellars et al., 2013] and provided unique opportunities to develop advanced drought moni-

toring capabilities usingmultiple data sources. However, the abundance of data also presentsmajor scientific

challenges, including uncertainty assessment, managing data volumes, merging or fusion of multiple data

sources, and ensuring consistency between different observations and data sets.

This paper first reviews theprogress in remote sensingof drought fromclimatological andecosystemperspec-

tives, including satellite-based drought indicators. Then, major research gaps and challenges in advancing

remote sensing of drought are discussed. Finally, we outline a path for future research that could lead to a

major advance in drought monitoring and impact assessment using space-based observations. This paper

focuses only on satellite remote sensing, and not aircraft and airborne remote sensing platforms, since the

latter typically have limited geographical and/or temporal coverage.
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2. Progress in Remote Sensing of Drought From a Climatological Perspective

In this section, progress in remote sensing of drought-related variables and development of satellite-based

drought severity indicators are reviewed.

2.1. Precipitation

Acommonlyusedprecipitation-baseddrought index is theStandardizedPrecipitation Index (SPI) [McKeeetal.,

1993], which was recommended by the World Meteorological Organization (WMO) as a global measure of

meteorological drought [WMO, 2009;Hayes et al., 2011]. Deriving SPI involves describing the frequency distri-

bution of precipitation using either a parametric distribution function [McKee et al., 1993] or a nonparametric

approach [HaoandAghaKouchak, 2014] for different precipitation accumulation periods (e.g., 1, 3, or 6month

periods). The SPI is computed by transforming the cumulative probability of precipitation into the standard

normal distribution. A sequenceof negative SPI indicates adry period,while a sequenceof positive values rep-

resent a wet spell. In addition to SPI, precipitation percentiles and the Percent of Normal Precipitation (PNP)

[Werick et al., 1994] are also used asmeasures of departure from the climatology and thus, wet/dry conditions.

Several techniques have been developed for routine retrieval of rainfall using satellite data collected in mul-

tiple wavebands. Satellite IR and VIS images of cloud top temperature can be converted into a precipitation

rate using empirical statistical relationships [Arkin et al., 1994; Joyce and Arkin, 1997; Turk et al., 1999]. Passive

microwave (MW) sensors offer a more physically based approach to instantaneous precipitation estimation

[Kummerow et al., 1996, 2001]. While MW sensors provide more accurate precipitation information, they are

limited by their infrequent overpasses (≈ 2 observations per day for any location). GEO IR/VIS data, on the

other hand, providemore frequent precipitation information (≈ 15–30min) althoughwith higher uncertainty

[Sorooshian et al., 2011]. Studies suggest that combining both satellite MW and IR information leads to bet-

ter precipitation estimates, especially of diurnal patterns, by combining the strengths of both sensors [Joyce

et al., 2004]. Currently, several satellite precipitation data sets are available including the Climate Predicting

Center (CPC) Morphing Technique (CMORPH) [Joyce et al., 2004], Tropical Rainfall Measuring Mission (TRMM)

Multi-satellite Precipitation Analysis (TMPA) [Huffman et al., 2007], Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks (PERSIANN) [Hsu et al., 1997; Sorooshian et al., 2000;Hong

et al., 2004], and the Global Precipitation Climatology Project (GPCP) [Adler et al., 2003]—for a comprehensive

review of precipitation algorithms see Levizzani et al. [2007]and Kidd [2001]. These data sets have been exten-

sively intercompared and validated against ground-based observations [AghaKouchak et al., 2012; Tian et al.,

2009; Ebert et al., 2007; Chappell et al., 2013; Nasrollahi et al., 2013; Katiraie-Boroujerdy et al., 2013].

Satellite precipitation data sets have been widely used for both model-based and data-driven drought

monitoring [Anderson et al., 2008; Paridal et al., 2008; Damberg and AghaKouchak, 2014]. The experimental

African Drought Monitor integrates satellite observations of precipitation for assessing hydrologic condi-

tions [Sheffield et al., 2006]. One limitation of current near-real-time satellite precipitation products is their

short length of record (approximately 15 years). There are a number of products that provide low-resolution

long-term records (e.g., GPCP); however, they do not provide real-time observations necessary for opera-

tional drought monitoring systems. A near-real-time satellite-based precipitation data set was proposed for

operational drought monitoring that combines the near-real-time satellite data with the long-term GPCP

observations using a Bayesian data merging model [AghaKouchak and Nakhjiri, 2012]. The data set includes

SPI based on PERSIANN and TMPA with the climatology obtained from GPCP observations. The Bayesian

data merging component makes the data from different sensors/algorithms climatologically consistent for

drought monitoring. A sample merged product of GPCP (1979–2009) and PERSIANN (2010 to the present)

is presented for July 2010 in Figure 1. The figure shows that the merged product captures the 2010 Russian

drought [Wegren, 2011], as well as the 2010 Amazon drought [Lewis et al., 2011; Marengo et al., 2011]. Fur-

thermore, the figure highlights the precipitation deficit in East Africa, which led to a major drought during

2010–2011 [Funk, 2011]. The main advantage of this data set is that near-real-time satellite data are publicly

available within hours to days from the original observations, allowing for near-real-time drought monitor-

ing. Throughout his paper, other remote sensing-based indicators are also shown for the same time step (July

2010) so that the reader can evaluate their similarities and discrepancies.

2.2. Soil Moisture

Soil moisture is a fundamental component of the water cycle and plays a key role in drought monitoring and

prediction, especially in water-limited ecosystems [D’Odorico et al., 2007;Moran et al., 2004; Peters-Lidard et al.,
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Figure 1. Combining different remote sensing data sets (here GPCP and PERSIANN) for global near-real-time drought

monitoring using Standardized Precipitation Index (SPI)-July 2010.

2008]. Soil moisture is often used as a measure of agricultural drought since it affects plant growth and pro-

ductivity [Boken et al., 2005;Wilhite, 2005]. A number of soil moisture-based indices have been developed and

used for drought monitoring, including the Standardized Soil Moisture Index (SSI) [Hao and AghaKouchak,

2013] and the soil moisture percentile [Sheffield et al., 2004; Wang et al., 2009]. Soil moisture is a particu-

larly important variable formonitoring drought persistence and development [AghaKouchak, 2014a]. The soil

moisture input to these drought indicators can be obtained from land surface model simulations or from

satellite estimates.

Most satellite soil moisture algorithms are based on passive MW [Njoku et al., 2003; Jackson, 1997; Njoku and

Entekhabi, 1996], active MW [Wagner et al., 1999; Takada et al., 2009], or a blend of data frommultiple sensors

[Wilson et al., 2001; Gruhier et al., 2010; Entekhabi et al., 2010a; Liu et al., 2011a; Kim and Hogue, 2012]. The

principal of MW-based soil moisture retrieval relies on the relationship between soil permittivity and liquid

water content. There are empirical relationships that link passive MW brightness temperature and active MW

backscattering to volumetric water content of soil. MW soil moisture observations typically represent the top

2–5 cm of soil depth [Entekhabi et al., 2010a; Njoku et al., 2003;Wang andQu, 2009]. For root-zone soil surface

moisture estimates, MW soil moisture observations can be coupled to an appropriate land surface model

[Reichle et al., 2004]. For a comprehensive review of optical, thermal, passiveMW, and activeMW soil moisture

monitoring approaches, seeWang and Qu [2009].

The long-term satellite-based soil moisture time series obtained from theWater CycleMulti-Mission Observa-

tion Strategy (WACMOS) have been used for drought detection and monitoring in the Horn of Africa region

[Ambaw, 2013]. The United States Department of Agriculture (USDA) International Production Assessment

Division (IPAD) estimates surface and root-zone soil moisture with a two-layer modified Palmer soil moisture

model forced by global precipitation and near-surface air temperature measurements [Palmer and Havens,

1958]. In this approach, only near-surface air temperature is used to approximate potential evapotranspira-

tion, which has limitations when estimating evapotranspiration [McVicar et al., 2012; Donohue et al., 2010;

Hobbins et al., 2008]. Soil moisture data retrieved from the AdvancedMicrowave Scanning Radiometer–Earth

Observing System (AMSR-E) [Jackson, 1993] have been integrated into the real-time USDA IPAD soil model to

improve drought monitoring and prediction [Bolten et al., 2010].

Recently, the Climate Change Initiative (CCI) for Soil Moisture began offering global satellite-based soil mois-

ture data derived frommultiple sensors [Wagner et al., 2012; Liu et al., 2011a]. As the CCI Soil Moisture data set

is over 30 years long, it can be used for monitoring agricultural drought, and monthly or seasonal changes in

soil moisture patterns within a much longer historical context than most remote sensing-based data prod-

ucts derived from a single sensor or satellite mission (see Figure 2). The CCI soil moisture data have gaps,

mainly over densely vegetated land areas, even at monthly scales (see the Amazon and central Africa in

Figure 2). However, there are opportunities to assimilate data sets like CCI into land surfacemodels, or to apply

satellite-derived data sets for calibration of land surface model parameters to generate long-term, consistent

soil moisture fields [Reichle et al., 2004]. It is also noted that the spatial patterns in the CCI soil moisture and

satellite precipitation data are generally consistent, even though they are sampling different components of

the hydrologic budget (e.g., compare Australia and Russia in Figures 1 and 2). The CCI soil moisture data are

yet to be fully explored for global droughtmonitoring and assessment, and it is anticipated that future studies

on global trends and patterns of droughts will use this data set.
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Figure 2. Standardized Soil Moisture (SSI) based on CCI satellite soil moisture observations-July 2010.

2.3. Groundwater and Terrestrial Water Storage

Estimates of drought impacts on terrestrial water storage and groundwater conditions at regional to global

scales can be obtained using the Gravity Recovery and Climate Experiment (GRACE)mission. GRACE responds

to all factors that change the gravity field of an area, including the terrestrial water storage (TWS). Launched in

2002, the GRACEmission tracks global variations in gravity fields that can be converted into estimates of TWS

[Rodell and Famiglietti, 2002]. The principle of gravimetry and TWS estimation is that bulk surface and subsur-

facewatermass has a gravitational potential that alters the Earth’s gravity field, allowing changes in the Earth’s

gravitational field to be used as an indicator of changes in the total amount of water stored in the vertical

continuum. GRACE consists of two identical satellites separated by a distance of about 220 km that orbit the

Earth at an altitude of approximately 500 km. Changes in the Earth’s gravity fields alter the distance between

the two spacecraft. Having accurate measures of the distance between the two spacecraft, one can quantify

temporal TWS anomalies, which include the sum of surface water, groundwater, soil moisture, snow/ice, and

moisture stored in vegetation [Rodell, 2012].

Having TWS, changes to groundwater ΔG can be approximated as ΔG = ΔTWS − ΔSM − ΔSWE, where SM

and SWE represent soil moisture and snow water equivalent, respectively [Rodell et al., 2007]. GRACE-based

TWS data have beenwidely used for droughtmonitoring andwater storage assessment over numerous areas

including the Canadian Prairie [Yirdawet al., 2008], Australia [Leblanc et al., 2009; vanDijk et al., 2011, 2013], the

Amazon River basin [Chen et al., 2009], and western and central Europe [Li et al., 2012]. During the 2011 Texas

drought, the TWS data set was found to be a valuable tool for monitoring statewide water storage depletion,

and for linking meteorological and hydrological drought conditions [Long et al., 2013].

Currently, GRACE provides 12 years of data, which may not be sufficient for climatological drought assess-

ment. An additional limitation ofGRACEdata for regional drought assessments has been the spatial resolution

of>150,000 km2 per pixel for GRACE TWS data [Houborg et al., 2012]. Recently, GRACE data have been down-

scaled to higher resolutions via assimilation into land surface models [Zaitchik et al., 2008]. This approach

offers potential for improved drought monitoring and assessment of associated reductions in groundwater

supplies at finer spatial scales. Using the GRACE data assimilation system (GRACE-DAS) [Zaitchik et al., 2008]

and the Catchment land surfacemodel (CLSM) [Koster et al., 2000], a GRACE-based drought indicator has been

developed and integrated into the United States and North America Drought Monitor [Houborg et al., 2012].

Given that GRACE offers information on the total water storage deficit [Thomas et al., 2014], it can be used to

estimate the amount of water (precipitation) needed to recover from drought events.

2.4. Evapotranspiration

Evapotranspiration (ET) is an important component of thewater and energy cycle, reflectingmass and energy

exchange between ecosystems and the atmosphere [Senay et al., 2012; Wang and Dickinson, 2012]. Atmo-

spheric evaporative demand is a function of net radiation, air temperature, wind speed, and relative humidity

[Donohue et al., 2010; Hobbins et al., 2008;McVicar et al., 2012; Yin et al., 2014]. While ground-based measure-

ment of ET at large spatial extents is challenging, remote sensing data sets offer a unique opportunity to

provide large-scale estimates of ET. A unique feature of ET for drought monitoring is that it describes both

water/moisture availability and the rate at which it is consumed [M. C. Anderson et al., 2012]. Broadly, remote

sensing-based ET estimation methods can be categorized into the following groups based on (a) principles

of water balance [Allen et al., 1998; Senay, 2008], (b) principles of surface energy balance [Allen et al., 2007;

Anderson and Kustas, 2008; Senay et al., 2007; Kalma et al., 2008; Su et al., 2005], (c) vegetation indices [Glenn
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Figure 3. Evaporative Stress Index (ESI) for July 2010, expressed as standardized anomalies. Red indicates lower than

normal AET/PET or depressed rates of relative water use. Regions where ET is persistently low and standardized

anomalies cannot be reliably determined are shown in brown.

et al., 2011; Yebra et al., 2013], and (d) hybrid approaches based on vegetation indices and surface temperature

information [Carlson, 2007; Yang and Shang, 2013; Kalma et al., 2008]. Water balance models track changes

in moisture in the soil for ET estimation, whereas energy balance models use land surface temperature (LST)

andmeteorological data to estimate sensible heat flux andmoisture/water fluxes [Kalma et al., 2008; Norman

et al., 1995;Morillas et al., 2013; Glenn et al., 2007].

Several drought indicators have been developed that integrate ET as an input variable such as the CropWater

Stress Index (CWSI) [Idso et al., 1981; Jackson et al., 1981], Water Deficit Index (WDI) [Moran et al., 1994], Evap-

orative Stress Index (ESI) [Anderson et al., 2011a, 2013a], Evaporative Drought Index (EDI) [Yao et al., 2010],

Drought Severity Index (DSI) [Mu et al., 2013], and Reconnaissance Drought Index (RDI) [Tsakiris and Vangelis,

2005; Tsakiris et al., 2007].

The CWSI is based on the ratio of the actual ET (AET) to potential ET (PET) and is expressed as CWSI=

1 − AET∕PET. The WDI, follows the same concept, but is based on the AET rate (�AET) and PET rate (�PET):

WDI=1 − �AET∕�PET. The ESI is defined as the standardized anomalies in the ratio of AET to PET [Anderson

et al., 2011b]. In this approach, the ET estimation is based on thermal infrared remote sensing data and the

Atmosphere-Land Exchange Inverse (ALEXI) model [Anderson et al., 1997; Mecikalski et al., 1999; Anderson

et al., 2007]. Figure 3 shows the ALEXI-based Evaporative Stress Index (ESI) for July 2010, derived using

Moderate Resolution Imaging Spectroradiometer (MODIS) day-night land surface temperature differences.

ESI clearly shows deficits in actual evapotranspiration associated with drought conditions particularly over

Russia and central Asia, Brazil, South Africa, and southwestern Australia. Evaluation studies indicate that ESI

is a promising drought indicator for characterizing streamflow and soil moisture anomalies [Choi et al., 2013]

and provides valuable information for early warning of rapidly developing drought conditions, often referred

to as “flash” droughts [Anderson et al., 2013b; Otkin et al., 2014]. Similar to ESI, EDI is based on AET and PET

(EDI = 1−AET∕PET) and has been used tomonitor drought at continental and global scales [Yao et al., 2011].

The DSI is defined as the summation of the normalized ratio of AET/PET and the normalized difference

vegetation index (NDVI) [Mu et al., 2013]. In this approach, the ratio of AET/PET is derived using short-

wave satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) within a

Penman-Monteith ET formulation [Mu et al., 2007, 2009, 2011]. Results indicate that the DSI is consistent with

both precipitation-based drought indices as well as satellite-based measures of vegetation net primary pro-

duction (NPP) [Runningetal., 2004]. Unlikemost drought indices, DSI is not a standardizedmeasure of drought

severity, but rather a dimensional index ranging from [−∞, ∞], where a lower index value indicates a more

severe drought condition.

The RDI is defined as the ratio of the aggregated precipitation (P) and PET and has been widely used in the

literature for drought monitoring [e.g., Tsakiris and Vangelis, 2005; Tsakiris et al., 2007]. The P/PET ratio is also
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termed as the aridity index [UNESCO, 1979] and can be standardized for cross comparisonwith other drought

indicators. The RDI is different from the other indices in the sense that it does not use AET. The RDI has been

used with PET estimates derived from satellite-retrieved air temperature data [Dalezios et al., 2012]. However,

this is a simplistic assumption as other key meteorological variables including net radiation, wind speed, and

relative humidity affect PET rates [McVicar et al., 2012; Donohue et al., 2010].

2.5. Snow

Snow is considered a natural reservoir of water resources, and in some regions snow melt constitutes a sub-

stantial fraction of the annual runoff [Kongoli et al., 2012; Bales et al., 2006]. A deficit in the winter snowpack

could potentially lead to a summer hydrological drought (e.g., reduced stream flows and/or groundwater

levels) or agricultural drought (e.g., depleted soil moisture reserves to support plant functions), and hence,

monitoring snow is fundamental to drought assessment in many regions. From a hydrological viewpoint, the

drought-relevant snow parameters include the following: snow water equivalent (SWE), snow-covered area

(SCA), snowdepth (SD), and snowalbedo (SA) [Kongoli et al., 2012; Painter et al., 2013;MolotchandBales, 2006].

Remotely sensed snow estimationmethods can be broadly categorized into three groups: (a) optical, (b) MW,

and (c) composite optical andMW.Optical-based products provide estimates of only SCA,whereasMW-based

and composite products provide information on SCA, SD, and SWE.

The basis of optical snow monitoring relies on the fact that snow exhibits a strong spectral gradient in

reflectance, from high albedo in visible wavelengths to low reflectance inmiddle IR wavelengths [Dozier et al.,

2009; Kongoli et al., 2012; Wiscombe and Warren, 1980]. Thus, snow can be monitored using the ratio of the

visible reflectance (RVIS) and the middle IR reflectance (RmIR) [Romanov et al., 2000]. Alternatively, snow can

be detected using the Normalized Difference Snow Index (NDSI) defined as (RVIS − RmIR)∕(RVIS + RmIR) [Hall

et al., 2002]. A suite of optical-based snow products are available from MODIS with a wide range of temporal

and spatial resolutions [Hall et al., 2002]. A number of snow algorithms have also been developed based on

the advanced very high resolution radiometer (AVHRR) satellite data record [Simpson et al., 1998]. However,

the accuracy of optical-based snow estimates can be compromised by clouds that exhibit similar spectral fea-

tures [Kongoli et al., 2012; Bromwich et al., 2012]. Furthermore, persistent cloud cover can hinder temporally

continuous snowmonitoring.

Microwave radiation, on the other hand, penetrates through clouds and provides a unique opportunity

for temporally continuous snow monitoring [Kongoli et al., 2012; Schanda et al., 1983]. More importantly,

microwaves can penetrate into snow, allowing estimation of SWE and SD that cannot be obtained from

optical-based methods [Durand et al., 2008]. A number of algorithms have been developed for estimation of

SCAusingmicrowavedata sets [GrodyandBasist, 1996].Microwave-based estimates of SWE and SDaremainly

based on an empirical regression between variations in observed SWE and SD and the difference in bright-

ness temperature in two low-frequency channels [Kongoli et al., 2007]. There are static empirical algorithms in

which one set of regression parameters are used [Kunzi et al., 1982;Goodison, 1989], as well as dynamic empir-

ical algorithms in which different regression coefficients are used in various regions and for different seasons

[Foster et al., 2005; Kelly et al., 2003].

Currently, microwave sensors are only available onboard polar-orbiting satellites that have longer revisit

times relative to optical sensors onboard geostationary satellites. For this reason, the temporal frequency

of microwave-based snow estimates is typically lower than those of the optical-based products. Recently,

snow retrieval algorithms have been developed based onmerged optical andmicrowave data sets to address

limitations of individual sensors [Foster et al., 2011; Liang et al., 2008; Durand et al., 2008].

Remotely sensed and in situ snow information has been used in a number of drought studies [Wiesnet, 1981;

Kongoli et al., 2012; Painter et al., 2013; Guan et al., 2013; Molotch and Margulis, 2008]. Most studies focus on

assimilating satellite snow information into land surface or hydrological models to improve streamflow simu-

lation andhence, hydrological droughtprediction [Dongetal., 2007;AndreadisandLettenmaier, 2005;Margulis

et al., 2006; He et al., 2012]. Unlike other drought-related variables, snow-based indicators of drought are still

in their infancy, primarily because there is a lag between snow occurrence and change in surface water and

soil moisture availability that varies in space and time. Runoff from snowmelt could affect water availabil-

ity on timescales from a few weeks (e.g., low-elevation snow and in lower latitudes) or a few months (e.g.,

high-elevation snow and in higher latitudes). This lag time is a significant strength for drought early warning.

However, even over one particular location, depending on seasonal temperatures and the timing of snow
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accumulation, the lag time from snowfall, snowmelt, and runoff varies substantially. This highly variable lag

is the main challenge in deriving snow-based indicators for drought monitoring.

3. Progress in Remote Sensing of Drought From an Ecological Perspective

Drought can be assessed based on observed changes in vegetation health and land cover from remotely

sensed data [Tucker andChoudhury, 1987; Silleos et al., 2006;Nemani et al., 2009]. The launch of the first AVHRR

instrument in 1979 transformed remote sensing of drought by providing high temporal resolution data for

systematic monitoring of vegetation patterns and conditions. Quantitative assessment of vegetation con-

dition is generally based on the spectral signature of vegetation greenness expressed in the red (R) and

near-infrared (NIR) portions of the electromagnetic spectrum [Boken et al., 2005].

The normalized difference vegetation index (NDVI) [Rouse et al., 1974] is the most frequently used vegetation

index [Tucker, 1979; Karnieli et al., 2010; Funk and Budde, 2009] and the first remote sensing-based measure

used tomonitor agricultural drought. NDVI is the difference between reflected R and NIR radiation divided by

the their sum [Rouse et al., 1974]: (NDVI = (�NIR − �R)∕(�NIR + �R)). Since the soil spectrum and nonvegetated

surfaces do not exhibit distinct differences in spectral absorption between the R and NIR bands, NDVI can be

used to separate vegetation from the soil background [Karnieli et al., 2010] and provide a measure of general

vegetation health. Time series decomposition [Donohue et al., 2009; Lu et al., 2003] provides the means to

assess persistent and recurrent vegetation conditions, which may be related to deep-root or shallow-rooted

vegetation types in ecosystems.

A significant relationship has been reported between NDVI and precipitation and soil moisture [Di et al.,

1994; Farrar et al., 1994; Adegoke and Carleton, 2002; Hielkema et al., 1986; Richard and Poccard, 1998; Wang

et al., 2001], and thus, NDVI (or its derivatives) has been widely used for drought assessment and vegetation

health monitoring [Tucker and Choudhury, 1987; Prince et al., 1998; Nicholson et al., 1998; Ji and Peters, 2003;

McVicar and Jupp, 1998]. The general vegetation health canbe temporally decomposed tomonitor changes in

recurrent (shallow-rooted) and persistent (deeper-rooted) vegetation for many landscapes across the globe

[Donohue et al., 2009; Lu et al., 2003; Roderick et al., 1999]. This is particularly important when monitoring

drought in savannahs or areaswithmixed trees and ecosystems across semiarid regions [Donohueetal., 2009].

Building on the original definition of NDVI, a number of other indicators have been developed such as the

Transformed Vegetation Index (TVI) [Deering and Rouse, 1975; Tucker, 1979], Perpendicular Vegetation Index

(PVI) [Wiegand et al., 1991], Corrected Transformed Vegetation Index (CTVI) [Perry and Lautenschlager, 1984],

and Thiam’s Transformed Vegetation Index (TTVI) [Thiam, 2013]—see Silleos et al. [2006] and Payero et al.

[2004] for a comprehensive list. These indices describe the vegetation condition by combining spectral infor-

mation from different parts of the electromagnetic spectrum that are sensitive to biophysical characteristics

of vegetation, such as chlorophyll content, water content, and internal leaf structure.

The Vegetation Condition Index (VCI = (NDVI−NDVImin)∕(NDVImax +NDVImin)), for example, scales NDVI val-

ues between itsminimumandmaximumvalues to separate the short-termweather signal from the long-term

ecological signal for drought monitoring [Kogan and Sullivan, 1993], and it has been used for monitoring

drought and phenological change in several studies [Kogan, 1997; Liu and Kogan, 1996; Quiring and Ganesh,

2010; Singh et al., 2003; McVicar and Jupp, 1998]—Figure 4. Use of the monthly VCI is more appropriate in

areas with a large land management signal (e.g., cropping) and hence is suitable for monitoring agricultural

drought [McVicar and Jupp, 1998]. A standardized form of NDVI, known as the Standardized Vegetation Index

(SVI), is based on the z score of NDVI values [Peters et al., 2002; Park et al., 2008]: SVI = (NDVIijk − NDVIij)∕�ij .

The SVI is computed for each pixel (i), week (j), and year (k). The terms NDVIij and �ij denote the mean and

standard deviation of the pixel (i) over k = 1,… , n years.

There are other indices based on R and NIR bands such as the Normalized Ratio Vegetation Index (NRVI)

[Baret and Guyot, 1991], Soil-Adjusted Vegetation Index (SAVI) [Huete, 1988], Perpendicular Drought Index

(PDI) [Ghulam et al., 2007a], Modified Perpendicular Drought Index (MPDI) [Ghulam et al., 2007b], Distance

Drought Index (DDI) [Qin et al., 2010], and Enhanced Vegetation Index (EVI) [Huete et al., 2002]. The latter, for

example, improves sensitivity over high biomass regions and reduces the soil background effects and atmo-

spheric influence [Justice et al., 2002; Silleos et al., 2006; Huete et al., 1999]. A recent study shows that the

vegetation water indices outperform the vegetation greenness indices, including the EVI, in high biomass

ecosystems [Caccamo et al., 2011]. More specifically, the normalized difference infrared index using MODIS

AGHAKOUCHAK ET AL. REMOTE SENSING OF DROUGHT 459



Reviews of Geophysics 10.1002/2014RG000456

Figure 4. Vegetation Condition Index (VCI) for the last week of July 2010 (source: NOAA/NIDIS Global Vegetation

Health data, http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php).

band 6 (NDIIb6), MODIS band 7 (NDIIb7) [Hunt and Rock, 1989], and the D1640 [VanNiel et al., 2003] (Depth of

MODIS band 6 (1640 nm) relative to the response between MODIS band 7 (2130 nm) and band 5 (1240 nm))

provides better agreementwith precipitation, indicating that in high biomass environments variations in veg-

etation water content are more dynamic than changes in vegetation greenness properties [Van Niel et al.,

2003; Caccamo et al., 2011].

Drought stress can also be quantified using remotely sensed surface brightness temperature derived from

thermal channels from multiple satellite instruments (e.g., AVHRR, MODIS, VIIRS, TM, ETM+, and TIRS). The

land surface temperature (LST) computed from thermal infrared (TIR) bands has been found to provide valu-

able information on surface moisture conditions [Gutman, 1990]. The Temperature Condition Index (TCI) is

based on TIR observations to determine temperature-related vegetation stress. The TCI is defined as TCI =

100(Bmax−B)∕(Bmax−Bmin), whereB,Bmax, andBmin denote the smoothedweekly temperature and itsmultiyear

maximumandminimum, respectively [Kogan, 1995]. Using data from instruments such as AVHRR andMODIS,

TCI may be computed at weekly time scales. An example of TCI for the last week of July 2010 is presented

in Figure 5, which is consistent with drought information based on precipitation and soil moisture (Figures 1

and 2). One limitation of TCI is that it does not account for day of year and/or time of day, since it only relies

on smoothedweekly temperatures and their multiyearmaxima andminima. This issue has been addressed in

the development of the normalized difference temperature index (NDTI) [McVicar and Jupp, 1999, 2002] that

can be considered a specific time-of-day version of the CWSI [McVicar and Jupp, 2002].

Studies show that TCI coupledwith VCI provides a powerful tool formonitoring vegetation stress anddrought

condition [Singh et al., 2003], and the two indices have been widely used over different regions [Unganai and

Kogan, 1998; Jain et al., 2009]. The reflective-based and thermal-based information have been combined for

effective and integrated (vegetation temperature) drought information using a combination of the reflec-

tive and thermal channels (e.g., combination of NDVI and LST) [McVicar and Jupp, 1998; Karnieli et al., 2010;

Figure 5. Temperature Condition Index (TCI) for the last week of July 2010 (source: NOAA/NIDIS Global Vegetation

Health data).
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Figure 6. Vegetation Health Index (VHI) for the last week of July 2010 (source: NOAA/NIDIS Global Vegetation

Health data).

Bayarjargal et al., 2006]. The Vegetation Temperature Condition Index (VTCI) [Wanet al., 2004] integrates NDVI,

LST and thermal properties and provides one index that reflects drought information based on both tem-

perature and vegetation [Patel et al., 2012]. The vegetation health index (VHI) is among the commonly used

reflective-thermal indicators that integrates the VCI and TCI [Kogan, 1995]: VHI = �VCI + (1 − �)TCI, where

� refers to the relative contribution of the VCI and TCI. Similar to the VCI and TCI, the VHI is typically com-

puted on a weekly time scale and has been used for both drought detection and early warning in different

regions [Seiler et al., 1998; Kogan, 2001]. An example of VHI is provided in Figure 6, which essentially combines

information from Figures 4 and 5.

In recent years, variouswaysof combiningNDVI andLST informationhavebeenexplored for droughtmonitor-

ing and impact assessment [Swainetal., 2011; Sonetal., 2012]. Suchmethods rely on the relationship (typically,

negative correlation) between LST and NDVI [Lambin and Ehrlich, 1996; McVicar and Bierwirth, 2001; McVicar

and Jupp, 1998; Karnieli et al., 2010]. The relationship between the LST andNDVI depends on the seasonof year

and time of day [SunandKafatos, 2007;McVicar and Jupp, 1999, 2002]. Furthermore, the LST-NDVI relationship

is associated with moisture condition and climatic/radiation regimes [Karnieli et al., 2010]. A comprehensive

study of LST-NDVI relationship over the North American continent and during the summer growing season

(April–September) showed that the LST-NDVI correlation is negative when water is the limiting factor for

vegetation growth, while the correlation is positive when solar radiation is the limiting factor for vegetation

growth [Karnieli et al., 2010]. It is recommended to restrict the use of empirical LST-NDVI relationships for

droughtmonitoring to regions andperiodswith negative correlation between LST andNDVI (i.e., wherewater

is the primary limiting factor [Karnieli et al., 2010]).

A number of vegetation stress and drought indicators have been developed using shortwave infrared (SWIR)

data such as the Normalized Difference Water Index (NDWI) [Gao, 1996; Gu et al., 2008, 2007]. The NDWI is

defined as the difference between two SWIR bands (typically, 0.86 nm and 1.24 nm) divided by their sum

(NDWI = (�0.86μm−�1.24μm)∕(�0.86μm+�1.24μm)). These twochannels sense similar depth through the vegetation

canopy and are less sensitive to atmospheric scattering effects than NDVI. Other SWIR bands (e.g., 1.55 μm,

1750 μm, 0.64 μm, 2.13 μm)have been also employed for derivingNDWI using data from the Landsat thematic

mapper (TM) onboard Landsat 5, and the Enhanced ThematicMapper (ETM) onboard Landsat 7 [Jacksonet al.,

2004; Chen et al., 2005;Wang and Qu, 2009].

Sensitivity of NDWI and NDVI to drought conditions has been explored and different results have been

reported [Gu et al., 2007, 2008]. To combine information from NDVI and NDWI, the Normalized Difference

Drought Index (NDDI) has been proposed as: NDDI = (NDVI − NDWI)∕(NDVI + NDWI) [Gu et al., 2007]. It is

should be noted that SWIR bands respond to soil moisture and leaf water content differently and, thus, com-

biningmultiple SWIR bands (rather than one SWIR band) with a NIR bandmay improve sensitivity for drought

monitoring [Wang et al., 2008]. To address this issue, the Normalized Multi-band Drought Index (NMDI) has

been proposed for monitoring soil and vegetation moisture condition using Moderate Resolution Imaging

Spectroradiometer (MODIS) data [Wang and Qu, 2007]: NMDI = (�0.86μm − (�1.64μm − �2.13μm))∕(�0.86μm +

(�1.64μm − �2.13μm)). In NMDI, the 0.86 μm band is NIR, whereas the 1.64 μm and 2.13 μm are SWIR bands. By

combining information from different channels, the NMDI enhances the sensitivity to drought severity [Wang
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andQu, 2007]. Similar efforts have focused on combining Visible data with SWIR information which led to the

developmentof theVisible andShortwave infraredDrought Index [Zhangetal., 2013]. This indicator combines

MODIS blue (band 3), red (band 1), and SWIR (band 6) information.

4. Composite and Multi-Index Drought Models

Several studies argue that drought monitoring efforts should be based on multiple variables/indicators [Hao

andAghaKouchak, 2013; Keyantash andDracup, 2004; KaoandGovindaraju, 2010;Haoand Singh, 2015] to pro-

vide amore robust and integratedmeasure of drought that captures the diverse range of vegetation response

to drought across different ecosystems. TheVegetationDrought Response Index (VegDRI) [Tadesse et al., 2005;

Brown et al., 2008] integrates climate-based drought indices, satellite-based observations of vegetation con-

ditions, and other biophysical information (e.g., land cover type, soil characteristics, and elevation) to describe

the levels of vegetation drought stress. The model concept of VegDRI builds upon NDVI [Rouse et al., 1974].

While NDVI is proven to provide valuable information on vegetation health, one may not be able to identify

the root causes of vegetation stress solely from NDVI [Heim, 2002]. The main reason is that many factors such

as fire, land cover change, plant disease, pest infestation, biomass harvesting, and flooding can cause anoma-

lies in NDVI similar to those caused by drought. To address this limitation, VegDRI incorporates climate-based

data from SPI and the Palmer Drought Severity Index (PDSI) [Palmer, 1968] as additional indicators of dryness

and analyzes them in combination with satellite-based NDVI information [Brown et al., 2008].

In a recent study, a triple collocation analysis (TCA) of different soil moisture products (i.e., microwave

Advanced Microwave Scanning RadiometerŰ-EOS (AMSR-E), thermal remote sensing using ALEXI, and phys-

ically based model simulations) has been suggested for composite drought monitoring [W. B. Anderson et al.,

2012]. The final composite soil moisture product takes advantage of the strength of each approach. The

approach was validated for the 2010–2011 Horn of Africa drought and has shown promising results for

drought monitoring [W. B. Anderson et al., 2012].

An alternative composite model is the Microwave Integrated Drought Index (MIDI) [Zhang and Jia, 2013],

designed for monitoring short-term drought, especially meteorological drought over semiarid regions. The

MIDI integrates satellite-based precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and

soil moisture and land surface temperature data from the Advanced Microwave Scanning Radiometer–EOS

(AMSR-E): MIDI = �PCI+�SMCI+(1−�−�)TCI, where PCI is the Precipitation Condition Index, SMCI is the Soil

Moisture Condition Index, and TCI is the Temperature Condition Index. Based on the same concept, additional

indices canbeobtainedbasedon twovariables (e.g.,�PCI+(1−�)SMCI). A similar concept is used in the Scaled

Drought Condition Index (SDCI) [Rhee et al., 2010], which is a multisensor indicator designed for agricultural

drought monitoring in both arid/semiarid and humid regions. The SDCI combines TRMM-based precipita-

tion data, with LST and NDVI information (all three scaled from 0 to 1) for composite drought assessment:

SDCI = �LST + �TRMM + �NDVI, where � + � + � = 1. Evaluation of SDCI has shown that the SDCI out-

performed the VHI and NDVI over both arid (Arizona and NewMexico) and humid/subhumid (North Carolina

and South Carolina) regions [Rhee et al., 2010]. It should be noted that using multiple indicator for composite

drought assessment is only useful if the selected indicators provide information that is not fully correlatedwith

each other.

There are also composite approaches that combine physically basedmodel simulations and satellite observa-

tions for drought monitoring. For example, the United States Drought Monitor (USDM) [Svoboda et al., 2002]

provides weekly drought monitoring information based on a composite of indicators from satellite obser-

vations (e.g., VegDRI, VHI, ESI, and GRACE TWS), in situ measurements, and guidance from experts on the

ground. The final product collectively analyzes all of this information, which is fused into a single USDMmap

of drought conditions relying on expertise from climatologists from across the United States.

Finally, the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) [Hao et al., 2014]

provides composite drought information based on the Multivariate Standardized Drought Index (MSDI)

[Hao and AghaKouchak, 2014]. The MSDI has been developed for multi-index drought assessment using

precipitation and soil moisture and has been used in a number of drought studies [AghaKouchak, 2014b;

Hao and AghaKouchak, 2013]. A unique feature of MSDI is that it combines meteorological and agricultural

drought information into a composite assessment. Different data sets, including satellite observations and

model simulations, can be used as inputs to obtain a composite drought map (see an example in Figure 7

based on global precipitation and soil moisture data). This model is standardized, and thus provides drought

AGHAKOUCHAK ET AL. REMOTE SENSING OF DROUGHT 462



Reviews of Geophysics 10.1002/2014RG000456

Figure 7. Multivariate Standardized Drought Index (MSDI) for July 2010, derived from the NASA’s Modern-Era

Retrospective Analysis for Research and Applications (MERRA-Land [Reichle et al., 2011]) precipitation and soil moisture

data.

information comparable with other standardized indices such as SPI and SSI. Results indicate that MSDI pro-

vides objective drought information consistent with the USDM observations over the United States [Hao and

AghaKouchak, 2014].

5. Research Gaps, Challenges, and Opportunities
5.1. Drought Impacts on the Carbon and Nitrogen Cycles

Many studies have evaluated the impact of drought on carbon cycles and ecosystems [Poulter et al., 2014;

Yuan et al., 2014; Yang et al., 2014; Vicente-Serrano et al., 2012; Asner et al., 2003, 2004]. Despite progress in

monitoring andmodeling terrestrial carbon and nitrogen cycles and budgets, the sensitivities of these cycles

to climatic variability and extreme conditions still remain largely uncertain [Gatti et al., 2014; Phillips et al.,

1998;Huntingfordetal., 2013]. Vegetation responds structurally andphysiologically (e.g., by reducing their leaf

cover) to droughts to minimize the effects of water stress, and longer and more severe droughts can lead to

lasting changes in canopy structure, often facilitated by disturbance events including wildfire and outbreaks

of insect pests [Van der Molen et al., 2011; Liu, 2004; Donohue et al., 2013; Adams et al., 2009; Donohue et al.,

2009; Dale et al., 2001; Specht, 1972; O’grady et al., 2000; Pook, 1985, 1986; Pook et al., 1997]. Droughts move

the ecosystem overall to reduce CO2 uptake, increasing CO2 concentrations in the atmosphere [VanderMolen

et al., 2011; Ciais et al., 2005; Vetter et al., 2008; Smith et al., 2010; VanderMolen et al., 2011;Meir et al., 2008; Ciais

et al., 2005]. The structural and physiological responses of plants and ecosystems to droughts could continue

even after drought recovery [Allen et al., 2010] and are not well understood at large scales. In energy-limited

ecosystems, drought associated with less precipitation is normally accompanied with less cloud cover and

hence more available energy for vegetation photosynthesis [Huete et al., 2006; Saleska et al., 2007]. Research

in this direction can be supported and further enriched by satellite remote sensing observations.

Currently, carbon cycle and ecosystemmodels ingest satellite observations in combination with climate data

from different sources to calculate measures of carbon fluxes including gross primary production (GPP), net

primary production (NPP), and net ecosystem production (NEP). These measures of carbon cycling are used

to quantify changes in response to variability in precipitation and temperature [Running et al., 2004; Justice

et al., 2002;Woodwell and Whittaker, 1968; Chapin III et al., 2006]. Several recent satellite missions and instru-

ments provide measurements that can be used to calculate atmospheric CO2 concentrations, including the

Atmospheric Infrared Sounder (AIRS), Greenhouse Gases Observing Satellite (GOSAT), Tropospheric Emission

Spectrometer (TES), GLOBALVIEW-CO2, Scanning Imaging Absorption Spectrometer for Atmospheric Cartog-

raphy (SCIAMACHY), and the Orbiting Carbon Observatory 2 (OCO-2) - [Miao et al., 2013]. These observations

provide an opportunity to develop additional indicators to assist inmonitoring drought effects on the carbon

cycle and the terrestrial CO2 budget. In addition, inverse modeling systems such as CarbonTracker assimilate

satellite CO2 observations and provide drought-relevant information. These new satellite instruments and

data sets provide a unique opportunity to develop indicators to assist in monitoring drought effects on the

carbon cycle and the terrestrial CO2 budget and describe the functional relationships between water stress

and changes in atmospheric CO2 concentrations, particularly under climatic or hydrologic extremes such

as drought.
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While numerous drought indicators have been developed, limited studies have focused on indicators that are

directly linked with GPP, NPP, NEP, or carbon and nitrogen cycling in terrestrial ecosystems. Changes in the

carbonandnitrogen cycles aredifficult to observe,monitor, andquantify.Most existing remote sensing-based

drought indicators are not well suited or designed to monitor ecological responses to changes in carbon

and nitrogen cycles, which can nevertheless have tremendous impacts on natural vegetation and ecosystem

functions and services. Research on indicators that are linked with the carbon and nitrogen cycling can lead

to a better understanding of the ecosystem response to droughts.

Drought effects on ecosystems are typically assessed relative to a long-term environmental baseline that can

be affected by climatic change and variability, greenhouse gas emissions, and changes in the nitrogen and

phosphorus cycles [Donohue et al., 2013;Wang et al., 2010; Goll et al., 2014]. However, these relationships are

not stationary. For example, with increasing atmospheric CO2 concentrations, stomatal response, and vege-

tation water use efficiency are expected to change, an important ecosystem response that is detectable in

water-limited ecosystems using long-term satellite and climate data records [Donohue et al., 2013]. Ecosys-

tem response to external forcings and climatic change in the baseline period can affect drought assessment.

This highlights the importance of considering ecosystem changes in the baseline period when evaluating

drought conditions. Having a wide variety of satellite observations offers the opportunity to develop meth-

ods that can accommodate and account for gradual changes over the period used to define a baseline for

future monitoring and anomaly detection.

5.2. Combined Soil Moisture and Vegetation Water Content

Land surface parameters such as soil moisture and temperature are also important for drought assessment.

Microwave brightness temperature is sensitive to land surface parameters (e.g., temperature and land cover)

and provides valuable drought-relevant information (e.g., land cover, vegetation structure, temperature, soil

moisture, and snow cover) [Tedesco and Kim, 2006]. Currently, the diurnal cycle of the microwave brightness

temperature is available globally from a constellation of satellites [Norouzi et al., 2012]. Studies show that

densely vegetated regionswithmoremoisture (including soil and vegetationmoisture) exhibit a smaller diur-

nalmicrowave brightness temperature variation than other regions [Norouzi et al., 2012; Aires et al., 2004]. This

implies that thediurnal variability of themicrowavebrightness temperature canpotentially beusedas an indi-

cator of available combined soil moisture and vegetation water content and hence as a proxy for agricultural

or ecosystem drought assessment.

It is worth pointing out that microwave brightness temperature is primarily controlled by land surface

microwave emissivity and physical temperature [Choudhury, 1993; Norouzi et al., 2011]. Changes in land sur-

face parameters, including the moisture profile, affect the land surface microwave emissivity as well as the

microwave brightness diurnal cycle [Norouzi et al., 2014]. A major gap in current data sets is a lack of infor-

mation on vertical moisture profiles in vegetation and soil. A recent study shows that the microwave land

emissivity, derived from microwave temperature at a horizontal polarization, is substantially higher over

densely vegetated areas [Norouzi et al., 2012]. Also, the seasonal changes in vegetation density were found

to be related to microwave land emissivity [Norouzi et al., 2012]. The Soil Moisture Active Passive (SMAP) mis-

sion launched in January 2015, offers a unique avenue for future research in this direction. We believe that

more research in this area could lead to a remotely sensed data set of vegetation density andmoisture profiles

(combined vegetation and soil) that can provide valuable information on water stress and droughts.

5.3. Microwave-Based Vegetation Indices

Vegetation indicators, such as NDVI obtained fromoptical satellite sensors, have beenwidely used to evaluate

the impacts of droughts on ecosystems [Tucker, 1979]. Optical-based vegetation indicators provide valuable

information on vegetation response to climate variability. However, they are sensitive to cloud cover, atmo-

spheric effects, aerosols, water vapor, and land cover condition [Andela et al., 2013; Shi et al., 2008; Liu et al.,

2011b]. One limitation of the optical-based indicators is that they primarily provide information on conditions

at the top of the canopy, especially in densely vegetated regions [Shi et al., 2008]. A rapidly growing and influ-

ential area in remote sensing of drought is microwave-based vegetation monitoring [Choudhury et al., 1987;

Andela et al., 2013; Liu et al., 2013a; Jones et al., 2011] that provides information on live aboveground biomass

and canopy density. Unlike optical sensors, microwave sensors are less affected by atmospheric conditions

and can penetrate into dense canopy. Furthermore, microwave sensors can collect information on vegetation

conditions during both day and night [Shi et al., 2008].
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Figure 8. Current and future satellite missions relevant to drought monitoring and assessment (TRMM: Tropical Rainfall

Measuring Mission; GRACE: Gravity Recovery and Climate Experiment; FO: FOllow-On; ICEsat: Ice, Clouds, and Land

Elevation Satellite; CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations; EOS-Aqua: Earth

Observing System Aqua; EOS-Terra: Earth Observing System Terra; EOS-Aura: Earth Observing System Aura; AIRS:

Atmospheric Infrared Sounder; EO-1: Earth Observing-1; GOES: Geostationary Operational Environmental Satellite;

NOAA-N: NOAA Polar Operational Environmental Satellites N Series; SMOS: Soil Moisture and Ocean Salinity satellite;

ICESat-2: Ice, Clouds, and Land Elevation Satellite; GPM: Global Precipitation Measurement; LDCM: Landsat Data

Continuity Mission; SWOT: Surface Water and Ocean Topography; SMAP: Soil Moisture Active Passive; ALOS 2: Advanced

Land Observing Satellite; and NPOESS: National Polar-orbiting Operational Environmental Satellite System)—the list in

not comprehensive.

We argue that high spatial resolution, microwave-based vegetation monitoring is one key to improving our

understanding of drought impacts on ecosystem conditions, especially for monitoring vegetation response

and carbon cycling specifically during drought events. The vegetation optical depth (VOD) [Meesters et al.,

2005; Owe et al., 2001; Jones et al., 2011; Liu et al., 2011], for example, offers a unique approach for monitor-

ing global phenology since it is sensitive to vegetation water content and canopy biomass. VOD has been

extensively used to assess vegetation dynamics in drylands [Andela et al., 2013], overgrazing [Liu et al., 2013b],

and start-of-season analysis [Jones et al., 2011]. VOD and optical-based methods such as NDVI provide com-

plementary information on the aboveground biomass and canopy top greenness, respectively [Andela et al.,

2013]. Combining the twoapproaches, interpreted in anecohydrologically baseddata-driven framework, pro-

vides insights on the ecosystem response that cannot be achieved from each individual data set [Andela et al.,

2013]. Collectively, microwave sensors offer a relatively long-term record for investigating the impact and rel-

ative importance of droughts on global vegetation and biomass change. Future research in this direction can

significantly improve our understanding of ecosystem responses to drought. The upcoming Global Ecosys-

tem Dynamics Investigation lidar [Dubayah et al., 2014], which is a laser-based instrument designed for 3-D

analysis of Earth’s forests, will also offer a unique avenue to monitor forest biomass and improve estimation

of carbon fluxes.

5.4. Data Continuity, Consistency, and Management

Since theearly 2000s, thenumberof satellite sensors and typesof remote sensingobservationshave increased

substantially, and many more are in the design and planning stages (see Figure 8 for a noncomprehensive

list of missions). Some of the most important recent or upcoming missions relevant to drought monitoring

include the Global Precipitation Mission (GPM), Geostationary Operational Environmental Satellites R series

(GOES-R), GRACE Follow-On, SMAP, and SWOT missions (Figure 8). While these satellite missions provide

opportunities to study droughts from different viewpoints, there are major challenges ahead such as data

continuity, unquantified uncertainty, sensor changes, community acceptability, and data maintenance.

Data continuity is fundamental to the development of reliable satellite data records for drought applications.

Most satellites are designed for less than a decade of operation, though many operate beyond their design

life. Ideally, data sets should be extended through planning for follow-up missions. However, the planning,
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approval, and design process for satellite missions can take decades and require substantial investments.

The GPM, GOES-R, and GRACE Follow-On are examples of missions planned to avoid gaps in the current

satellite-based precipitation and total water storage records. Another example is the Visible Infrared Imager

Radiometer Suite (VIIRS) [Justice et al., 2013;Welsch et al., 2001; Vargas et al., 2013], which is designed as the

operational successor toMODIS and AVHRR. Long-term continuation of these and other satellitemissions will

remain an issue in the future as these systems age. The capability of extending multidecadal observations to

develop robust drought climatologies remains uncertain.

Another major challenge is to ensure that the data volumes are well managed and that the data records are

easily available to the science community and the public. This requiresmajor hardware infrastructure to store

and serve the data, and data professionals to process, curate, and disseminate the data. Securing funding

for the required hardware and attracting long-term support for maintaining staff for data management are

very challenging.

5.5. Multi-Index Composite Drought Monitoring

Recent studies show that combining multiple data sets improves drought detection [Hao et al., 2014] and

monitoring [Mu et al., 2013]. Several multi-index (multisensor) drought monitoring indicators/frameworks

havebeendeveloped to improvedescriptionof drought onset, development, and termination [Keyantashand

Dracup, 2004;KaoandGovindaraju, 2010; Tadesse etal., 2005;HaoandAghaKouchak, 2013; Svobodaetal., 2002;

Rajsekhar et al., 2014]. Availability of multiple satellite data sets offers a unique avenue to explore multi-index

or multivariate drought indicators.

Integration of snow into drought monitoring models is one of the least investigated areas and merits further

exploration. The Snow and Cold Land Processes (SCLP)missionwill providemicrowave-based snow and snow

water equivalent information [Rott et al., 2010]. Integration of snow information into seasonal precipitation or

runoff forecasts could lead to improvement in droughtmonitoring and seasonal prediction in regions that rely

on snowmelt such as the western U.S. Multiple data sets describing different but interlinked environmental

parameters provide the opportunity to develop advanced composite and multivariate (or multi-indicator)

drought models, similar to the ones discussed in section 4.

Ground-based observations of many drought-related variables (e.g., snow, soil moisture, water vapor, and

total water storage) are very limited or unevenly distributed across the world. This may limit development

of multi-index indicators in data sparse regions. Given the variety of satellite observations (Figure 8), remote

sensing allows development of an integrated multi-index composite drought assessment framework con-

ceptually illustrated in Figure 9. However, multi-index and composite drought models are in their infancy,

and more research is needed to develop robust statistical and mathematical frameworks for generating

multi-index drought information.

5.6. Improving Early Drought Detection Using Satellite Observations

Early drought detection is fundamental to proactive decision making and disaster preparedness. Previous

studies indicate that precipitation-based indicators (e.g., SPI) are better for drought detection compared to

other indicators (e.g., SSI) [Mo, 2011; Hao and AghaKouchak, 2013]. A number of satellite missions and sen-

sors (e.g., AIRS) provide near-surface air relative humidity information that is not currently being used for

drought monitoring. Since near-surface air relative humidity directly influences evaporation and as such is

connected to precipitation (integrated over period of time), it is reasonable to expect that it could provide

valuable drought information and improve early drought onset detection.

Figure 10 displays the SPI and Standardized Relative Humidity Index (SRHI) [Farahmand et al., 2014] derived

by standardizing AIRS near-surface air relative humidity data using an empirical approach. Here a gener-

alized empirical standardization approach is used that can be applied to different variables for deriving

consistent drought indicators [Farahmand and AghaKouchak, 2014]. Figure 10 (left and right columns) show

drought conditions based on SPI and SRHI in May and July 2010, respectively. The 2010 Russian drought

signal can be observed in relative humidity data as well. Furthermore, in May 2010 and 2 months prior to

the peak of the event, SRHI shows a stronger and more severe drought signal. All these indicators suggest

that satellite-based relative humidity can provide an opportunity for early drought detection. This, how-

ever, requires more in-depth research on the consistency and reliability of relative humidity data for drought

monitoring. In addition to relative humidity, there are many other satellite data sets that have not been

fully explored for drought assessment, including water vapor, vapor pressure deficit, cloud cover, microwave
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Figure 9. Multisensor (multi-index) composite drought monitoring using remote sensing observations:

A schematic overview.

emissivity, microwave-based vegetation optical depth, and solar radiation. More research on such data sets

could improve early drought detection or contribute to better monitoring of drought development.

5.7. Developing Climate Data Records

One of themajor limitations ofmany of the currently available satellite data sets is their short length of record

relative tometeorological stations, with Landsat, GOES, andAVHRR-MODIS-VIIRS as notable exceptions. Some

of the relevant satellite missions and sensors (e.g., GRACE) provide only slightly over a decade of data, which

may not be sufficient to study droughts from a climatological perspective, though they provide valuable

information on anomalies for drought impact assessment [e.g., Famiglietti and Rodell, 2013]. Also, a number

of satellite sensors are research instruments and there is no guarantee that the same (or sufficiently similar)

instrumentswill be launched again to replace aging or failed instruments. Data continuity in the future largely

relies on support for long-term investments in Earth observation satellites.

Lack of guaranteed support and commitment to invest in this field is a major roadblock for establishing

consistent, long-term remote sensing data records necessary for accurate anomaly detection against a his-

torical baseline. However, sensors that provide short-term records still provide valuable drought monitoring

information, especially for drought impact assessment [Rodell, 2012; Famiglietti and Rodell, 2013]. There has

been some work to create longer intersensor data records for key remote sensing variables, such as NDVI, by

merging data frommultiple satellite sensors such as AVHRR andMODIS [Tucker et al., 2005; Pinzon and Tucker,

Figure 10. (top row) Standardized Precipitation Index (SPI) and (bottom row) Standardized Relative Humidity Index (SRHI) for (left column) May 2010 and (right

column) August 2010.
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2014;Becketal., 2011]. Effectivemodels andalgorithmsneed to combinemultiple data sets [AghaKouchakand

Nakhjiri, 2012] fromdifferent sources and/or assimilate satellite observations intomodel simulations [Houborg

et al., 2012; Andreadis and Lettenmaier, 2005; Zaitchik et al., 2008] to generate long-term environmental and

climate data records.

5.8. Uncertainty

Satellite data sets are subject to retrieval and sensor uncertainties that are often unquantified [Dorigo et al.,

2010;Mehran and AghaKouchak, 2014; Pinker et al., 2009]. For this reason, several models and indicators have

been developed for uncertainty assessment of satellite observations [Gebremichael, 2010; Entekhabi et al.,

2010b;AghaKouchakandMehran, 2013;HossainandHuffman, 2008]. However,most satellite-baseddataprod-

ucts still donot provideuncertainty estimates or bounds. Land surface andhydrologicmodels that use remote

sensing data (as input or for data assimilation) are subject to other sources of error, includingmodel structural

and parameter uncertainties [Li et al., 2012; Dong et al., 2007; Houborg et al., 2012]. Understanding input data

uncertainty is fundamental to evaluating uncertainty of model-based simulations that use remote sensing

information as input. Lack of uncertainty information may prevent integration of satellite data into decision

making and operational applications.

More emphasis should be given to adequate characterization of the strengths and limitations of spe-

cific remote sensing tools and products, the results of which should be communicated to the general

decision-making population in a nontechnicalmanner. Further research in uncertainty assessment is required

to develop uncertainty products (bounds) for current and future satellite data sets. This will significantly

improve the usability and acceptability of satellite observations within the hydrology community because

these established bounds can provide guidance on the most appropriate times and locations to use data for

a targeted decision-making process.

5.9. Community Acceptability

Product development as well as translating remote sensing observations and scientific data outputs in forms

tailored for drought applications are critical for effective and sustained use within monitoring systems. This

component of applied remote sensing is often overlooked but is essential in communicating valuable new

information from new and emerging satellite-based systems and tools. Clearly defining basic elements, such

as cartographic color schemes, summarization of retrieved information (e.g., estimated soil moisture versus

soil moisture anomaly), and data formats, is one of the most important parts of the data-to-information pro-

cess associated with development of remote sensing tools for the drought community. Engaging drought

experts and key decision makers in this process is key to developing useful and applicable information from

remote sensing that will be more widely accepted and integrated into operational drought monitoring and

early warning systems.

6. Conclusion

Satellite remote sensing observations offer a unique toolset for studying droughts and their impacts on

ecosystems. The unprecedented scale of available global observations have shed light on the biophysics of

the drought phenomenon andhave led to newdrought indicators for research andpractical applications. This

study reviews the state-of-the-art remote sensing of drought from climatological and ecosystemperspectives

and identifies a number of research gaps and opportunities, which are summarized below:

1. There are opportunities to develop new indicators that quantify the effects of drought on carbon and nitro-

gen cycling. Several recently launched satellite missions have provided atmospheric CO2 information and

offer an opportunity to develop indicators for assessing the relationships between water deficits and nutri-

ent cycling. Such indicators would be fundamental to assessing drought and climate variability impacts on

ecosystem and biogeochemical processes.

2. There is also a lack of indicators for assessing combined soil moisture and vegetation water content, and

vertical profiles of moisture in vegetation. Recent advances in remote sensing of microwave land emissivity

indicate that there are opportunities toquantitatively assess surface soilmoisture andvegetationwater con-

tent. We argue that microwave emissivity information could be used to develop an indicator of combined

vegetation and soil water content.

3. Microwave-based vegetation monitoring offers a unique avenue for assessing drought impacts on veg-

etation dynamics and canopy density. Microwave and optical vegetation monitoring methods provide

complementary information, and combining the two approaches leads to a better understanding of the
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ecosystem response to climatic variability. Future research in this area can lead to a better understanding of

drought impacts on ecosystems including changes in phenology, biomass, and carbon cycling.

4. Limitedmethods exist for deriving long-term climate data records usingmultiple satellite sensors. There are

many satellite data sets that offer only a decade of observations (e.g., GRACE and AIRS) and thus cannot be

used to assess an event from a historical climate perspective. This limitation can weaken the interpretation

of indicators derived from the satellite data record. However, some of these data sets can be merged with

other remote sensing data sets or reanalysis output to obtain long-term climate data records. Progress in

this direction relies on development of robust statistical techniques for merging data records from different

sensors.

5. There is a need to improve early drought detection by integrating satellite observations not currently used

for droughtmonitoring (e.g., satellite near-surface air relativehumidity andwater vapor data).More research

in this area could lead to major advancements in the field, particularly in drought early warning.

6. Developing statistical andmathematical frameworks for generatingmulti-indexor compositedrought infor-

mation based on different satellite observations (e.g., precipitation, soil moisture, and relative humidity)

presents a further opportunity. Limited statistical models are currently available for linking or merging

different drought-related variables into one composite map.

7. Finally, uncertainty in this field is frequently unquantified. There are numerous satellite-based drought indi-

cators that do not offer a quantitative measure of uncertainty. This is a roadblock for integrating remote

sensing data into operational applications and decision-making processes. More research on uncertainty

quantification will substantially improve the usability of satellite-based drought information.

Thus far, numerous remotely sensed drought indicators andmodels have been introduced that are not being

used in current operational and decision-making systems. One of the key factors in using and accepting

remotely sensed drought information is engaging decision makers in the process of model and indicator

development. Community outreach and translation of remote sensing data into useful information for deci-

sionmakers shouldbe an integral part of theprocess. This is an important key toprovidinguseful and valuable

remote sensing information to the public.

Glossary

�AET AET rate.

�PET PET rate.

RVIS visible reflectance.

RmIR middle IR reflectance.

AIRS Atmospheric Infrared Sounder.

ALEXI Atmosphere-Land Exchange Inverse.

AET actual ET.

AMSR Advanced Microwave Scanning Radiometer–EOS.

AVHRR advanced very high resolution radiometer.

CCI Climate Change Initiative.

CLSM Catchment land surface model.

CMORPH CPC Morphing Technique.

CWSI Crop Water Stress Index.

CTVI Corrected Transformed Vegetation Index.

DDI Distance Drought Index.

DSI Drought Severity Index.

EDI Evaporative Drought Index.

ESI Evaporative Stress Index.

ET evapotranspiration(mm/d).

ETM Enhanced Thematic Mapper.

EVI Enhanced Vegetation Index.

GEO geostationary.

GIDMaPS Global Integrated Drought Monitoring and Prediction System.

GOES-R Geostationary Operational Environmental Satellites R series.

GOSAT Greenhouse Gases Observing Satellite.

GPCP Global Precipitation Climatology Project.
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GPM Global Precipitation Mission.

GPP gross primary production.

GRACE Gravity Recovery and Climate Experiment.

GRACE-DAS GRACE data assimilation system.

IPAD International Production Assessment Division.

IR infrared.

LEO low Earth orbit.

LST land surface temperature.

MIDI Microwave Integrated Drought Index.

MSDI Multivariate Standardized Drought Index.

MODIS Moderate Resolution Imaging Spectroradiometer.

MPDI Modified Perpendicular Drought Index.

MW microwave.

NDDI Normalized Difference Drought Index.

NDVI normalized difference vegetation index.

NDWI Normalized Difference Water Index.

NEP net ecosystem production.

NIR near infrared.

NMDI Normalized Multi-band Drought Index.

NPP net primary production.

NRVI Normalized Ratio Vegetation Index.

NSDI Normalized Difference Snow Index.

P precipitation.

PCI Precipitation Condition Index.

PDI Perpendicular Drought Index.

PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

PET potential ET.

PVI Perpendicular Vegetation Index.

SM soil moisture.

PDSI Palmer Drought Severity Index.

PNP Percent of Normal Precipitation.

R red.

RDI Reconnaissance Drought Index.

SA snow albedo.

SAVI Soil-Adjusted Vegetation Index.

SCA snow-covered area.

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Cartography.

SCLP Snow and Cold Land Processes.

SD snow depth.

SMCI Soil Moisture Condition Index.

SDCI Scaled Drought Condition Index.

SPI Standardized Precipitation Index.

SSI Standardized Soil Moisture Index.

SRHI Standardized Relative Humidity Index.

SVI Standardized Vegetation Index.

SWE snow water equivalent.

SWIR shortwave infrared.

TCA triple collocation analysis.

TCI Temperature Condition Index.

TES Tropospheric Emission Spectrometer.

TIR thermal infrared.

TIROS-1 Television and Infrared Observation Satellite.

TM Landsat thematic mapper.

TMPA Multi-satellite Precipitation Analysis.

TRMM Tropical Rainfall Measuring Mission.
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TTVI Thiam’s Transformed Vegetation Index.

TVI Transformed Vegetation Index.

TWS terrestrial water storage.

USDA United States Department of Agriculture.

USDM United States Drought Monitor.

VCI Vegetation Condition Index.

VegDRI Vegetation Drought Response Index.

VIIRS Visible Infrared Imager Radiometer Suite.

VIS visible.

VTCI Vegetation Temperature Condition Index.

WACMOS Water Cycle Multi-Mission Observation Strategy.

WDI Water Deficit Index.

WMO World Meteorological Organization.
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