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Abstract: Remote sensing of phenology is adopted as the practice in greenery monitoring. Now
research is turned towards the fusion of data from various sensors to fill in the gap in time series and
allow monitoring of pests and disturbances. Poplar species were monitored for the determination of
the best approach for detecting phenology and disturbances. With the adjustments that include a
choice of indices, wavelengths, and a setup, a multispectral camera may be used to calibrate satellite
images. The image processing pipeline included different denoising and interpolation methods. The
correlation of the changes in a signal of top and lateral imaging proved that the contribution of the
whole canopy is reflected in satellite images. Normalized difference vegetation index (NDVI) and
normalized difference red edge index (NDRE) successfully distinguished among phenophases and
detected leaf miner presence, unlike enhanced vegetation index (EVI). Changes in the indices were
registered before, during, and after the development of the disease. NDRE is the most sensitive as
it distinguished among the different intensities of damage caused by pests but it was not able to
forecast its occurrence. An efficient and accurate system for detection and monitoring of phenology
enables the improvement of the phenological models’ quality and creates the basis for a forecast that
allows planning in various disciplines.

Keywords: phenology; Sentinel-2; multispectral imaging; data fusion; Fenusella hortulana (Klug; 1818);
Populus sp.

1. Introduction

Satellite remote sensing is an effective and unbiased tool for monitoring of vegetation
phenology from local to global scales [1]. Researchers further say that these methods would
simplify forest management and evaluation of ecosystem processes [2]. Remote sensing
techniques are appreciated for their spatial coverage as well as logistics, and continuity,
consistency, and objectivity of the results [3].

Insect defoliation has been the major cause of disturbance in many forested ecosys-
tems [4]. Not only do defoliators cause a lot of damage themselves, but the defoliators
frequently increase susceptibility to secondary host infection [5] that is further detrimental
for the forest ecosystems. Therefore, spectral signature was used for the detection, identifi-
cation, and classification of different types of damage on stands’ crowns caused by insects,
diseases, or other factors [6]. Some of the advantages of remote sensing techniques are that
the health of forest vegetation can be checked beyond our own eyes and can be assessed
at different scales and within constant time periods [7]. Although detecting and mapping
forest defoliators prove to be difficult due to multiple causes, finer resolution could help
overcome part of the problem. The variety of currently available sensors allows multiscale
approaches, although, in the studies of insect defoliation, the most used ones are Landsat,
MODIS, and SPOT [8–10].

Urban and periurban forest monitoring is defined as detailed information on forest
structure and the deliverance of relevant, long-term data sets [11]. On one hand, the
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distribution of trees in an urban forest is complex and broken, and the details provided by
low-resolution remote sensing images are limited. On the other hand, urban forests’ health
status is of utter importance as they provide environmental benefits and maintain a social
balance in cities [12,13]. For these reasons, proactive management practices and a focused
novel monitoring methodology are needed to protect urban forests against the threats posed
by insect pests [14]. Disturbances in forest ecosystems could be cost-effectively monitored
in large areas using satellite-derived spatio-temporal time series, to predict population
build-ups and prevent harmful consequences to forest ecosystems. Early warning is crucial
for sound forest management, and even more so for forest health [15,16]. It is important
not only for the protection of natural resources and public health but also for the economy
worldwide [17] as monitoring plants’ physiology and phenophases is a demanding and
time-consuming process that uses a lot of resources.

Although remote sensing methods can be used for big areas [18] they often do not
have sufficient temporal and spatial precision [19] which limits application in urban forest
management and phenology monitoring at the regional scale [20,21]. Inability to penetrate
below the top layer of tree crowns limits using satellite imaging for representative moni-
toring in phenology research and plant protection. With the increased resolution coming
with the launching of Sentinel-2, we gain the opportunity to explore the importance of
multilayer phenology monitoring as a rule of thumb and justification for using satellite
imaging for phenology research since we only see the top layer of the crowns, as the
process may differ among upper, middle, and lower parts of the tree [22]. The validation of
deriving phenology from satellite data was previously examined in the example of Turin
where researchers found that the green area of the city can be overestimated by as much as
50% [23]. Analyzing 3 years of data, the same authors found that less than 30% of urban
green areas had the length of season (LOS) around the mean values while other parts of
the greenery had prolonged or shortened LOS. These data show the importance of the
temporal resolution of remote sensing imaging. Temporal resolution is also very important
considering that phenological changes (both of plants and their pests) occur rapidly and
cloud cover contamination issues of the optical satellite observations further reduce the
number of images available to adequately detect phenological events [1,24,25]. The effects
may be significant when cloud-free imagery is not available at a specific phenological stage
(e.g., peak greenness) or during a key transition stage in the vegetation growth trajectory
such as the start or the end of season [26]. Several studies showed that a denser time series
improves the detectability of defoliation in broadleaved trees because most broadleaved
trees are able to resprout in the same year as the disturbance [27–29]. One of the tasks in this
regard is to improve reference data for assessing insect disturbances [30] and we believe
that exploring the relation between classical methods of monitoring (visually, with RGB
camera, etc.) and remote methods (UAV, satellites, etc.) is the key element for developing
remote sensing methods for pest infestation monitoring in urban forests.

Hyperspectral imaging could provide the opportunity to fill in the gaps in the satellite
observations and operationalize near-real-time monitoring of insect disturbances by satel-
lites but these data to date have not been used in the context of broadleaved nor coniferous
defoliators [30]. Senf et al. [30] suggest separating insect disturbances from other agents
as one of the most challenging tasks in using remote sensing data for monitoring defolia-
tors. They found that the spatial and temporal resolutions were of utter importance for
distinguishing between insects and other agents that cause changes in vegetation indices
and suggest taking into consideration the intra-annual timing of a disturbance. Other
authors [31] cite the size and the shape of disturbances as another factor that influences
the possibility to separate defoliators. Therefore, some authors suggest using fusion from
various sensors [32] or improving temporal resolution for the determination of the source
of disturbances [33]. The main contribution of using the hyperspectral camera for distur-
bances in urban forests in our setup is the fusion with satellite data for the creation of time
series with a better temporal resolution. It provides the timeline with more detailed spectral
information, thus improving the quality of the data. Damage caused by insects cannot
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always be monitored by traditional ground surveys due to various symptoms that are not
always visible at an early stage of the disease. These subtle changes are rather identified
by high-resolution hyperspectral imaging of the canopies where both changes in spectra
and the texture appear [34]. Other researchers also found that hyperspectral cameras have
great potential in detecting insect disturbances [35] but others highlighted that the best
results are reaped when fusing spectral information from hyperspectral cameras with
spatial information from satellite data [36]. Therefore, the aim of this study is to determine
the best vegetation indices used for the recognition of defoliation as well as the type and
position of the sensors. We will focus on the detection of poplar phenophases and leaf
miner Fenusella hortulana (Klug, 1818) infestation by using proximal and remote sensing
techniques. Accordingly, we will establish the relationship between the ground-observed
physiology-based phenology at the individual plant level and the satellite-derived canopy
phenology at the pixel level with the aid of multiple-source and multiple-scale observations
using a variety of vegetation indices.

Serbia is not covered by phenology network monitoring and therefore lacks informa-
tion in this field. This work is the first step toward creating the opportunity to remotely
observe phenology. Thus, we started locally, collecting ground observation data and devel-
oping proper methodology in using various sensors available at different sites. This data
set is complementary to worldwide networks and information coming from Copernicus
and other open services and will allow the inspection of the accuracy and precision of such
tools in this area.

2. Materials and Methods
2.1. Research Subject and Study Area

The study was conducted in Novi Sad (45.24774, 19.85458), a city situated in the Pan-
nonian part of Serbia at 80–86 m a.s.l. Novi Sad is situated on the banks of the Danube River
and the Danube–Tisa–Danube Canal. South of the Danube are the slopes (90–200 m a.s.l.)
of low-lying Fruška Gora Mountain. It is characterized by a continental moderate climate
with the coldest month being January (Tmean = 0.2 ◦C), the warmest month being July
(Tmean = 21.9 ◦C), and the annual Tmean of 11.4 ◦C during the climatological standard
normal period (1981–2010) provided by the Republic Hydrometeorological Service of Ser-
bia. In the same period, the mean annual precipitation was about 647 mm. The lowest
mean monthly relative humidity is in May (RHmean = 66%), the highest is in December
(RHmean = 86%), and the annual RHmean was about 74% [37].

During 3 successive years starting from 2018, from February–December we moni-
tored phenophases of Populus x canadensis Moench (Canadian poplar) and Populus nigra L.
(black poplar) growing in the urban forest located in a university campus in Novi Sad,
Serbia (Figure 1).

In 2016, poplar miner Fenusella hortulana (Klug, 1818) was first recorded in Serbia and
was reported to cause major damage to poplar trees in the urban area of Novi Sad [38]. There-
fore, apart from recording the phenophases, we detected and assessed the presence of this
pest and the disturbances it caused using both observational and remote sensing methods.

2.2. Data Collection

Data fusion is being increasingly used to generate time series with high temporal
and spatial resolutions [1,25,39]. Multiyear, high-resolution data acquisition from different
sensors (Figure 2) was conducted in order to create a database of phenophases denser than
8 to 16 days which has been the usual density for phenological time series in previous
studies [40–42].
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Figure 1. Aerial photo of the location of poplar tree stands: orthophoto image of the site by UAV and
NDVI values calculated for the whole location.
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hyperspectral camera are marked in red.

Sentinel-2 has a resolution of 20× 20 m in the red edge part of the spectrum. Although
resampling can be carried out as in previous research (i.e., [43,44]), due to the comparison
of data from different sensors, we wanted to avoid any uncertainties coming from such
a process and did not compare normalized difference red edge index (NDRE) acquired
from the satellite with the NDRE calculated from hyperspectral data. Data integration was
carried out using only normalized difference vegetation index (NDVI) time series. The
data obtained by using a hyperspectral camera and satellite sensors differ in spatial and
temporal resolution, which affects the accuracy of the measurements. Visual monitoring
of phenology is the most frequent and can be carried out daily as it is not conditioned
by external factors. Hyperspectral imaging is not possible if there is precipitation, while
satellite images can only be used if they were taken on sunny days. The data obtained by
measuring with a hyperspectral camera have a higher spatial resolution and, therefore,
are expected to be the most accurate. Monitoring of phenology was performed daily from
the beginning of the vegetation season. The frequency of hyperspectral camera recording
was somewhat less frequent due to precipitation, especially at the beginning of the year.
Satellite images have a high frequency (every 2–3 days on average), but it is only possible
to use those taken on sunny days, which is only 30% (48 to 70 images a year).

2.2.1. Hyperspectral Imaging

Ximea xiSpec MQ022HG-IM-5X5-NIR was used for hyperspectral imaging from the
rooftop of BioSense Institute from the same point with the same spectralon position (Figure 3).
In order to ensure approximately the same lighting conditions in relation to the same angle
of incident of sunlight towards the poplar trees, hyperspectral image acquisition was
conducted with the sun at its zenith position (12 p.m. until the last weekend of March,
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and 1 p.m. from the end of March onward due to daylight saving time). We focused on
imaging the trees’ side view with the region of interest (ROI) with an approximate size of
13.5 m × 10 m.
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For each imaging, we made 3 shots: the spectralon covering the whole camera’s field
of view, the image of the trees’ side view with the region of interest (ROI) 13.5 m × 10 m in
size, and the image with the closed aperture.

One pixel corresponds to 15 cm2 of the region of interest and 0.002 cm2 of the spec-
tralon. The camera registers 25 spectral channels and was used with a 600–875 nm filter
which increases the sensitivity of the camera in the mentioned part of the spectrum. In this
part of the spectrum, there are wavelengths of red (630–680 nm), red edge (680–730 nm),
and near-infrared (750–1400 nm) which are used to calculate vegetation indices.

A broadband (400–1000 nm) anti-reflection (BBAR) coated lens with fixed focal length
f = 35 mm and a set aperture of f/2.8, together with a bandpass filter (600–875 nm) from
Edmund Optics, was mounted on a Ximea xiSpec MQ022HG-IM-5X5-NIR hyperspectral
snapshot mosaic USB3 camera model and was used during the image acquisition pro-
cedure. The camera consisted of a CMOS CMV2000 sensor with a physical pixel size of
5.5 µm × 5.5 µm and a native resolution of 2048 × 1088, on which, at a wafer level on
top of the pixel structure, were placed 25 hyperspectral filters based on a Fabry–Pérot
structure and with an active range in near-infrared light between 665 nm and 960 nm.
With the CMV2000 (CMV2K) sensor with an optical size of 2/3” and BBAR lens with fixed
focal length, a horizontal field of view (FOV) of 18.3◦, vertical FOV of 9.8◦, and a working
distance (WD) of 165 mm–∞ were achieved.

The filters were organized in a snapshot mosaic 5 × 5 layout (SSM5x5), which was
continuously repeated on the surface of the sensor, resulting in an approximate spatial reso-
lution of 409× 217 pixels. In Table 1, we report quantum efficiency (QE) in percentage of the
filter responses in the red, red edge, and near-infrared parts of the light spectrum together
with the used bandpass filter. According to the manufacturer’s technical documentation,
the central peak wavelengths of the spectral bands in Table 1 have a maximum relative
deviation of ±1.0%. This created sensor, produced by Imec, is named IMEC CMV2K-
SSM5x5-NIR. The quantum efficiency for Ximea xiSpec goes up to a 19% maximum.

The images of the hyperspectral camera were calibrated by making an image of the
spectralon (which reflects 95% of the spectrum)—“white image”—and by closing the
aperture, making a “black image” (Figure 4). The spectrum is calculated in relation to these
two reference values.
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Table 1. Quantum efficiency (QE, %) of filter responses for selected spectral bands used in the
calculation of vegetation indices.

Red (nm) QE (%) Red Edge (nm) QE (%) NIR (nm) QE (%)

631 6 807 19 682 13
640 8 820 14 691 9
648 11 838 8 705 19
657 8 850 9 730 13
665 7 860 8
674 18 869 9
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Another important feature of sensors for calculating spectral responses is quantum effi-
ciency. Based on the quantum efficiency coefficients given by the camera manufacturer, the
registered signals were interpolated. The low sensitivity of the instrument in certain parts
of the spectrum means the possibility of a larger error in signal interpolation. Therefore,
when calculating vegetation indices, it is important to use those wavelengths for which the
quantum efficiency of the camera is higher, which in our case is for:

• wavelengths in the red spectral region 631 nm, 640 nm, 648 nm, 657 nm, 665 nm, and
674 nm;

• wavelengths in the near-infrared (NIR) spectral region 807 nm, 820 nm, 838 nm,
850 nm, 860 nm, and 869 nm;

• wavelengths in the red edge spectral region 682 nm, 691 nm, 705 nm, and 730 nm.

The closest range that both sensors cover in the red spectral region is around 665 nm,
while Sentinel-2 registers the NIR spectral region around 833 nm and the Ximea hyper-
spectral camera around 838 nm. However, the quantum efficiency of the Ximea camera
is the lowest in the aforementioned wavelengths (7% for 665 nm and 8% for 838 nm).
Therefore, we used two parameters for choosing the corresponding wavelengths in the
hyperspectral camera: (1) to increase the precision of the measurements for the calcula-
tion of the spectral response, we included wavelengths with better quantum efficiency in
both red and NIR spectral regions; (2) although Sentinel-2 has a wide bandwidth in both
spectral regions (31 nm in red and 106 nm in NIR), we have chosen the wavelengths of
the hyperspectral camera within the range of Sentinel-2 coverage. For each part of the
spectrum, the spectral response is calculated as follows: for red, the responses in 6 listed
wavelengths were summed and an average was calculated and taken as a response in the
red part of the spectrum. Likewise, red edge values were calculated as an average of the
4 wavelengths, and NIR as an average value of 6 values belonging to the corresponding
part of the spectrum.
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The hyperspectral raw measurements, obtained from the SSM5x5 sensor pattern
(IMEC CMV2K-SSM5x5-NIR) from the Ximea xiSpec MQ022HG-IM-5X5-NIR camera with
the gain 6, must go through several steps of calibration and correction before proper use.
The steps are:

• offset removal;
• white–black reference correction;
• spectral correction;
• demosaicing.

The first step—offset removal—implies focusing on measurements obtained from an
active sensor area with a width of 2045 pixels and height of 1080 pixels, for the SSM5x5
sensor pattern. This is achieved by excluding measurements at the edges of the sensor area
with the original size in pixels of 2048 × 1088. Then, a final reflectance R ∈ [0,1] for one of
the spectral bands is obtained by conducting the following two-step white–black reference
and spectral correction using the following equation:

R = {
(ρ− ρb,τ)(

ρw − ρb,τre f

) τre f

τ
,

where ρ represents the radiance of the object image, ρ_w, ρ_b are radiances of the white
and black reference images, τ_ref and τ are integration times for the white reference image
and object image, respectively, and { denotes spectral correction matrix. A correction
matrix is defined as a part of a spectral correction process and it is applied after reflectance
calculation. The spectral correction matrix is computed specifically for each combination
of sensor and optical components (i.e., rejection filters, light source, etc.) and is provided
in the sensor’s calibration file. It is applied to the signal by multiplying the signal with
the correction matrix [45]. The final step is the extraction of spectral bands of interest
into separable images (matrices) from the original image consisting of repeated mosaic
patterns of 5 × 5 per spatial pixel location (Figure 5). Namely, the sensor with 25 filters has
a layout organized in 5 rows and 5 columns. Further, the vegetation index calculations can
be conducted by performing simple matrix operations.
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beams. Further noise is caused by dark current and vignetting effects as well as a chromatic
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aberration of the optical setup. Additionally, the sensitivity in one pixel is not confined
to one narrow wavelength band around the peak but has several minor peaks at other
wavelengths. This latter effect can be accounted for by a so-called correction matrix. The
major benefit of this sensor technology, namely, the combination of spectral as well as spatial
resolution, comes with certain costs: comprehensive correction/calibration, reduced spatial
and temporal resolution when compared to high-speed cameras, and reduced spectral
resolution when compared to spectrometers. In the publication of Gerdes et al. [46], in
Table 2, there is a list of the advantages and drawbacks of different sensor technologies that
have been used for process monitoring in laser powder bed fusion. Snapshot hyperspectral
imaging fills a niche and whose potential shall be discussed in the remainder of this article.

Table 2. Ground-based phenological observation for 2018, 2019, and 2020.

Phenophase Duration (DOY)

2018 2019 2020

Flowering 40–84 39–77 62–93

Fruiting 85–124 78–114 94–136

Leafing 86–337 99–327 83–327

Leaf miner 93–141 136–157 114–136

2.2.2. Satellite Imaging

Vegetation indices for the same trees were calculated from Sentinel-2 (10 m × 10 m
resolution) satellite images. The stands were georeferenced in QGIS (3.10.14) on the layer
of Google Maps (Source: Map data 2022 © Google) and shape files were created. Further
calculation of the indices was carried out according to the following formulas:

NDVI =
(NIR− red)
(NIR + red)

EVI = G× (NIR− red)
(NIR + C1× red− C2× blue + L)

A raster with the calculated values of vegetation indices was created and the data
were extracted from the satellite images according to the shapefiles previously created.

Poplar crowns are more than 20 m wide and there is no subpixel variation. The
NDVI was chosen because it can be calculated from both images of the Ximea xiSpec
hyperspectral camera and from satellite images, and the values can be compared. NDVI
is the most commonly used index in biological disciplines of remote sensing, but due to
a large number of factors that affect its values (atmosphere, background, soil moisture,
etc.), alternatives such as an optimized vegetation index (enhanced vegetation index—EVI)
and others were developed. EVI should better represent the physiological processes in the
plant, excluding the influence of external factors. The red edge part of the spectrum is used
to calculate the NDRE index, which Sentinel-2 registers exclusively in the resolution of
20 m× 20 m. For the study area, this resolution is too low so it would give inaccurate results
that would not be comparable to the results obtained by hyperspectral camera imaging.

Unlike the hyperspectral camera images, the Sentinel-2 images were already calibrated
and atmospherically corrected, so the calculated values of the spectral responses were ob-
tained. We used exclusively atmospherically corrected images (marked L2A) and excluded
L1C to avoid inconsistencies in the data due to the differences in the process of atmospheric
correction. The values of vegetation indices NDVI and EVI for a given area were obtained
by overlapping images of the red and NIR part of the spectrum, according to the standard
formula, using the QGIS program. The shape and position of the trees were marked on
the orthophoto “Google Maps” (Source: Map data 2022 © Google) and then the vegetation
indices were calculated according to their georeferenced position.
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Only satellite images taken during sunny days were used to calculate vegetation
indices. On cloudy days, the values of vegetation indices are reduced due to misreading
of the spectral response caused by cloud reflection. Images in which the cloud is directly
above the observed trees or creates a shadow on this surface were excluded.

2.2.3. Phenology

Phenology is categorized into 3 phenophases (leafing, flowering, and fruiting) and
3 subphases within each phenophase (beginning, full development, and end) [47]. We
tracked the status and the intensity of the phenophase by dividing each phenophase into
subphases based on the percentage of fully developed plant parts (flowers in the flowering
phenophase, fruits in the fruiting phenophase, and leaves during the leafing phenophase)
because they develop unevenly and should be regarded as processes [48]. The beginning of
the flowering phenophase is the period from the opening of the flower buds to the moment
of development of 80% of the flowers. Full development is seen from the development
of >80% of flowers to the beginning of their decline, and for the very end, the period from
the decline of >20% of flowers to the complete end of the phenophase is taken. In the
same way, the phenophases of fruiting and leafing are divided into the beginning—the
period until the moment of the development of 80% of plant parts—full development of
phenophase when >80% of leaves or fruits are developed and the end of phenophase from
the moment of decline >20% of plant parts until the complete end of the phenophase [49].

2.3. Data Analysis

The following software was used for the data collection and processing: PyCharm
2018.1 EAP JetBrains, Pix4D SA 4.0, Ximea CamTool, QGIS (3.10.14).

2.3.1. Calculating Vegetation Indices

The mean values and medians of the NDVI and NDRE index were calculated from the
hyperspectral camera and satellite values of the spectral response. Normalized difference
vegetation index (NDVI) was obtained from the ratio of the mean values of the most efficient
NIR and red channels. Normalized difference red edge index (NDRE) was obtained from
the ratio of the mean values of the most efficient red edge and NIR channels. The choice
of indices calculated from the hyperspectral camera is determined by the wavelengths it
registers and the characteristics of the sensor. For example, EVI, which uses the blue part of
the spectrum not registered by the Ximea xiSpec camera, was not calculated.

In a hyperspectral camera, there are 25 channels for each pixel. Out of the chosen
wavelengths that correspond to those of Sentinel-2 sensors, we calculated average values
for the red, red edge, and NIR part of the spectrum and further applied the equation to
calculate NDVI and NDRE values for each pixel. The images of vegetation index (VI) values
were further denoised using only median values of VI to exclude the outliers. Thus, we
eliminated the possibility that low index values of individual pixels significantly affected
the mean value of vegetation indices.

2.3.2. Data Processing and Integration

The assumption is that each time series consists of systematic patterns (a set of iden-
tifiable components) and a random “noise” (error) that makes it difficult to identify the
patterns. Most time series analyses involve some form of “noise” filtering to make a
pattern visible [50]. Data smoothing methods are expected to maintain the integrity of
vegetation dynamics while removing the noise component [51–54]. The first step in the
signal analysis is the interpolation of the missing data. Time series analysis implies one
of several methods—linear, polynomial (2nd, 3rd, 5th order), and spline. The next pro-
cessing step is denoising and we used the Savitzky–Golay filter. Similarly to interpolation,
the choice of the parameters (polynomial order and window) depended on the original
data set. With satellite data, the temporal resolution was low and might have been even
lower than 10 days at the beginning of the season (due to cloudy weather). This suggests
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using a smaller window as flowering and fruiting phenophases might finish in less than
2 weeks. The parameters for the processing of hyperspectral data were chosen according to
their temporal resolution and their relation to phenology. These processing steps reduced
irregularities (random fluctuations) in the time series, which made it easier to observe
the behavior of the series. It is also an effective means of predicting future time series
values [50]. We compared all the methods in interpolation: linear, spline, and polynomial
transformation (2nd, 3rd, and 5th order).

Our setup of nadiral and lateral imaging was identical to that of Zhou et al., 2021 [22].
Satellite images were in the nadiral position, and lateral images from the hyperspectral
camera were separated into 3 layers, namely the upper, middle, and lower part of the crown,
to compare if there are differences in the contribution to the vegetation indices of various
parts of canopies. Ye et al. [55] proposed a similar setup (lateral imaging (NDVI image))
for spectral analysis for the purposes of the estimation of nitrogen content and found that
this method can successfully be used at the canopy level. Relating airborne and ground-
based hyperspectral images allows taking advantage of the spatial characteristics of the
former and the spectral responses of the latter. This setup is mostly used in orchards [56–58],
although several studies explored the differences in the vegetation indices in mid-crown [59]
and below-crown imaging [60]. All the researchers found these setups to be justified and
give reasonable results. Ali et al. also found that Sentinel-2 imagery is complementary to
that collected from the ground and used processing steps similar to our study (polynomial
fitting and linear extrapolation). Raheja et al. [61] found high correlations between NDVI
from hyperspectral sensors of lateral imaging and a spectroradiometer from an airborne
sensor while Fan et al. [62] found that hyperspectral imaging with the proper image
processing could detect the quality changes between and within canopies.

2.3.3. Calibration of Remote Sensing Data Using Proximal Observations

Data collected by in situ measurements (hyperspectral imaging, phenological moni-
toring) were used to calibrate data collected by remote sensing—satellite images (i.e., to
relate the exact part of the VI curve with the corresponding phenophase). For the temporal
alignment of the 3 data sets, we acquired data on the same date or 1 day apart from each
other. In the example of 2018, we see that out of 49 satellite images, 26 were aligned with
hyperspectral imaging (Figure 6). Hyperspectral imaging was limited by the weather
condition (precipitation), but the data were collected within the day from satellite passages.
Only 3 satellite images (in July) were more than 1 day apart from the hyperspectral images.
There are 127 hyperspectral images during the vegetative season that lasted 294 days. The
following years are as follows: in 2019—51 satellite and 130 hyperspectral images and in
2020—70 satellite and 77 hyperspectral images. In the year 2020, the COVID-19 outbreak
caused restricted visits to the laboratory and restricted availability of the equipment and it
significantly hampered temporal resolution of the acquisition by the hyperspectral camera.

Fusion of the data from the nadiral point of view with the ground-based ones has
been explored before [22,55,61]. Ali et al. [60] found that the data from Sentinel-2 and the
ground-based ones from the hyperspectral camera (laterally made) are complementary. Our
setup included calculation of the indices (NDVI and EVI in satellite data, and NDVI and
NDRE in hyperspectral data) and comparison of the indices’ correlation among themselves
and relation to the phenology of poplar trees. We explored the possibility of integrating
NDVI values from both sensors into one timeline.

Temporal alignment of the data acquisition from different sensors (satellite and hyper-
spectral camera) allowed correlation of the data. The interpolation procedure was identical
and all the dates were used for the calculation of the correlation.

After the fusion of the data, we could further remotely identify phenological phe-
nomena of plants including the beginning, course, and end of phenophases, and monitor
physiological changes—the presence of pests or disease. Time series of changes in spectral
response in relation to the observed phenological changes were defined and the correla-
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tion of changes in spectral response in relation to changes in phenophase intensity and
physiological activity was calculated.

NDVI images for the observed areas were obtained by taking median values calculated
for each pixel of the hyperspectral camera during the season and during the leaf miner
attack. Poplar species attacked and not attacked by the leaf miner Fenusella hortulana
(Klug, 1818) were monitored and changes in their indices were registered before, during,
and after disease development.

Before statistical analysis, the data were tested by using the Shapiro–Wilk test, a stan-
dard formal test for assessing normality recommended for small and medium samples [63],
which confirmed the application of non-parametric statistics tests was needed. Spearman’s
test [64] analyzed the extent to which NDVI values measured by remote and proximal
measurements correlated to determine whether in situ measurements could be used to
overcome the problem of low-frequency satellite imagery and the impossibility of using it
during cloudy days. Differences in the average values of vegetation indices during leafing
and during leaf miner attacks were analyzed using the Wilcoxon signed-rank test which is
a non-parametric alternative to the paired sample t-test [65].
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Figure 6. Daily precipitation and the frequency of data acquisition in 2018 by the hyperspectral
camera, satellite, and phenological observations.

3. Results
3.1. Phenology Data Acquisition

Phenological observations were made daily and throughout the year, according to the
methodology previously described. Phenotables were created for flowering, fruiting, and
leafing as well as for the leaf miner attack. Leaf miners were detected with the first visible
symptoms of the disease—the marks on the leaves. The vegetation season lasted 297, 288,
and 265 days in 2018, 2019, and 2020, respectively (Table 2). Flowering occurred latest in
2020 but the leafing season was the longest. The intensity of leaf miner disturbance differed
among years and was the strongest in 2018, with the major defoliation appearing during
the leafing phenophase, and the weakest in 2020 when leaves were only partially damaged.

Some authors [66–68] suggested that phenology might differ in the upper, middle, and
lower part of the crown and we acquired data by segmenting the canopies and creating
phenotables for each part of the crown separately. Our research showed no differences in
the development of phenophases among different parts of the crown.

3.2. Remote Sensing Data Acquisition

Using local methods for denoising signals when analyzing intra-seasonal variations
(e.g., in disturbance analyses) was previously suggested [69] because they are able to
capture seasonal details, thus we interpolated data using linear, polynomial, and spline
methods. Although all the interpolation methods still captured differences in vegetation
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indices during the leaf miner occurrence and during different phenophases (Figure 7), the
polynomial interpolation of 2nd order showed the strongest differences (p < 0.05) and is,
therefore, shown in the figures for the representation of the remote sensing capture of
phenophases and stress caused by Fenusella hortulana (Klug, 1818) on poplar trees. The
correlations of the signals from the satellite and hyperspectral camera are based on the
same processing method.
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Figure 7. Data interpolated by linear, polynomial, and spline methods for (a) satellite and (b) hyper-
spectral camera.

3.2.1. Vegetation Indices from Satellite Sensors

The beginning of the season is characterized by intensive physiological processes,
the beginning of the phenophase of flowering, and the development of pollen. After the
flowers fall, the phenophase of fruiting has lower average values of vegetation indices
(NDVI: 0.46 in 2018, 0.40 in 2019, 0.41 in 2020), which grow with the development of leaf
buds and leaves (Figure 8).
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Figure 8. Annual time series of vegetation indices (i.e., NDVI and EVI from satellite and NDVI
and NDRE from the hyperspectral camera) and the result of phenological observations in (a) 2018,
(b) 2019, (c) 2020.

Poplars’ NDVI values are expected to show a tendency of growing during the vegeta-
tion season starting from lower values at the beginning of the flowering phenophase with
an increase during leaf development and another fall with leaf senescence. With the appear-
ance of leaves, black poplar is attacked by leaf miners, causing the vegetation indices to
decrease (Figure 8) before and during defoliation compared to the full leafing phenophase
(NDVI: 0.48 in 2018, 0.40 in 2019, 0.50 in 2020), and increase with the development of new
leaves. During the phenophase of full leaf development, NDVI satellite measurements
have stable values around 0.8 with slight variations. In spring, clouds limit the number of
images to only a few during the leaf miner attack. Due to the low frequency of imaging, the
leaf miner attack could not be detected from the satellite images. Satellite images showed
no significant differences during the phase of the feeding of the leaf miners (p > 0.05), but
only during the defoliation (in the days after the leaf miner occurrence) (p < 0.01) (Figure 8).

Apart from NDVI, EVIs were calculated from the Sentinel-2 satellite images. Figure 8
shows their mean values throughout the years. These two vegetation indices vary in
different ways during the season and differ significantly (p < 0.01) each year. By definition,
the EVI is specifically tailored to separate the canopy signal from the background by
reducing the influence of atmospheric characteristics on the index values. Still, there were
no significant relations between its values and phenophases of the poplars (p > 0.05). On
average, NDVI values were 0.68 in three successive years, while EVI was 0.81. A lack of
satellite imaging is visible in the year 2018 when the full phenophase of flowering was
missed due to cloudy weather.
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3.2.2. Vegetation Indices from Hyperspectral Camera

The NDRE index has fewer oscillations and more stable values, but also significantly
(p < 0.01) lower index values compared to NDVI (0.48 in 2018, 0.47 in 2019, 0.47 in 2020)
(Figure 8). Deviations of the median from the mean values are not statistically significant
and are greatest for the NDRE index at the beginning of the growing season when these
values are low (standard deviation 0.02, 0.04, and 0.06). During the phenophase of leafing,
which lasts from the end of March until the end of November, NDVI values are at their
peak (Figure 8). A decrease in the values of NDVI and NDRE indices was observed
during this phenophase, and the cause of the low values was the changes in the leaves that
occurred as a consequence of the leaf miner attack. The leaf miners appeared in May and
differed in intensity throughout the years. In 2018, Fenusella hortulana (Klug, 1818) caused
total defoliation in black poplar and a drop in vegetative indices (mean NDVI 0.52, mean
NDRE 0.45) unlike the Canadian poplar whose indices had stable high values during the
leafing phenophase (mean NDVI 0.58, mean NDRE 0.50). In 2019 and 2020, leaf miner
damage was far lower and the leaves and the crowns were only partially affected. However,
even in 2020 both NDVI and NDRE indices indicated the presence of the leaf miner, having
significantly lower values during its attack (mean NDVI 0.47, mean NDRE 0.44; p < 0.01)
detected by hyperspectral imaging.

3.3. Performance of Remote and Proximal Spectral Analysis in Identification of Defoliation

The values of NDVIs measured by the hyperspectral camera are significantly lower
(p < 0.01) than those obtained from the satellite images (0.56 in 2018, 0.55 in 2019, 0.54 in 2020).
NDVI values measured in both ways show the same trend during the growing season
(Figure 8). The differences may be due to the sensitivity of the sensor as the sensitivity of
the satellite sensor is far greater than the sensitivity of the hyperspectral camera which had
consistently lower values. On cloudy days, the values can be equally low.

A high positive correlation was found between the mean values of the NDVI obtained
by proximal measurement with the Ximea hyperspectral camera and remote sensing—
values obtained by satellite imaging (Sentinel-2) (0.75, p < 0.01). The median NDVI values
of the hyperspectral camera correlate better with the values obtained from satellite images.
The highest correlation between proximal and remote sensing of the NDVI was obtained
by eliminating cloudy days (0.78, p < 0.01).

While in satellite images, the time series Wilcoxon signed ranks test shows that the
drop in NDVI values during leaf miner attack is almost significant, in hyperspectral images,
differences are more visible and statistically significant (Figure 9). In 2018, differences are
statistically significant in vegetative indices for both NDVI and NDRE mean and median
values (p < 0.01) (Table 3, Figure 9). That year, the leaves were severely affected and it led
to extensive defoliation.

Table 3. Wilcoxon signed ranks test for 2018 hyperspectral data.

NDVIm_LM vs.
NDVIm_L

NDVImed_
LM vs.

NDVImed_L

NDREm_LM vs.
NDREm_L

NDREmed_
LM vs.

NDREmed_L

Z −3.066 a −3.066 a −3.066 a −3.074 a

Asymp. Sig.
(2-tailed) 0.002 0.002 0.002 0.002

a. Based on negative ranks. NDVIm_L—NDVI mean values during leafing phenophase. NDVIm_LM—NDVI mean
values during leaf miner attack. NDVImed_L—NDVI median values during leafing phenophase. NDVImed_LM—
NDVI median values during leaf miner attack. NDREm_L—NDRE mean values during leafing phenophase.
NDREm_LM—NDRE mean values during leaf miner attack. NDREmed_L—NDRE median values during leafing
phenophase. NDREmed_LM—NDRE median values during leaf miner attack.
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in 2018.

In 2019, the leaf miner attack was remotely detected and its presence was determined in
phenological observations in a short period starting in May. Both NDVI and EVI satellite data
values were significantly lower during the leaf miner attack (p < 0.01). Significant differences
in vegetative activity were found between the peak of the leafing phenophase and the phase
of leaf miner attack for mean NDVI and NDRE values (p < 0.05) (Table 4, Figure 10).

During 2020, leaf miners were detected both with phenological observations and
hyperspectral imaging. Satellite data showed significantly lower NDVI values during
the pests’ presence while EVI failed to recognize the changes in vegetative activity. The
most sensitive vegetative index was NDRE which detected significant differences between
leafing phenophase and the period of leaf miner attack (p < 0.05) (Table 5, Figure 11).
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Table 4. Wilcoxon signed ranks test for 2019 hyperspectral data.

NDVIm_LM vs.
NDVIm_L

NDVImed_LM
vs. NDVImed_L

NDREm_LM vs.
NDREm_L

NDREmed_LM
vs. NDREmed_L

Z −2.197 a −2.197 a −1.961 a −1.804 a

Asymp. Sig.
(2-tailed) 0.028 0.028 0.050 0.071

a. Based on negative ranks. NDVIm_L—NDVI mean values during leafing phenophase. NDVIm_LM—NDVI mean
values during leaf miner attack. NDVImed_L—NDVI median values during leafing phenophase. NDVImed_LM—
NDVI median values during leaf miner attack. NDREm_L—NDRE mean values during leafing phenophase.
NDREm_LM—NDRE mean values during leaf miner attack. NDREmed_L—NDRE median values during leafing
phenophase. NDREmed_LM—NDRE median values during leaf miner attack.

Table 5. Wilcoxon signed ranks test for 2020 hyperspectral data.

NDVIm_LM vs.
NDVIm_L

NDVImed_LM
vs. NDVImed_L

NDREm_LM vs.
NDREm_L

NDREmed_LM
vs. NDREmed_L

Z −0.944 a −0.674 a −2.023 a −2.023 a

Asymp. Sig.
(2-tailed) 0.345 0.500 0.043 0.043

a. Based on negative ranks. NDVIm_L—NDVI mean values during leafing phenophase. NDVIm_LM—NDVI mean
values during leaf miner attack. NDVImed_L—NDVI median values during leafing phenophase. NDVImed_LM—
NDVI median values during leaf miner attack. NDREm_L—NDRE mean values during leafing phenophase.
NDREm_LM—NDRE mean values during leaf miner attack. NDREmed_L—NDRE median values during leafing
phenophase. NDREmed_LM—NDRE median values during leaf miner attack.
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Figure 11. NDVI and NDRE hyperspectral data for the whole season and during leaf miner attack
in 2020.

Remote sensing, during the phenophase of leafing, shows changes in NDVI values
caused by leaf miner occurrence with statistical significance of p < 0.05 for vegetative
indices in 2018 and 2019, while in 2020 changes were detected only in NDRE mean and
median indices from the hyperspectral camera (p < 0.05). This indicates NDRE is the more
sensitive tool for leaf miner detection.

The years 2018 and 2019 differ in spectral response as the defoliation occurred in the
first year while, in the second year, poplars’ leaves were less damaged by the leaf miners
and the second foliation did not take place.

Results indicate insignificant differences among the 3 years (p > 0.05) as there were no
phenological differences in poplars’ observations.
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Leaf miner attack differs in intensity, being the strongest in 2018, followed by defolia-
tion, and less severe in the following years. Time series do not show these differences. On
the seasonal scale, they were registered in all the years with different significance levels.

As the degree of damage by leaf miners differs over the years, the results show that
small changes could be registered only by more sensitive tools and indices. Still, the
forecast of the leaf miner attack could not be made as there were no indications in the VI of
their occurrence.

4. Discussion

Visual observations of phenology are related but not identical to remote sensing-based
phenology monitoring as the satellites measure the vegetative activity of plants and not the
phenological events [19,70–72]. Researchers have turned towards mathematical theories,
which limits the accuracy of specific phenological metrics’ detection as these methods do
not have a physiological basis [40]. This ambiguity in methodology generates a wide dis-
crepancy in the timings estimated for the phenology metrics, making it difficult to compare
them and determine the most applicable method for a specific use [73]. Therefore, we have
chosen the traditional phenology metrics where the beginning, full development, and end
of phenophases are recognized according to the percentage of the plant parts developed
or fallen. This method proved to be fruitful as flowering and fruiting phenophases differ
significantly from leafing phenophase and are clearly distinct from it (p < 0.01) for both VIs
(NDVI and NDRE) even though the leafing phase includes the drop in values in spring due
to leaf miner attack.

Physical models have an explicit mechanism that can simulate the phenological stages
based on the individual plants [74,75]. This is especially important for filling in the scale
gap that exists between plant and pixel. Still, satellites are the only tool for continuous and
objective monitoring of Earth dynamics at all scales [76,77], and therefore overbridging the
differences between the data from different sensors stays in the focus of current research. In
addition, combined methods that incorporate remote sensing data and physical/empirical
models offer great potential for improving vegetation phenology detection at larger scales.

Our work emphasizes the joint analyses of observation from multiple sources and multi-
ple scales to bridge the relationship between remotely sensed phenology products and plant
physiological processes, and improves our understanding of how the phenological transitions
can be reflected from the pixel level. The spectral signal observed by sensors carried on
satellites resolves the problem recognized by several researchers before [78–80]. Furthermore,
the number of ground-based observations is insufficient, especially in underdeveloped and
developing countries such as Serbia, that lack traditional phenological observing networks.
In this regard, this research aims to remove discrepancies and integrate data into a broader
phenological network.

Bridging the spatial mismatch between field and satellite data of different vegetation
indices and different viewing angles of the observations was detected as another source
of drawbacks of remote sensing techniques [76,81]. Satellites and near-surface sensors
(except for the UAV) differ in the view angle and, as a result, near-surface sensors receive a
higher contribution from the understory vegetation and a smaller contribution from the
canopy top [76,77,81,82]. Despite the above, our results from satellite-based observations
and the hyperspectral camera positioned lateral to poplar trees correlated well and had
the same trends. The experiment was set so that the targeted tree was fully covering the
field of view of the hyperspectral camera on one hand and corresponded to the pixels
of the Sentinel images on the other hand. This method of monitoring shows that this
issue might be resolved by proper setup and ground-truth data collection. Other research
also showed that novel, low-cost remote sensing technologies based on individual tree
analysis and calibrated remote sensing imagery offer great potential for affordable and
timely assessments of the health condition of vulnerable urban forests [14]. The creation
of a more effective and consistent method for monitoring urban forests’ phenological and
physiological changes will allow adequate calibration of remote-sensed data. Resolving
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these issues and developing novel methods of calibration by ground-truth data can help
integrate remote sensing techniques in forest management and the detection of insect
disturbances might be included in ecosystem models [30]. Furthermore, researchers show
that using in situ measurements of vegetative indices for calibration of satellite images could
be improved by multilayer canopy measurements for better interpretation of the results as
phenology differs between the lower, middle, and upper layer of the tree crown [18,22,59],
thus we compared lateral and zenith imaging.

Satellite observations are based on the signal collected from the whole canopy while
field observations are related to individual trees. These discrepancies create uncertainty in
the measurements [34,83–85] that can be treated by the choice of the same optical principles
for both sensors [84,86]. Even though the correlations between the VI values of both sensors
were high, they were further improved with the choice of the same wavelengths for the
calculation of the vegetation indices. Even using the wavelengths in a similar range when
the exact ones are not available improves the correlation between sensors and thus allows
using different platforms to improve the time resolution of remote sensing data.

Springtime is characterized by a large number of cloudy days. It is also the time
of the leaf miner occurrence. This limits the usage of satellite images for monitoring
vegetative activities as the imaging is rare and may miss part of the season or the entire
phenophase. From satellite images, NDVI and EVI were calculated. Although the EVI
takes into account atmospheric and background properties to isolate the canopy signal, the
results show that there are mostly no significant correlations with phenological changes
in poplars. EVI also shows a tendency to grow during the season, but it is characterized
by low values at the beginning of the season and occasionally an unexpected decline
during the phenophase of leafing. Non-parametric tests show that this index cannot be
used to detect phenophases of leafing and leaf miner attack. Other studies also indicate
problems with large variations in the EVI during the season and between seasons, as well as
inconsistencies in different environmental conditions [87,88]. Sims et al. [89] found that EVI
has substantial variation in sensitivity across seasons and years and other researchers even
found random variations in EVI values among months [84]. These intra-annual fluctuations
are expected to change throughout the season [90]. Therefore, NDVI outperformed EVI
in the detection of phenophases. The NDVI has large oscillations at the beginning of the
vegetation season. Apart from the low temporal resolution, these oscillations contributed
to the inability of satellite images to detect the beginning of the leaf miner attack. It was
only after the defoliation started that the images showed a clear decrease in the values of
the indices. As the early detection of disease is especially important for the prevention
of the spread of the disease, we further tested hyperspectral imaging for calibration and
fulfillment of the satellite imaging time series. The inconsistencies among seasons might
be due to cloudy weather and the time of the leaf miner occurrence. With the denser time
series at the beginning of the season, the chances of satellite data to detect phenological
shifts improve significantly.

Differences between pest types evidently dictate the spectral properties and choice
of sensors. According to previous research [30], defoliation of broadleaved and conifer-
ous trees has been detected predominantly using a single spectral index (82% and 50%,
respectively). For broadleaved species, NDVI was used in almost half of the studies. The
NDVI is one of the most used indices in biological disciplines for vegetation monitoring.
The great advantage of this index is that the response in the red and near-infrared part of
the spectrum used for its calculation can be registered using a large number of cameras
and from different platforms. To monitor the phenology and physiology of plants, various
methods and devices were used to obtain the best index and way of monitoring vegetation.
NDVI remains the most popular and has been widely used to discriminate healthy from
senescent foliage in forest stands affected by insects’ attack [15,29,91–93]. For this reason,
we compared sensors starting from the calculation of the NDVI values.

The hyperspectral camera was used for the creation of dense reference data points
during the vegetation seasons of 2018 to 2020. The high positive correlations of NDVI values
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obtained by satellite imaging and hyperspectral camera imaging are highly significant and
show that the methods can be used simultaneously and those proximal measurements can
compensate for the lack of satellite measurements during cloudy days. The data obtained
using these methods show the same trend, although the values of the NDVI recorded by the
hyperspectral camera are consistently lower. This may be due to the technical properties of
the sensor. This is especially visible on cloudy days or days with precipitation when, due
to the atmosphere, the NDVI values from sensors were sometimes low. The correlation
is slightly better when cloudy days are excluded and values obtained exclusively during
sunny days are used. Therefore, spectral signature is recognized from both satellite and
hyperspectral images and can be used to detect variations caused by vegetative changes
in poplars. It should thus result in a higher chance of obtaining a cloud-free observation
during the short period of leaf miner attack.

Vegetation indices NDVI and NDRE were calculated from 16 different wavelengths
belonging to the corresponding part of the spectrum. Every index has a differently shaped
histogram, tending in the case of NDVI to higher values, and for the NDRE to lower values.
This is in accordance with the previous studies [42] where NDVI values were similarly
higher and less sensitive to vegetative changes. In previous research, many alternatives to
NDVI were tested, each citing a different basis for better performance. Some authors [94]
suggested RENDVI due to being more sensitive to changes in chlorophyll and, thus, better
for the detection of early stress. For certain physiological characteristics of plants, NDRE has
been shown to be a better indicator than the NDVI [95–101]. The differences in calculation
among the indices are apparent after their application to the study area. There were no
statistically significant differences between the mean and the median values of these indices
in our study (p < 0.05). However, similarly to previous research [102,103], the NDVI had
large value oscillations at the beginning of the season unlike NDRE. These oscillations
also occur when the camera is in the zenith position and during lateral shooting of the
plants. Following the phenology during the whole season in all layers of the tree crown
separately gives additional information on the variations of the vegetative indices within
one individual tree.

The oscillations have been observed in other studies in agricultural crops at the be-
ginning of their season and even later in the spring, so the oscillations are not conditioned
by weather but by physiological processes in the plant [104]. NDVI values varied during
the season due to different causes. Serbia’s air is extremely polluted so global dimming
might cause changes in the NDVI [105]. Likewise, some oscillations are expected due to
diurnal warming [106], human-associated activities [107], and an increase in CO2 fertiliza-
tion [108,109]. Medium and coarse spatial resolution sensors were most frequently used
for mapping broadleaved defoliation, and researchers still found intra-annual time series
analysis to be of crucial importance when studying these data sets [110,111]. Despite these
issues, our study suggests that the median NDVI can be used to record the difference be-
tween leafing phenophase and the leaf miner attack although at a low level of significance,
while mean NDVI values cannot be used to identify it except for the extreme cases such
as defoliation. The medians exclude pixels that might be extreme and belong to the back-
ground, thus further eliminating the possibility of error. This is especially important in the
spring when, due to bare branches, the background covers a large area of the image. Even
though NDVI values showed a significant decrease only during the strong insect outbreak,
their intra-annual variation could be further evaluated using different image processing
or noise reduction methods to improve its performance for the years when the outbreak
was weaker. Oscillations in the VI time series are expected and common. This further
hampers the possibility to detect forest pests. Gartner et al. (Figure 3 in their paper) [28]
illustrate the occurrence of the resprout in the same year after the insect disturbance. The
overlapping period of the leaf development and the feeding of the leaf miner on the very
same leaves create variability in the timeline where we can see the increase in VI values
along with the appearance of the leaf miner. Only after the extensive damage is the drop in
VI visible in the timeline. Gartner et al. also suggested that the distinction between trees
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under disturbances and healthy trees is the best at the end of the first foliation and at the
peak of the caterpillar feeding. Therefore, it is expected to see a decrease in vegetation
indices only at the end of the leaf miner phenophase. Not until a string of days with low VI
values is visible can we conclude the indications of disturbance in the plant.

The occurrence of hyperspectral cameras allowed the analysis of the “red edge” zone,
to detect subtle changes in plant health, as occurs in the early stages of insect damage [112].
NDRE was the best-performing index in our study, it was the most sensitive and susceptible
to subtle changes in vegetative activities. NDRE was superior, having lower intra-annual
variations, although it showed slightly lower values compared to NDVI and EVI. The
reason for this may be the technical properties of the camera which has a higher sensitivity
in the red edge part of the spectrum (specified in the technical description of the camera)
which is used to calculate the NDRE index and thus has higher accuracy in its measurement.
Since the recording was performed at the same time every day, the differences in NDRE
values from day to day indicate a seasonal change in physiological processes in plants. This
confirms the statements by previous researchers [113] and observations by others [114]
concerning the use of red edge and NIR reflectance as an indicator of forest health. In our
study, the Wilcoxon signed rank test shows that the NDRE index is best for the detection of
leaf miner attack in poplars. This is in line with the literature that cites NDRE as the best
index for monitoring physiological processes in different species [95–101].

Possibilities of correlation of other indices obtained from different methods of poplar
monitoring were considered. Comparison of NDRE indices obtained by the hyperspectral
camera and satellite imaging was not possible due to different imaging resolutions. The
resolution of satellite images in the red edge part of the spectrum is 20 × 20 m, which
is too coarse for the single tree phenology observations and analysis. The EVI cannot be
calculated from images from a hyperspectral camera because the camera does not register
the blue part of the spectrum that is used for its calculation.

There are several issues to take into account when attributing the drop in VI to its cause.
The end-of-season metric can be misidentified during an extended period of cloudiness,
instead of corresponding to actual senescence [73]. Furthermore, challenges in leaf miner
detection in broadleaved species are the differences in spectral responses between forest
discoloration and insect defoliation [15,16]. Researchers [115] explain that the end of the
leafing phenophase may also be mistaken for disease, water stress, or N stress. To be sure
of the cause of changes in the indices, we combined multiple indices, multiple sensors, and
multiple data sources to quantitatively describe annual patterns of vegetation phenology
as an alternative as several previous studies suggested [116–118].

There is an increased need for forest monitoring at a finer spatial and temporal level
and remote sensing is expected to fulfill these requirements [119]. Remote sensing of urban
forests’ defoliators could also allow retrospective analyses and predictive modeling in forest
monitoring. Using a hyperspectral camera fills in the gaps of the satellite imagining and,
therefore, allows the creation of time series dense enough to determine if the changes in VI
are significant (eliminate the noise in signal), but only a few studies have used hyperspectral
sensors to monitor defoliation in broadleaved forests [120,121]. As satellites might be used
only on cloud-free days, using a hyperspectral camera significantly increases the density
of the time series. In our research only ~30% of Sentinel-2 images were usable. Due to
the ability of broadleaved trees to resprout in the same year after defoliation, a denser
time series is of utter importance for the detection of defoliators [27–29]. This provides
the possibility to detect the short period of maximum defoliation. The problem of reduced
image availability reflects differently on phenophase detection depending on the period of
the vegetation cycle [122]. Further improvement may move in the direction of better spatial
resolution. Due to the aforementioned, we used a Ximea hyperspectral camera which is
advanced in both spatial and temporal resolution compared to Sentinel-2.

Some studies even suggest that forest defoliation should be species- and region-
specific, testing different sensors and combining different techniques for the best results.
Therefore, we focused on an urban forest constructed solely of two poplar species. As
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their spectral signature stayed the same throughout 3 years of observations (p < 0.05), it
provided the basis for the analysis of the deviations from the time series and relation to
defoliator outbreaks. The trends stayed the same as well, allowing us to relate oscillations
during the leafing phenophase in April and May with its cause. Unlike in 2019 and 2020,
in 2018 the values of vegetation indices decrease in the period after leaf miner attacks,
reaching a minimum during the partial defoliation. This led to the exploration of whether
the degree of leaf miner attack can be detected by remote sensing techniques. In the year
2018, by the end of May, the leaves resprouted, after which the values of vegetation indices
grew and remained stable and on average the highest in the season. Out of two species of
poplar, only the black poplar was attacked by the pest Fenusella hortulana (Klug, 1818), and
the significant decline in the value of the indices during the attack of this leaf miner was
clearly visible (p < 0.05). The indices of the Canadian poplar, which was not attacked by
leaf miners, indicated stable values.

The difference in the intensity of the Fenusella hortulana (Klug, 1818) outbreaks over
the years allows us to differentiate between defoliation and discoloration. This can be seen
through the stronger difference in vegetation indices’ values in 2018 when the defoliation
occurred (decrease was more significant p < 0.01), unlike other years when the difference
was visible but less significant and visible only in some of the VIs (NDRE p < 0.05). During
the early stages of defoliation (when the worms are feeding on the tree), there are no visible
signs of leaf miners’ presence [123], whereas our images by the hyperspectral camera and
satellite could already see the drop in the values of vegetative indices. The detection is
characterized by the string of days with significantly lower values of the indices (mean
values of NDVI and NDRE drop by 0.12–0.15 during the leaf miner attack compared to the
average values in leafing phenophase). Although the reflectance of the vegetation among
various sensors had the same trends, slight differences may still occur due to different view
angles, illumination, and canopy density [95].

The problem of low spatial resolution has been addressed before in studies using
Landsat intra-annual spectral variability [111] or fused products of varying sensors [28].
With the launching of the new Sentinel-2 satellite, image resolution is improved to 10 m
for NDVI and 20 m for NDRE. Different resolution sensors can also be combined into
one data set to increase the time series density [124]. Calibrating Sentinel-2 images with
ground-truth data could be further used for historical data from Landsat and other sensors
in order to provide long-term NDVI measurements. Sentinel-2 high spatial resolution
imagery can thus significantly improve the creation of high-quality reference data sets for
calibrating remote sensing models for detecting phenology and insect disturbances.

Similarly to other research, the results of this study clearly show that the collection of
hyperspectral imagery provides a useful method to detect and monitor phenology and the
symptoms resulting from forest defoliators’ outbreaks. It further compares the accuracy of
models created from high-resolution satellite imagery with those from the hyperspectral
camera in the detection of physiological stress resulting from leaf miner outbreaks. This
use of digital monitoring of vegetative activities has a wide application in a large number
of disciplines (biology, forestry, medicine, plant protection, etc.) and the greatest benefits
are economic profitability, impartiality, and accuracy in measurement as well as coverage
of large areas.

Finally, real-time monitoring and short-term phenology prediction remain challenging.
Short-term forecasting refers to the prediction before the occurrence of a phenological
event, and real-time monitoring refers to the detection of a phenological occurrence as it
occurs [19,73,125]. Our methodology failed to predict the occurrence of the leaf miner in
advance but successfully determined its presence even when it caused different degrees of
damage to trees.

5. Conclusions

The research created the basis for enabling the calibration of data collected by remote
sensing (satellite images, hyperspectral images, and phenological observations) to iden-
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tify phenological phenomena of plants including the beginning, course, and end of the
vegetation phenophases and the leaf miner attack and its intensity.

The limitations of vegetation monitoring by satellite imagery are reflected in the limited
number of vegetation indices that can be calculated (NDVI, EVI) as well as the problem of
the influence of atmospheric phenomena and low time resolution. A hyperspectral camera
can be used for overcoming these issues and integration of satellite imaging in the detection
of defoliator outbreaks. The methodology is further improved when coordinating different
sources and platforms using the same wavelengths. Once improved, these calibrated data
can be used in combining different sensors and creation of prolonged time series, i.e., using
Landsat data.

Targeting specific insect outbreaks determines the resolution and vegetation index.
Choosing proper indices proved to be of utter importance for the detection of the VI
changes and their causes in the vegetative activities of poplars. NDRE has the advantage
of differentiating the vegetative changes due to leaf miner attack at the beginning of the
outbreak as it is more sensitive than the NDVI and EVI. Thus, it was determined that these
methods can also be used for remote detection and early detection of the disease.

The hyperspectral camera can thus be used for timely registration of the defoliators
and detection of the potential severity of their hosts’ damage. The angle of the imaging
seemed to be unrelated to the values in VI as long as the field of view covered the same
target. The high correlation between in situ measurements and remote sensing indicates the
possibility of using ground-truth data for the calibration of the remote sensing monitoring
of urban forests. Furthermore, this method can be applied in agricultural crops, ornamental
species, etc. as it registers the physiological processes present in all plants.

We find that remote sensing methods have the advantage of offering broad-scale
automated and repeatable methods for monitoring indicators of vegetation condition and,
combined with detailed ecological site-based data, can improve urban forest management
for further exploring ecological questions across a range of scales.
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