

Open access · Journal Article · DOI:10.1111/J.1365-2486.2009.01908.X

Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) — Source link 🖸

Alexander Damm, Jan Elbers, André Erler, Beniamino Gioli ...+13 more authors

Institutions: Humboldt University of Berlin, Forschungszentrum Jülich, University of Milan, University of Valencia ...+1 more institutions

Published on: 01 Jan 2010 - Global Change Biology (Wiley-Blackwell)

Related papers:

- · Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications
- New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross
 primary productivity
- · Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
- · First observations of global and seasonal terrestrial chlorophyll fluorescence from space
- · Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch

Year: 2010

Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)

Damm, A; Erler, A; Gioli, B; Hamdi, K; Hutjes, R; Kosvancova, M; Meroni, M; Miglietta, F; Moersch, A; Moreno, J; Schickling, A; Sonnenschein, R; Udelhoven, T; van der Linden, S; van der Tol, C; Hostert, P; Rascher, U

Damm, A; Erler, A; Gioli, B; Hamdi, K; Hutjes, R; Kosvancova, M; Meroni, M; Miglietta, F; Moersch, A; Moreno, J; Schickling, A; Sonnenschein, R; Udelhoven, T; van der Linden, S; van der Tol, C; Hostert, P; Rascher, U (2010). Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16(1):171-186. Postprint available at: http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch

Originally published at: Global Change Biology 2010, 16(1):171-186.

- 1 This is the pre-peer review version of the following article:
- 2 DAMM, A., ELBERS, J., ERLER, A., GIOLI, B., HAMDI, K., HUTJES, R.,
- 3 KOSVANCOVA, M., MERONI, M., MIGLIETTA, F., MOERSCH, A., MORENO, J.,
- 4 SCHICKLING, A., SONNENSCHEIN, R., UDELHOVEN, T., VAN DER LINDEN, S.,
- 5 HOSTERT, P. & RASCHER, U. (2009): Remote sensing of sun induced fluorescence to
- 6 improve modelling of diurnal courses of Gross Primary Production (GPP). Global Change
- 7 Biology, doi: 10.1111/j.1365-2486.2009.01908.x.

8 **Remote Sensing of sun induced fluorescence to improve modelling of diurnal**

9 COURSES OF GROSS PRIMARY PRODUCTION (GPP)

10 Alexander Damm¹, Jan Elbers², André Erler³, Beniamino Gioli⁴, Karim Hamdi³, Ronald

11 Hutjes², Martina Kosvancova⁵, Michele Meroni⁶, Franco Miglietta⁴, André Moersch³, Jose

- 12 Moreno⁷, Anke Schickling⁸, Ruth Sonnenschein¹, Thomas Udelhoven⁹, Sebastian van der
- 13 Linden¹, Patrick Hostert¹, Uwe Rascher³
- ¹Geomatics Lab, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
 Germany
- ²Alterra, Duivendaal 2, 6701 AP Wageningen, The Netherlands
- 17 ³Institute of Chemistry and Dynamics of the Geosphere, ICG-3: Phytosphere,
- 18 Forschungszentrum Jülich, Stetternicher Forst, 52425 Jülich, Germany
- ⁴IBIMET-CNR, Istituto di Biometeorologia, Consiglio Nazionale delle Ricerche, Via G.
- 20 Caproni 8, 50145 Firenze, Italy
- ⁵Laboratory of Plants Ecological Physiology, Division of Ecosystem Processes, Institute of
- 22 Systems Biology and Ecology, Poříčí 3b, 60300 Brno, Czech Republic
- ²³ ⁶Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milan-Bicocca,
- 24 Piazza della Scienza 1, 20126 Milano, Italy
- ²⁵ ⁷Department of Earth Physics and Thermodynamics, University of Valencia, Dr Moliner, 50,
- 26 46100 Burjassot Valencia, Spain
- ²⁷ ⁸Institute for Geophysics and Meteorology, University of Cologne, Kerpener Str. 13, 50937
- 28 Cologne, Germany
- 29 ⁹CRP-Gabriel Lippmann, Département 'Environnement et Agro-biotechnologies', Geomatic
- 30 Platform, 41, rue du Brill, 4422 Belvaux, Luxembourg
- 31
- 32 *Corresponding author: alexander.damm@geo.uzh.ch; phone +41 (0) 44 635 5251
- 33

34 Abstract

35 Terrestrial gross primary production (GPP) is an important parameter to explore and quantify 36 carbon fixation by plant ecosystems at various scales. Remote sensing offers a unique 37 possibility to investigate GPP in a spatially explicit fashion; however, budgeting of terrestrial 38 carbon cycles based on this approach still remains uncertain. To improve calculations, spatio-39 temporal variability of GPP must be investigated in more detail on local and regional scales. 40 The overarching goal of this study is to enhance our knowledge on how environmentally 41 induced changes of photosynthetic light use efficiency (LUE) are linked with optical remote 42 sensing parameters. Diurnal courses of sun-induced fluorescence yield (FS_{vield}) and the Photochemical Reflectance Index (PRI) of corn were derived from high resolution 43 44 spectrometric measurements and their potential as proxies for LUE was investigated. GPP 45 was modeled using Monteith's LUE-concept and optical based GPP and LUE values were 46 compared to synoptically acquired eddy covariance data. It is shown that the diurnal response 47 of complex physiological regulation of photosynthesis can be tracked reliably with the sun-48 induced fluorescence. Considering structural and physiological effects, this research shows 49 for the first time that including sun-induced fluorescence into modeling approaches improves 50 their results in predicting diurnal courses of GPP. Our results support the hypothesis that air 51 or spaceborn quantification of sun-induced fluorescence yield may become a powerful tool to 52 better understand spatio-temporal variations of fluorescence yield, photosynthetic efficiency 53 and plant stress on a global scale.

54

55 Keywords

GPP, sun-induced fluorescence, fluorescence yield, PRI, eddy covariance, diurnal carbon
uptake, LUE, remote sensing, spectroscopy

59 List of abbreviations

Acronym	Abbreviation	Unit
A _{max}	maximum assimilation rate of CO ₂	μ mol CO ₂ m ⁻² s ⁻¹
APAR	absorbed photosynthetic active radiation	μ mol m ⁻² s ⁻¹
CEFLES2	joint ESA campaign for the projects CarboEurope,	
	Fluorescence Explorer, Sentinel2	
Chl-F	chlorophyll fluorescence	
CO_2	carbon dioxide	
EC	eddy covariance	
ESA	European Space Agency	
ETR	photosynthetic electron transport rate	μ mol m ⁻² s ⁻¹
ETR _{PAM}	electron transport rate measured with PAM fluorometer	μ mol m ⁻² s ⁻¹
fAPAR	fraction of absorbed photosynthetic active radiation	%
FLD	Fraunhofer line discrimination	
F _T	terminal fluorescence measured with PAM fluorometer	a.u.
Fo	minimum fluorescence measured with PAM fluorometer	a.u.
F _M ,	maximum fluorescence of light adapted leaf measured	a.u.
- 101	with PAM fluorometer	
F _M	maximum fluorescence of dark adapted leaf measured	a.u.
	with PAM fluorometer	
F_v	variable fluorescence of dark adapted leaf measured with	a.u.
	PAM fluorometer	
F_v/F_M	maximum quantum yield of PSII of dark adapted leaf	a.u.
FOV	field of view	
Fs	sun-induced fluorescence measured with spectrometer	µmol m ⁻² s ⁻¹
F _{Syield}	fluorescence yield measured with spectrometer	a.u.
G	ground heat flux	W/m ²
Gs	stomatal conductance	mol $H_2O m^{-2} s^{-1}$
GPP	gross primary production	µmol m ⁻² s ⁻¹
GPP _{EDDY}	gross primary production measured with eddy flux tower	μ mol m ⁻² s ⁻¹
GPP _{PRI}	gross primary production modeled with PRI	μ mol m ⁻² s ⁻¹
GPP _{FS}	gross primary production modeled with sun induced	μ mol m ⁻² s ⁻¹
- 15	fluorescence	
GPP _{Fsyield}	gross primary production modeled with fluorescence yield	μ mol m ⁻² s ⁻¹
GPP _{const}	gross primary production modeled with a constant LUE	μ mol m ⁻² s ⁻¹
Н	sensible heat flux	W m ⁻²
H ₂ O	water	
JCO ₂	leaf-level CO ₂ assimilation rate measured using the clip-	μ mol m ⁻² s ⁻¹
0002	on LICOR gas-exchange analyzer	p
LAD	leaf angle distribution	
LAI	leaf area index	$m^2 m^{-2}$
LE	latent heat flux	W m ⁻²
LED	light emitting diode	
LUE	light use efficiency	mol CO ₂ mol ⁻¹ photons
LUE _{EDDY}	light use efficiency derived from eddy flux data	$mol CO_2 mol^{-1} photons$
LUELICOR	light use efficiency derived with LICOR gas-exchange	mol CO_2 mol ⁻¹ photons
LICOK	analyzer	mor e e ₂ mor protono
LUE _{PAM}	actual quantum efficiency or quantum yield of PS II measured with PAM fluorometer	
NEE	net ecosystem exchange	μ mol m ⁻² s ⁻¹
NPQ	non photochemical quenching	miii01 iii 5
O_2	oxygen	
O ₂ PPFD	photosynthetic photon flux density	μ mol m ⁻² s ⁻¹
PRI	Photochemical Reflectance Index	µmorm s
		μ mol m ⁻² s ⁻¹
R _{eco}	ecosystem respiration rate	µmor m - s

PS I	photosystem I	
PS II	photosystem II	
RMSE	root mean square error	
Rn	net radiation	W m ⁻²
RS	Remote sensing	
u*	friction velocity	m s ⁻¹
VPD	vapor pressure deficit	kPa

60 1 Introduction

61 Up to 90% of the gas exchange between the terrestrial bio-geosphere and the atmosphere is 62 mediated by plants (Ozanne et al. 2003). Thereby, approximately 60 Gt of carbon are 63 annually absorbed through plant photosynthesis (Janzen 2004). Slight alterations within the 64 terrestrial carbon balance can have significant impact on atmospheric carbon dioxide (CO₂) 65 concentrations (Hilker et al. 2008b). In consequence, much effort in bio-geoscience research 66 has been put in improving the understanding of CO₂ fluxes at different temporal and spatial 67 scales (Baldocchi 2003, Cohen et al. 2003, Turner et al. 2003a). Gross Primary Production 68 (GPP) was identified as a key parameter to explore and quantify carbon fixation by plant 69 ecosystems at various scales (Field et al. 1995, Goetz & Prince 1999).

Currently, two different data-driven approaches exist to quantify variations in GPP at local or regional scales. (i) The Eddy covariance (EC) technique aims at direct measurements of CO_2 net fluxes above canopies and uses micrometeorological methods to derive CO_2 exchange associated to a spatially extended footprint. (ii) Remote sensing (RS) based approaches aim for air- and spaceborne retrieval of optical parameters that are related to photosynthetic carbon fixation.

An extensive network of EC towers was established during the last few decades. It provides CO₂ flux data from a wide range of plant ecosystems at high temporal resolution (Baldocchi et al. 2001). Recent algorithmic development allows GPP estimates with high accuracy (Goulden *et al.* 1996, Baldocchi 2003). EC towers measure carbon fluxes associated with a footprint area typically in the order of up to \sim 1 km² depending on local setup and aerodynamic properties. Thus, measurements are local and solely representative for the underlying ecosystem as a whole (Turner *et al.* 2003b, Drolet *et al.* 2008).

RS offers the unique possibility to derive spatially explicit information on local, regional or
global scales (Goetz & Prince 1999, Freedman *et al.* 2002, Hilker *et al.* 2008b). Observations

85 of GPP from remote sensing is based on a relationship between spectral reflectance and two 86 key vegetation parameters: the Absorbed Photosynthetic Active Radiation (APAR) and the 87 plant efficiency to utilize this radiation for photosynthesis (Goetz & Prince 1999). Monteith's 88 (1972, 1977) mechanistic Light Use Efficiency (LUE) concept relates the photosynthetic capacity to LUE [mol CO₂ mol photons⁻¹], defined as biomass production per unit absorbed 89 90 light. Accordingly, knowing the incident PAR, GPP can be described as a function of the 91 fraction of Absorbed Photosynthetic Active Radiation (fAPAR) and LUE (Turner et al. 92 2003a, Hilker et al. 2008b). Both parameters are highly variable and depend on phenological 93 status, canopy structure, and species composition (Field et al. 1995, Goetz & Prince 1999). 94 While fAPAR is expected to change mainly as a function of sun zenith angle and vegetation 95 cover, LUE is highly dynamic and as a result, insufficient parameterization of this quantity is 96 identified as a main source of uncertainty in modeling GPP (Turner et al. 2003b). In fact, 97 plant photosynthesis is a dynamically regulated process that quickly adapts to environmental 98 conditions and is affected by the ecological plasticity of each species (Turner *et al.* 2003b, 99 Rascher & Nedbal 2006). Consequently, LUE may greatly vary between different species 100 and, additionally, is dynamically adjusted in diurnal and seasonal cycles (Schurr et al. 2006). 101 The observation of GPP from space can principally be grouped into three approaches: (i) 102 methods that link optical vegetation indices to APAR with constant LUE; ii) methods that are 103 similar to the first one while LUE is related to meteorological parameters iii) approaches that 104 estimate both APAR and LUE directly from RS data. The first two groups of methods often 105 yields insufficient results, because they measure only APAR while assuming LUE to be constant or it is modeled from ancillary meteorological variables (Goetz & Prince 1999, 106 107 Grace et al. 2007). In this case, LUE is empirically related to some key meteorological 108 variables such as temperature or vapor pressure deficit, which are selected as proxies for 109 environmental stress (Field et al. 1995, Heinsch et al. 2002). Some studies show the potential 110 of these approaches to predict GPP on regional and global scale with a temporal resolution of a couple of days (Heinsch *et al.* 2002, Running *et al.* 2004, Coops *et al.* 2007). However, such
methods require frequent re-calibration, being a limiting factor for long term monitoring
(Turner et al. 2005).

114 Research has recently focused on estimating APAR and LUE directly from RS data because 115 these methods are expected to provide more realistic GPP estimates (Goetz & Prince 1999, 116 Grace et al. 2007). The peculiarity of this group of methods is that RS data are used to track 117 the complex physiological process of photosynthesis and its strong dependency on different 118 environmental conditions. The efficiency of photosynthesis is controlled on various levels, 119 e.g. for chloroplasts, cells and leaves, in response to physiological characteristics and 120 environmentally conditions (see Schulze and Caldwell (1995) for a summary on the 121 ecophysiology of photosynthesis). In the case of limited photosynthesis and an increased 122 amount of incident light, this excess energy can lead to photo-oxidative damages of the 123 photosynthetic apparatus (Demmig-Adams & Adams 1996, Baker 2008). Two processes 124 within the photosystem II (PS II) are known in dissipating the destructive energy and 125 protecting the chloroplasts from damages. Fluorescence transforms the excess energy 126 harvested at a given wavelength to emitted light at longer wavelengths (Fs). Non-127 Photochemical Quenching (NPQ) mechanisms protect the chloroplasts by degrading the 128 excess energy into heat (Demmig-Adams & Adams 1996, Baker 2008).

129 In the past years, relevant advances in sensor technology allowed to quantify LUE indirectly 130 by remotely sensing of the two dissipation pathways - NPQ and fluorescence. The 131 photochemical reflectance index (PRI) was designed to track the NPQ related xanthophyll 132 cycle at leaf level (Gamon et al. 1992, Gamon et al. 1993). This important process within 133 NPQ has a short response time to variable states of photosynthetic rates. Excessive light 134 conditions induce the de-epoxidation of violaxanthin pigments into antheraxanthin and 135 zeraxanthin - a mechanism reversible under low light conditions. The variable pigment 136 composition leads to changes of the spectral signal at 531 nm (Gamon et al. 1992). PRI has 137 been used in a variety of case studies and positively correlates with photosynthetic efficiency. 138 It has been used successfully to detect changes in photosynthetic efficiency at the leaf level 139 (see Rascher et al. (2007) for an overview of the literature). However, PRI values greatly vary 140 between species with the same photosynthetic capacity (Guo & Trotter 2004). Additionally, 141 canopy level PRI is strongly affected by viewing and illumination angles, soil background, 142 leaf orientation and leaf area (Barton & North 2001, Hilker et al. 2008b). Thus, the suitability 143 of PRI as proxy for LUE in complex canopies remains unclear. Methy (2000) did not find a 144 significant relationship of PRI and LUE at canopy level, whereas some studies have 145 demonstrated the potential of PRI as proxy for LUE (see Hall et al. (2008) for a review on the 146 subject).

147 Light energy absorbed by photosynthetic pigments is partly re-emitted as Fs, having well 148 defined spectral characteristics. Chlorophyll fluorescence (Chl-F) is emitted in two broad 149 bands with peaks at about 685 and 740 nm (Lichtenthaler & Rinderle 1988, Franck et al. 150 2002). The intensity of the fluorescence signal is in principle inversely correlated to the 151 energy used for photosynthesis and thus can serve as an indicator for photosynthetic light 152 conversion (Baker 2008). However, the inverse correlation is in many cases lost as result of 153 increased rates of NPO processes that become dominant in dissipating the excess energy 154 (Govindjee 1995) and the exact relationship between NPQ and fluorescence is hard to obtain 155 (Maxwell & Johnson 2000). Since commercial instruments for measuring fluorescence have 156 become available in the past decades, the fluorescence method has been widely used in plant 157 ecophysiological research on the level of single leaves and organs (Schreiber & Bilger 1993, 158 Schreiber et al. 1995).

In contrast to a detailed understanding on the level of single leaves, our research focused on investigating fluorescence-based methods for quantifying canopy level GPP, which requires remote analysis from above canopy. Recent studies showed that sun-induced chlorophyll fluorescence can principally be detected using passive techniques (Moya *et al.* 2004, Louis *et* *al.* 2005, Meroni & Colombo 2006) and that remotely derived fluorescence signals and
photosynthetic rates can be linked (Freedman *et al.* 2002, Louis *et al.* 2005, Meroni *et al.*2008a, Meroni *et al.* 2008b). However, the sun-induced fluorescence signal and the
relationship of fluorescence and LUE are not yet fully understood (Grace et al. 2007).

167 Operational methods solely rely on potential photosynthetic rates that were modified by 168 microclimatological variables. Compared to such methods, approaches based on direct 169 measurements of photosynthetic rates will simplify estimating GPP from remote sensing data. 170 Nevertheless, the measurement of parameters related to photosynthetic capacity with optical 171 parameters is challenging. Hence, the overarching goal of this study is to further improve our 172 understanding of LUE temporal dynamics, their linkage to environmental boundary 173 conditions and the possibility to track these dynamics with optical parameters. Fluorescence 174 yield and PRI were tested as proxies for LUE and their ability to explain short time responses 175 of photosynthetic activity to environmental stress was investigated. Diurnal courses of 176 radiometric measurements were acquired and the optical parameters *sun-induced fluorescence* 177 yield, and PRI were derived. They were then used to predict GPP based on Monteith's LUE 178 concept and compared to estimates from a local EC tower.

179

180 **2 Materials and methods**

181 **2.1 Study site**

Field data were acquired as part of the European Space Agency (ESA) supported CEFLES-2 campaign in June and September 2007 (*http://www.esa.int/esaLP/SEMQACHYX3F_ index_0.html*). The campaign was carried out in the "Les Landes" area in Southwest France. The main site is located near the commune Marmande, in a plain of the Garonne valley and dominated by intensive agriculture. Main crop types are corn (*Zea mays*), winter wheat (*Triticum vulgare*) and beans (*Phaseilus vulgaris*). An eddy flux tower (LAT/LON 44.464, 0.196, altitude 22m above sea level) was installed within a large corn field (500 x 300 m),
which was also mainly surrounded by corn fields.

The spectral database available for this research contains discontinuous time series of observations. During the first measurement period in June (1 day of measurements), corn was in the growing phase with an average plant height of 2 m. In September, when subsequent measurement periods 2 (3 days) and 3 (1 day) were undertaken, corn plants reached maximum heights of about 3.2 m and were at the beginning of the senescence phase. During both campaigns, the corn field was not irrigated.

196

197 2.2 Physiological data

198 Leaf level

Leaf-level measurements using a pulse-amplitude-modulated (PAM) fluorometer, a gas
exchange analyzer and a chlorophyll meter were taken to verify potential physiological
limitations of photosynthesis and to support interpreting canopy signals.

202 PAM fluorometry in the field

203 Chlorophyll fluorescence measurements over corn leaves exposed to ambient incident 204 photosynthetic photon flux density (PPFD) were performed with the miniaturized PAM 205 (WALZ 2008) with a leaf clip holder as described by Bilger et al. (1995). Fluorescence was 206 excited by a pulsed modulated red light from a light-emitting-diode (LED), which passes a 207 cut-off filter (λ <670 nm, Balzers DT Cyan, special). Terminal fluorescence (F_T) was 208 determined at ambient light conditions. To determine maximum fluorescence (F_M'), a saturating light pulse (800 ms, ~ 3000 μ mol m⁻² s⁻¹) was superimposed to the ambient light 209 210 conditions.

211 Measurements were performed on September 13th 2007 for six individual plants in the same 212 field, whereas two leafs per plant were measured from 9:30 h until 15:45 h. The values were 213 aggregated for one hour and 15 min time periods. Actual quantum efficiency of PS II (LUE_{PAM}) (quantum yield of PSII) was calculated according to Genty et al. (1989) as:

216
$$LUE_{PAM} = \frac{F_M' - F_T}{F_M'} = \frac{\Delta F}{F_M'}$$
(1)

217 The photosynthetic electron transport rate (ETR_{PAM}) was obtained:

218
$$ETR_{PAM} = \frac{\Delta F}{F_{M}} \bullet PPFD \bullet 0.5 \bullet 0.84$$
(2)

The use of the factor 0.5 assumes that the incident quanta were used to excite both PS II and PS I. The value 0.84 accounts for the absorption coefficient of leaves. As this factor is not exactly known for corn, we used the empirical mean absorption factor (Ehleringer 1981). PPFD of each leaf area unit was obtained with a leaf clip holder featuring an integrated microquantum sensor.

224 Maximum or potential quantum yield of PS II (F_v/F_M) was calculated according to Eq. 3.

225
$$F_{\nu}/F_{M} = \frac{(F_{M} - F_{O})}{F_{M}}$$
 (3)

F_M donates the maximum fluorescence of the dark-adapted leaf when a saturating light pulse of 800 ms duration (intensity ~ 3000 μ mol m⁻² s⁻¹) was applied.

228 Gas exchange measurements

Light response curves of CO₂ assimilation rate (JCO₂) were measured using the LED light source Li-6400-02B (LiCor, USA). The values of JCO₂ were recorded with a gas exchange system Li-6400 (LiCor, USA). The irradiances used for the light response curve were 0, 80, 250, 600, 1200 and 1800 μ mol (photons) m⁻² s⁻¹. This measuring protocol allowed the estimation of JCO₂ at a given PPFD as half-hour averages of the eddy flux measurements. Measurements were performed on September 12th 2007 from 7:30 h until 17:30 h on four individual plants. The CO₂/H₂O fluxes were measured as an integral signal from the central

parts of the leaves (investigated area 6 cm²) on the 4th leaves from the top. The leaves were

237 kept inside the assimilation chamber under constant CO₂ concentration (380±5 μmol (CO₂)

238 mol⁻¹), air humidity and leaf temperature (outdoor ambient) during the measurement. Air flow

rate through the assimilation chamber was maintained at 500 μ mol s⁻¹.

240 LUE_{LICOR} was derived as the ratio of JCO₂ and PPFD given as a half-hour average from the

eddy flux measurements.

242 Chlorophyll content

The leaf chlorophyll content was measured with the Chlorophyll Meter SPAD-502 (Spectrum Technologies Inc., USA). The relative measurements of the SPAD device were calibrated using laboratory chlorophyll extractions. For this purpose, leaf disks were cut with a standardized cork borer, placed in plastic tubes and stored in liquid-nitrogen. The chlorophyll content of the leaf samples was extracted in the laboratory using the method after Lichtenthaler (1987).

249

250 Canopy Level

251 Net ecosystem exchange (NEE) was measured half-hourly (EC tower) from April until 252 September 2007 together with friction velocity (u^*) , energy fluxes and fluxes of trace species. 253 Sensible heat flux (H), latent heat flux (LE), and ground heat flux (G) were measured to 254 calculate the surface energy balance expressed as the distribution of net radiation (Rn). 255 Standard equipment included a 3D sonic anemometer, an infrared gas analyzer measuring 256 CO_2 and gaseous H₂O mass densities at high frequency, a slow response infrared gas analyzer 257 measuring vertical CO₂ concentration profiles at 5 levels up to 20m, a soil heat flux plate, and 258 global and net radiation sensors. u*, H, LE and NEE were calculated using the eddy 259 covariance technique, following the standardized protocol for instrument setup and data 260 processing by Aubinet et al. (2000), including density corrections for open path gas analyzers 261 (Webb et al. 1980).

Raw flux data required additional pre-processing for reliable subsequent analyses (Goulden etal. 1996). Three pre-processing steps were performed using a set of algorithms provided by

the CarboEurope network (CarboEurope 2008) and described elsewhere (Papale & Valentini 265 2003, Reichstein *et al.* 2005). Since EC measures the NEE (i.e. the sum of CO_2 fixed by 266 plants, GPP, and ecosystem respiration rate, (R_{eco})), the integrated flux signal was partitioned 267 to derive GPP. For this purpose, night-time NEE measurements were used to relate R_{eco} to soil 268 temperature. Day time R_{eco} was obtained with the established relationship and subtracted from 269 the daytime NEE values.

Finally, the pre-processed data were smoothed using a 1.5 h moving window filter to reduce data inherent noise (Reichstein *et al.* 2002, Eiden *et al.* 2007). Besides GPP, light use efficiency (LUE_{EDDY}) was calculated as second reference parameter from the EC-data. LUE_{EDDY} was derived as ratio of GPP_{EDDY} and PPFD according to Wofsy et al. (1993).

274

275 2.3 Remotely sensed data and optical parameters

A FieldSpec Pro III high resolution spectroradiometer (Analytical Spectral Devices, Boulder, USA) (ASD 2002) was installed at 30 m distance to the eddy flux tower to measure diurnal cycles of canopy radiometric response. It registers reflected radiation within the spectral domain of 350-2500 nm with a nominal bandwidth of 1.4 nm (350-1050 nm) and a field-ofview (FOV) of 25°. A calibrated SpectralonTM panel (0.25 x 0.25 m) was used for calibration of the instrument and to measure incident irradiance.

The instrument's fiber optic was mounted on a robotic arm of 0.6 m length, approximately 1 m above the canopy. Moving the robotic arm allowed an automatic collection of daily cycles of spectral reflectance at four different locations, each of which was 0.5 m in diameter (Fig 1). The acquired dataset consists of spectral records from four canopy areas, bracketed by measurements of the reference panel. At each position, 10 single spectra were recorded and each spectrum was averaged from 25 individual measurements. Integration time was automatically optimized during the day in order to maximize the signal-to-noise ratio.

figure 1

291

Five diurnal courses were acquired during the campaign that covers two different phenological periods, June and September 2008 (Table 1). Measurements acquired in September were collected in two different locations of the same field and therefore they were divided into two datasets and treated separately. Hence, period one corresponds to a single day course in June. Period two consists of three diurnal courses from the 5th to 7th of September. Period three corresponds to measurements from the 12th September at a different position in the same field.

299

300 table 1

301

302 The Photochemical Reflectance Index was introduced by Gamon et al. (1992) to track the 303 epoxidation state of the xanthophyll pigments. The index is based on two wavelengths in the 304 visible spectral domain. The spectral reflectance at 531 nm (R_{531}) is sensitive for pigment 305 variation associated to NPQ while the reflectance at 570 nm (R_{570}) is used as reference. The 306 PRI was derived as:

$$307 \qquad PRI = \frac{R_{531} - R_{570}}{R_{531} + R_{570}} \tag{4}$$

308 Reflectance values were calculated using the SpectralonTM reference measurements.

The amount of sun-induced chlorophyll fluorescence (F_s) emitted by a sunlit leaf is only 1-5% of the total reflected light at a certain wavelength, which complicates quantifying the fluorescence signal from RS observations. However, the solar light is absorbed in the solar or earth atmosphere at the so called *Fraunhofer lines* and no or strongly reduced incoming radiation reaches the Earth surface. Fluorescence originated in the canopy also occurs in the otherwise 'black' absorption bands and, therefore, can be selectively quantified. Solar

315 irradiance at ground level exhibits three main absorption bands in the red and near infrared 316 spectral domain: the H_{α} line at 656.3 nm is due to the hydrogen absorption by the solar 317 atmosphere whereas two bands at 687 nm (O_2 -B) and 760 nm (O_2 -A) are due to the molecular 318 oxygen absorption by the terrestrial atmosphere. Especially the O₂-A and -B bands overlap 319 with the chlorophyll fluorescence emission spectrum and are wide enough to allow 320 quantifying fluorescence from air- and spaceborne platforms. The Fraunhofer Line 321 Discrimination method (FLD) has been proposed for this purpose (Plascyk 1975) and was 322 used with success in different works (Carter et al. 1990, Moya et al. 2004).

In this study, we used the O₂-A band, which is the widest of the three absorption bands (deepest absorption at 760 nm, < 2 nm bandwidth; max bandwidth affected by O₂ absorption ~12 nm), to quantify fluorescence according the modified FLD method proposed by Maier et al. (2003). This approach assumes that F_s is additive to the reflected signal and can be derived by comparing the depth of the oxygen absorption band at 760 nm from a non-fluorescent surface with that of the fluorescent vegetation target according to Eq. 5,

329
$$F_{s} = \frac{L_{1} - \frac{E_{1}}{E_{2}} \bullet L_{2}}{1 - \frac{E_{1}}{E_{2}}}$$
(5)

where E is the radiance up-welling from the non fluorescent target, L is the radiance of vegetation, and the subscripts 1 and 2 indicating the wavelengths within and outside of the absorption line, respectively. We employed the band at 760 nm for E_1 and L_1 and an average of the spectral bands at 745-755 nm and 770-785 nm for E_2 and L_2 .

Besides responding to photosynthetic status, fluorescence is also driven by the absolute magnitude of the incident irradiance. Hence, it is necessary to normalize the estimated F_s signal to get a fluorescence yield independent of the light level. This can be achieved by dividing the number of photons emitted (F_s) and the number of photons absorbed by the plants (APAR). The resulting signal is termed fluorescence quantum yield (F_{syield}) (Govindjee 2004) and can be related to the photosynthetic efficiency (Louis et al. 2005) and was obtainedaccording Eq. 6:

$$341 F_{syield} = \frac{F_s}{APAR} (6)$$

342

343 **2.4 GPP modeling**

For modeling GPP based on RS data, we used the concept introduced by Monteith (1972,
1977). According to Eq. 7, GPP is a function of APAR and LUE.

$$346 \qquad GPP = APAR \bullet LUE \tag{7}$$

APAR was obtained from the radiometric measurements as integrated difference between the incident and reflected radiance in the spectral region from 400 to 700 nm (Zhanqing & Moreau 1995), thus neglecting the absorption of the background (i.e. dry and bright bare soil). LUE was empirically modeled on the basis of the optical parameters F_{Syield} and *PRI* to investigate their potential to track physiological variations in the photosynthetic apparatus that determine LUE.

353 The measured radiometric signal is a function of biochemical, structural and 354 viewing/illumination parameters (Goel 1989). All these factors have to be considered in order 355 to establish a relationship between the optical parameters and LUE. We used a simple 356 approach to account for structural changes in the canopy during the growing season. This 357 approach consists of performing an empirical analysis period by period along the vegetation 358 cycle in a way that it is reasonable to assume that no major structural changes occur within a 359 given period. Therefore, for each of the three measurement periods, a linear transfer function 360 was established between the optical parameter and the LUE derived from the eddy flux data 361 $(LUE_{EDDY}).$

362 Validation of the modeled GPP was performed exploiting measured GPP values from EC
 363 (GPP_{EDDY}). The footprint of the tower depends on various environmental and surface

364 conditions as well as the instrumental setup (height of the tower) and can range between a few 365 hectares to a few square-kilometers (Schmid & Lloyd 1999). The area to which the flux 366 measurements are most sensitive, the so called *footprint peak*, is smaller and typically extends 367 up-wind the measurement point for a distance of few hundred meters (Kljun et al. 2004). The 368 results from an analytical footprint model (Hsieh et al. 2000) indicate that the peak footprint is 369 mostly located within the corn field (maximum peak distance of 170 m) and the performed 370 comparison with radiometric measurements within the corn field is hence feasible (Hilker et 371 al. 2008a).

372

373 3 Results

374 Measurements of CO₂ exchange and active fluorometry at leaf-level show a physiological 375 limitation of photosynthesis during the days in September. Figure 2A shows LUE over the course of one day (September, 13th) measured at different levels: (1) leaf-level LUE of light 376 377 reactions of photosynthesis was measured using the clip-on PAM fluorometer (LUE_{PAM}), (2) 378 leaf-level LUE of carbon fixation was measured using the clip-on LICOR gas-exchange 379 analyzer (LUE_{LICOR}), and (3), for comparison, canopy-level LUE of carbon fixation was 380 derived from the eddy flux data (LUE_{EDDY}). Even though leading to different absolute values, 381 the three measurements showed a comparable diurnal course with high LUE during 382 environmentally moderate morning hours, a clear depression of LUE during afternoon, when 383 conditions are dry and hot, and an increase towards the evening, when conditions again 384 become moderate. Additionally, leaf-level LUE began to increase around 12:30 h, while 385 canopy LUE recovery was delayed by about 2 hours (Fig. 2A). We compared photosynthetic 386 rates at the three levels (Fig. 2B): (1) leaf-level electron transport rate at photosystem II was 387 measured using the clip-on PAM fluorometer (ETR_{PAM}), (2) leaf-level CO₂ uptake rate was 388 measured using the clip-on LICOR gas-exchange analyzer (JCO_2) , and (3) canopy-level GPP

was derived from the eddy flux data (GPP_{EDDY}). Regardless the used method, maximum rates of photosynthesis occurred between 10:00 h and 12:00 h, when PPFD also reached its maximum. During afternoon, photosynthetic rates decreased and the time shift between leaf and canopy level measurements is observable again: ETR_{PAM} , referring to the very first step of photosynthetic energy conversion (light reaction), decreases first, followed by a decrease in the leaf-level CO₂ uptake rate (JCO₂, dark reactions), and finally also ecosystem GPP_{EDDY} decreased (Fig. 2B).

396

397 figure 2

398

399 The time shift between leaf and canopy measurements can be explained by the vertical 400 characterization of the canopy showing significant variations of parameters related to 401 photosynthesis (Fig. 3). The canopy was in the beginning of the senescent phase in September 402 and grain-filling was still in progress. Corn canopies in this phenological state are affected by 403 senescing effects spreading in two different directions: a decline of structural and functional 404 parameters from top to bottom and from bottom to top (Tollenaar & Daynard 1978, 405 Valentinuz & Tollenaar 2004). Both directions can be observed with our measurements. The 406 structural parameter *chlorophyll content* was highest for the middle leaves (45-50 µg cm⁻²) and largely decreases for the upper leaves (20-35 μ g cm⁻²) (Fig 3, left panel). A similar trend 407 408 was measured for different functional parameters. The highest values for the maximum 409 assimilation rate of CO_2 (A_{max}) and the stomatal conductance (G_s) (Fig. 3 middle panels) 410 were observed for the middle leaves, whereas both parameters declined in upward and 411 downward directions. On the contrary, the maximum quantum yield of PS II (F_y/F_M) shows a 412 monotonous decline from the bottom (0.77) to the top (0.72) (Fig. 3 right panel). Lower 413 values in the upper leaves which are more exposed to incident PPFD, together with the overall

414 absolute value of Fv/Fm ($F_v/F_M < 0.77$; healthy leaves have a F_v/F_M of 0.83 (Bjorkman &

415 Demmig 1987)) may indicate that the canopy was additionally affected by photoinhibition.

416

417 figure 3

418

Eddy flux data for all days showed that the carbon fixation of plants is mainly determined by the amount of incident photosynthetic active radiation (Fig. 4A), which is in agreement with results documented in the literature (Wofsy et al. 1993).

The assimilation rate in June (highest peak value 50 μ mol m⁻² s⁻¹) was higher than in 422 September (highest peak value 32 µmol m⁻² s⁻¹). The decrease in September was due to lower 423 PPFD but also due to lower light use efficiency (June: 0.057 mol CO₂ mol⁻¹ photons; 424 September: 0.031 mol CO₂ mol⁻¹ photons) (Fig. 4B). In fact, seasonal differences in GPP_{EDDY} 425 426 are not affected only by the incident PPD but also by the phenological state of the crop, which 427 in turn determines leaf area index (LAI) and photosynthetic pigments in the canopy. In June, the canopy was in the growing phase (Chlorophyll content 0.0105 μ g m⁻², LAI 2.2) while in 428 September it was at the beginning of the senescence phase (Chlorophyll content 0.0093 µg m⁻ 429 ². LAI 2.8). 430

431

432 figure 4

433

434 Day courses of GPP_{EDDY} in June were symmetrical around solar noon, while in September 435 GPP_{EDDY} data showed an asymmetry in the diurnal course with a clear depression in the 436 afternoon (Fig. 4A). This phenomenon is often described as 'midday depression' and 437 explained with high temperature and high vapor pressure difference (VPD) between air and 438 leaf-tissue that often cause high evaporative demand. This in turn causes stomata to close and 439 results in reduced carbon uptake around noon and early afternoon. Hence, under comparable

440	illumination conditions the carbon uptake is reduced in the afternoon with respect to the
441	morning hours.
442	We tested the validity of optical parameters (F_{Syield} and PRI) measured above the canopy for
443	their potential to quantify the dynamic changes in canopy LUE. Therefore, an empirical and
444	linear transfer function between the optical parameters and $\mbox{LUE}_{\mbox{EDDY}}$ was calculated for each
445	time period and position within the field (Fig. 5A, C).
446	
447	figure 5
448	
449	The relationships gathered by matching simultaneous measurements of $\ensuremath{\text{LUE}}_{\ensuremath{\text{EDDY}}}$ and optical
450	parameter were weak for both optical parameters in all three periods (Table 2).
451	
452	table 2
453	
453 454	On the experimental basis of the time shift observed for LUE measured at different scales (i.e.
	On the experimental basis of the time shift observed for LUE measured at different scales (i.e. leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between
454	
454 455	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between
454 455 456	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we
454 455 456 457	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we systematically adjusted the datasets for the time shift using a cross-correlation approach (Fig.
454 455 456 457 458	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we systematically adjusted the datasets for the time shift using a cross-correlation approach (Fig. 6). The relationship between the Fs _{yield} and LUE_{EDDY} significantly increased by shifting Fs _{yield}
454 455 456 457 458 459	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we systematically adjusted the datasets for the time shift using a cross-correlation approach (Fig. 6). The relationship between the Fs _{yield} and LUE_{EDDY} significantly increased by shifting Fs _{yield}
454 455 456 457 458 459 460	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we systematically adjusted the datasets for the time shift using a cross-correlation approach (Fig. 6). The relationship between the Fs _{yield} and LUE_{EDDY} significantly increased by shifting Fs _{yield} by -1.5 h (figure 5B, D, figure 6 and table 2).
454 455 456 457 458 459 460 461	leaf and canopy, see Fig.2) we hypothesized that an analogous time shift may exists between canopy LUE (i.e. LUE_{EDDY}) and optical parameters. In order to find this time shift, we systematically adjusted the datasets for the time shift using a cross-correlation approach (Fig. 6). The relationship between the Fs _{yield} and LUE_{EDDY} significantly increased by shifting Fs _{yield} by -1.5 h (figure 5B, D, figure 6 and table 2).

465	contrast, even on time shifted data, relationships for the PRI were weaker and no systematic
466	trend was found (Fig. 5D).
467	Once the transfer functions for every single period were defined as above, we employed them
468	in Eq. 7 (i.e. to model LUE) to estimate GPP daily courses of GPP in 30 minute intervals.
469	GPP estimated from fluorescence yield (GPP _{FSyield}) showed the best agreement with the
470	measured diurnal courses of GPP _{EDDY} , while using the PRI (GPP _{PRI}) did not yield reasonable
471	estimates of GPP _{EDDY} (Fig. 7 and Table 3).
472	
473	figure 7
474	
475	For sake of comparison figure 7 also reports GPP modeled assuming a constant LUE
476	(computed as diurnal average of the LUE_{EDDY} values).
477	
478	table 3

479

480 4 Discussion

The main focus of this study was to evaluate the use of optical parameters for modeling short
time responses of photosynthesis and CO₂ assimilation to environmental conditions.
Therefore, diurnal courses of F_{Syield} and PRI were acquired and used as proxies for LUE.

484 Using basic Monteith's modeling (i.e. constant value for light use efficiency) provided poor 485 results: the amount of fixed CO_2 was underestimated in the morning and strongly 486 overestimated from midday until afternoon. The use of PRI to modulate the LUE did not 487 increase the accuracy of the estimates: the assimilation estimates based on PRI (GPP_{PRI}) did 488 not even track the shape of the measured GPP_{EDDY} (Fig. 6). Sims et al. (2006) or Methy 489 (2000) denote a significance decrease of the relationship between PRI and photosynthesis if 490 measurements were up-scaled from leaf to canopy level. In contrast, a couple of studies show 491 that the PRI is sensitive for diurnal variations of canopy photosynthesis (e.g. (Nichol et al. 492 2002, Hall et al. 2008)). The situation remains unclear and requires more systematic research. 493 However, Barton and North (2001), Grace et al. (2007), and Hilker et al. (2008a) 494 demonstrated the dependency of the PRI on various structural effects and illumination 495 conditions. Apparently, the diurnal dynamics of photosynthesis tracked with the PRI is 496 affected by canopy structure and observation properties. The superimposition may amplify in 497 stressed, photoinhibited canopies as shown in this study. In such cases, the dynamical 498 adaption of NPQ mechanisms is limited and appears more constant during the day. 499 Nevertheless, our results show that the PRI is to some extent sensitive to seasonal variations, 500 which is in consistency with other works (Nichol et al. 2002, Hall et al. 2008). Thus, the 501 assumption of decreasing LUE_{EDDY} and PRI with increasing senescence can be confirmed in 502 the seasonal context (Fig. 5C and D). Fluorescence yield, on the other hand, is capable of 503 reproducing the diurnal course of GPP and the prominent midday depression (Fig. 7). 504 The time shift of 1.5 hours between the flux and radiometric data can be mechanistically 505 explained as follows: plant photosynthesis is primarily driven by the meteorological variables 506 water vapor deficit, temperature and photosynthetic photon flux density. The diurnal variation 507 of these variables leads to the midday depression of photosynthesis that is most prominent for 508 C3 species but also present for C4 species (Hirasawa & Hsiao 1999). However, it must be 509 noted that not all the leaves composing the canopy experience the same environmental

510 conditions during the day. For example, top level leaves will receive more radiation than 511 bottom leaves. Moreover, as a result of the vertical gradient in environmental conditions 512 (including radiation, temperature, VPD), the leaves adapt to different biochemical and 513 physiological states, as demonstrated by the vertical characterization of the corn canopy 514 described in Fig. 3. The graph shows that the vertical variability of the meteorological 515 variables leads to different photosynthetic rates and capacities within different layers of the 516 canopy. This basically means that GPP of different canopy layers will respond to 517 environmental conditions at different times during the day. GPP_{EDDY} in contrast will detect 518 the overall response of the canopy.

The importance of such observations is confirmed by different models. Chen et al. (1999) show, for example, an improvement of diurnal estimates of canopy photosynthesis using multi-layer models instead of a one-layer model. The improvement was mostly due to the fact that multi-layer models consider the vertical variability of photosynthesis.

523 In our experiment, the observed areas of the canopy differ within the field of view of the eddy 524 flux tower and the spectrometer. The flux tower receives an integrated signal from a huge 525 footprint and the entire vertical canopy. The spectrometer, however, observes the response 526 from the upper canopy. This layer of the canopy is earlier exposed to high light intensities and 527 high VPD than the lower ones. Additionally, the elevated senescence in the upper canopy and 528 effects of photoinhibition leading to a higher stress level in the upper leaves compared to the 529 leaves in the middle canopy (Fig. 3). Hence, it is likely that the stomatal conductance of the 530 upper leaves is reduced earlier during the day than that of the other inner leaves. As a 531 consequence, the modeled GPP based on optical parameters (sensing mainly the upper leaves) 532 will decrease earlier than the measured GPP_{EDDY} from the integrated canopy.

This interpretation was supported by analyzing two diurnal courses of another crop (winter wheat) from early May 2008 (data not shown). The canopy was 0.30 m high and the conditions of different vertical layers of the canopy are expected to be more homogeneous. No time discrepancy between the eddy flux measurements and the optical parameters were observed in this case.

538 Besides the mentioned physiological explanation, also micrometeorological considerations 539 can explain the observed time shift. Air masses might remain stored within the canopy some 540 time before being grabbed by turbulent eddies that can be sampled by the eddy covariance 541 technique.

542 The measured radiometric signal is a function of biochemical, structural and external factors 543 and the absolute value of the derived optical parameters depend on these factors. Barton and 544 North (2001) showed for example the dependency of PRI on LAI, leaf angle distribution 545 (LAD), solar/view angle and soil type. As natural canopies are an assembly of differently 546 oriented leaves, which change their orientation during plant development and as a response to 547 environmental conditions, there is no general function available to transfer PRI or 548 fluorescence yield into LUE (Barton & North 2001). In this study, we used empirical transfer 549 functions to scale the optical parameters to LUE_{EDDY} (Fig. 5). The negative correlation 550 between Fsvield and LUE_{EDDY} seems reasonable as we found some indications for 551 photoinhibition with a F_v/F_M of 0.75, especially for the upper leaves (Fig. 3). Under such 552 photoinhibited circumstances, non-photochemical mechanisms do not vary significantly and, 553 hence, do not dynamically adapt to environmental conditions. In consequence, NPQ appears 554 nearly constant during the day. LUE is reduced as a result of limited photosynthesis in such 555 situations. At the same time, the F_{Syield} increases with increasing amount of incident photons 556 and in consequence, the relationship appears negative (refer (van der Tol et al. 2009), for a 557 description based on a mechanistic model).

558 A change in the slope of the transfer functions between LUE_{EDDY} and Fs_{vield} was observed in 559 the two phenological stages considered. During the process of senescence, the amount of 560 chlorophyll declines. Additionally, a higher stress potential can be expected in September due 561 to unfavorable environmental and meteorological conditions (e.g. dry soils), which result in a 562 stomata closure from late morning until early afternoon. The photosynthetic capacity of the 563 plants is limited and stress occurs due to high light conditions. In such situations, 564 photoprotection mechanisms were up-regulated to dissipate the excessive light and avoid 565 photoinhibition. In the case of chronicle photoinhibition, non-photochemical quenching 566 processes may be limited and an increased amount of light is converted to fluorescence light.

567 One of the crucial steps in such kind of analysis is the choice of a proper and robust retrieval 568 method. We investigated different methods, e.g. the standard FLD method (Plascyk 1975), the 569 modified method proposed from Maier (2003) and the improved FLD method from Alonso et 570 al. (2008). The absolute values of FS differed for all methods, but each of them provided a 571 similar sensitivity to the diurnal variability of the fluorescence signal. Finally, we decided to 572 use the method proposed from Maier (2003) being most robust and less sensitive to errors 573 occurring during the measurement of the fluorescence signal. We are aware of some of the 574 restrictions of the method, especially the assumption of linearity and maybe a slight 575 sensitivity to bidirectional reflectance effects.

576 Utilizing fluorescence to model GPP spatial explicit at regional or global scale, however, 577 necessitates investigation on challenging issues. These are i) the precise correction of 578 atmospheric effects that are influencing the measurement of satellite based fluorescence 579 (Guanter et al. 2007); ii) a better understanding of the influence of canopy structure at the Fs-580 signal; iii) contribution of different surface elements to the Fs-signal covered with a remote 581 sensor; iv) impact of changing viewing-illumination geometry to the Fs-signal (Meroni et al. 582 2008b). A further research topic is the physiological relationship between fluorescence and 583 photosynthesis. Various working groups showed a significant relationship between Fs and 584 photosynthesis (van der Tol et al. (2009) as example for modelled data, or Meroni et al. 585 (2008b) as example for experimental studies). However, the existence of NPQ mechanisms 586 may lead to changing relationships between both parameters within one day, between 587 different species and in response to phenological states. The ESA supported global satellite 588 mission for sensing solar-induced fluorescence FLEX (Fluorescence Explorer) is currently 589 under evaluation. Within this framework, the mentioned aspects are subjects of research. For 590 example, the recent availability of an integrated leaf-canopy fluorescence model (ESA, 591 FluorMOD project (Zarco-Tejada et al. 2006)), in combination with mechanistic experimental

field studies, should provide the necessary base for investigating the mentioned effects inorder to up-scale the approach to landscape level.

594

595 **5 Conclusions and Outlook**

596 To our knowledge, this work shows for the first time the modeling of diurnal courses of GPP 597 based on remotely sensed fluorescence yield. We showed that the short time response of a 598 complex physiological process to variable environmental conditions can be tracked reliably 599 with this optical parameter.

The correlation analysis between Fs_{Yield} and LUE_{EDDY} highlighted a time discrepancy between the two measurements (Fs_{yield} anticipated LUE_{EDDY} by 1.5 hours). Accounting for this delay was hence to correctly relate eddy flux measurements to remotely sensed estimates of LUE. An explanation of this delay related to the vertical structure of the canopy and to the different footprint sensed by the eddy and spectrometric systems was given. Nevertheless, the influence of the canopy structure on both eddy and spectrometry needs to be investigated in depth to fully understand its influence on GPP estimates from remotely sensed data.

We were able to account for the impact of structure on the radiometric signal with a straightforward empirical approach. However, we also anticipate the challenges of applying the promising outcomes of this study over various plant ecosystems to model GPP spatially explicitly from optical parameters and to test its robustness for different environmental factors. Nevertheless we propose the sun-induced fluorescence yield signal being a promising candidate for a remote sensing parameter that can be used over a variety of plant ecosystems to quantify light use efficiency directly.

Research in this field is currently strongly supported by the selection of the FLEX mission as one of ESA's candidate missions for a future Earth Explorer (Rascher 2007, Rascher & Pieruschka in press). Several measurement campaigns are currently under way to evaluate the accuracy by which sun-induced fluorescence can be used to quantify photosynthetic

- efficiency and stresses (see e.g. http://www.esa.int/esaLP/SEMQACHYX3F_index_0.html). Based on the outcome of these campaigns, it is likely that satellite-based quantification of sun-induced fluorescence yield will become a powerful tool for better understanding spatiotemporal variations of fluorescence yield, photosynthetic efficiency and distribution of plant stresses on a global scale and this way of GPP and carbon uptake.
- 623

624 Acknowledgements

625 This work was supported by a grant of the European Space Agency (ESA) in the frame of the 626 CEFLES2 campaign (grant No. 20802/07/LG). We also thank Remo Bianchi and Michael 627 Berger for their organizational support. The authors acknowledge Giovanni Agati (CNR-628 IFAC, Florence), Roberto Colombo (UNIMIB, Milan), Gloria Fernandez, Luis Alonso and 629 Jordi Garcia (RSU, University of Valencia), Alessandro Zaldei and Piero Toscano (CNR-630 IBIMET, Florence), Jonas Franke (University of Bonn) and Marion Stellmes (University of 631 Trier) for there valuable help during the field campaigns. The authors are also thankful to the 632 two anonymous reviewers who provided constructive comments to improve this manuscript. 633

635 Literature

636	Alonso L, Gómez-Chova L, Vila-Francés J, Amorós-López J, Guanter L, Calpe J, Moreno J
637	(2008) Improved fraunhofer line discrimination method for vegetation fluorescence
638	quantification. IEEE Geoscience and Remote Sensing Letters (in press),
639	ASD (2002) Fieldspec tm pro. Users guide. Analytical Spectral Devices, Inc., Boulder (CO).
640	Aubinet M, Grelle A, Ibrom A, et al. (2000) Estimates of the annual net carbon and water
641	exchange of forests: The euroflux methodology. In: Advances in ecological research,
642	<i>vol 30</i> Vol. 30, pp. 113-175.
643	Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual
644	Reviews - Plant Biology, 59, 89-113.
645	Baldocchi D, Falge E, Gu LH, et al. (2001) Fluxnet: A new tool to study the temporal and
646	spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux
647	densities. Bulletin of the American Meteorological Society, 82, 2415-2434.
648	Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide
649	exchange rates of ecosystems: Past, present and future. Global Change Biology, 9,
650	479-492.
651	Barton CVM, North PRJ (2001) Remote sensing of canopy light use efficiency using the
652	photochemical reflectance index - model and sensitivity analysis. Remote Sensing of
653	Environment, 78, 264-273.
654	Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of
655	photosystem ii and of non-photochemical quenching of chlorophyll fluorescence in the
656	field. Oecologia, 102, 425-432.
657	Bjorkman O, Demmig B (1987) Photon yield od o-2 evolution and chlorophyll fluorescence
658	characteristics at 77-k among vascular plants of diverse origins. <i>Planta</i> , 170 , 489-504.
659	Carter GA, Theisen AF, Mitchell RJ (1990) Chlorophyll fluorescence measured using the
660	fraunhofer line-depth principle and relationship to photosynthetic rate in the field.
661	Plant Cell and Environment, 13, 79-83.
662	Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through
663	temporal and spatial scaling for remote sensing applications. Ecological Modelling,
664	124 , 99-119.
665	Cohen WB, T.K. M, Yang ZQ (2003) Comparisons of land cover and lai estimates derived
666	from etm plus and modis for four sites in north america: A quality assessment of
667	2000/2001 provisional modis products Remote Sensing of Environment, 88, 256-270.
668	Coops NC, Black TA, Jassal RPS, Trofymow JAT, Morgenstern K (2007) Comparison of
669	modis, eddy covariance determined and physiologically modelled gross primary
670	production (gpp) in a douglas-fir forest stand. Remote Sensing of Environment, 107,
671	385-401.
672	Demmig-Adams B, Adams WW (1996) The role of xanthophyll cycle carotenoids in the
673	protection of photosynthesis. Trends in Plant Science, 1, 21-26.
674	Drolet GG, Middleton EM, Huemmrich KF, et al. (2008) Regional mapping of gross light-use
675	efficiency using modis spectral indices. <i>Remote Sensing of Environment</i> , 112 , 3064-
676	3078.
677	Ehleringer J (1981) Leaf absorptances of mohave and sonoran desert plants. <i>Oecologia</i> , 49
678	
679	Eiden M, van der Linden S, Schween J, et al. (2007) In: 10th ISPMSRS. Davos, Swizerland.
680	Field CB, Randerson JT, Malmstrom CM (1995) Global net primary production - combining
681 682	ecology and remote sensing. <i>Remote Sensing of Environment</i> , 51 , 74-88.
682 683	Franck F, Juneau P, Popovic R (2002) Resolution of the photosystem i and photosystem ii
683 684	contributions to chlorophyll fluorescence of intact leaves at room temperature.
684	Biochimica Et Biophysica Acta-Bioenergetics, 1556 , 239-246.

685	Freedman A, Cavender-Bares J, Kebabian PL, Bhaskar R, Scott H, Bazzaz FA (2002) Remote
686	sensing of solar-excited plant fluorescence as a measure of photosynthetic rate.
687	Photosynthetica, 40, 127-132.
688	Gamon JA, Filella I, Penuelas J (1993) The dynamic 531-nanometer reflectance signal: A
689	survey of twenty angiosperm species. In: Photosynthetic responses to the environment
690	(eds Yamamoto HY, Smith CM), pp. 172-177. American Society of Plant
691	Physiologists, Rockville.
692	Gamon JA, Penuelas J, Field CB (1992) A narrow-waveband spectral index that tracks
693	diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35-
694	44.
695	Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of
696	photosynthetic electron-transport and quenching of chlorophyll fluorescence.
697	Biochimica Et Biophysica Acta, 990 , 87-92.
698	Goel NS (1989) Inversion of canopy reflectance models for estimation of biophysical
699	parameters from reflectance data. In: <i>Theory and applications of optical remote</i>
700	sensing (ed Asrar G), pp. 205-251. Wiley & Sons, New York.
701	Goetz SJ, Prince SD (1999) Modelling terrestrial carbon exchange and storage: Evidence and
702	implications of functional convergence in light-use efficiency. In: Advances in
702	ecological research, vol 28 Vol. 28, pp. 57-92.
704	Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon
705	sequestration by long-term eddy covariance: Methods and a critical evaluation of
706	accuracy. Global Change Biology, 2, 169-182.
707	Govindjee (1995) 63 years since kautsky chlorophyll-a fluorescence Australian Journal of
708	Plant Physiology, 22, 711-711.
709	Govindjee (2004) Chlorophyll a fluorescence: A bit of basics and history. In: <i>Chlorophyll a</i>
710	fluorescence: A signature of photosynthesis. Advances in photosynthesis and
711	<i>respiration</i> Vol. 19 (eds Papageorgiou GC, Govindjee), pp. 1-42. Springer, Dordrecht.
712	Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P (2007) Can we measure
713	terrestrial photosynthesis from space directly, using spectral reflectance and
714	fluorescence? <i>Global Change Biology</i> , 13 , 1484-1497.
715	Guanter L, Alonso L, Gomez-Chova L, Amoros-Lopez J, Vila J, Moreno J (2007) Estimation
716	of solar-induced vegetation fluorescence from space measurements. <i>Geophysical</i>
717	Research Letters, 34 , doi: 10.1029/2007GL029289.
718	Guo JM, Trotter CM (2004) Estimating photosynthetic light-use efficiency using the
719	photochemical reflectance index: Variations among species. <i>Functional Plant Biology</i> ,
720	31 , 255-265.
721	Hall FG, Hilker T, Coops NC, et al. (2008) Multi-angle remote sensing of forest light use
722	efficiency by observing pri variation with canopy shadow fraction. <i>Remote Sensing of</i>
723	Environment, 112 , 3201-3211.
724	Heinsch FA, Reeves M, Votava P, <i>et al.</i> (2002).
725	Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z, Krishnan P (2008a)
726	Separating physiologically and directionally induced changes in pri using brdf models.
727	Remote Sensing of Environment, 112 , 2777-2788.
728	Hilker T, Coops NC, Wulder MA, Black AT, Guy RD (2008b) The use of remote sensing in
729	light use efficiency based models of gross primary production: A review of currant
730	status and future requirements. Science of the Total Environment, 404 , 411-423.
731	Hirasawa T, Hsiao TC (1999) Some characteristics of reduced leaf photosynthesis at midday
732	in maize growing in the field. <i>Field Crops Research</i> , 62 , 53-62.
733	Hsieh CI, Katul GG, Chi TW (2000) An approximate analytical model for footprint
734	estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in
735	Water Resources, 23, 765-772.
	······································

736	Janzen HH (2004) Carbon cycling in earth systems - a soil science perspective. Agriculture
737	Ecosystems & Environment, 104, 399-417.
738	Kljun N, Kastner-Klein P, Fedorovich E, Rotach MW (2004) Evaluation of lagrangian
739	footprint model using data from wind tunnel convective boundary layer. Agricultural
740	and Forest Meteorology, 127, 189-201.
741	Lichtenthaler HK (1987) Chlorophylls and carotenoids - pigments of photosynthetic
742	biomembranes. <i>Methods in Enzymology</i> , 148 , 350-382.
743	Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of
744	stress conditions in plants. Crc Critical Reviews in Analytical Chemistry, 19 , S29-S85.
745	Louis J, Ounis A, Ducruet JM, <i>et al.</i> (2005) Remote sensing of sunlight-induced chlorophyll
746	fluorescence and reflectance of scots pine in the boreal forest during spring recovery.
747	Remote Sensing of Environment, 96 , 37-48.
748	Maier SW, Günther KP, Stellmes M (2003) Sun-induced fluorescence: A new tool for
749	precision farming. In: Digital imaging and spectral techniques: Applications to
749	
	precision agriculture and crop physiology Vol. 66 (eds McDonald M, Schepers J, Tarthy L, you Tagi T, Major D), pp. 200, 222, ASA Special Publication
751	Tartly L, van Toai T, Major D), pp. 209-222. ASA Special Publication
752	Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. <i>Journal of</i>
753	Experimental Botany, 51 , 659-668.
754	Meroni M, Colombo R (2006) Leaf level detection of solar induced chlorophyll fluorescence
755	by means of a subnanometer resolution spectroradiometer. <i>Remote Sensing of</i>
756	<i>Environment</i> , 103 , 438-448.
757	Meroni M, Picchi V, Rossini M, et al. (2008a) Leaf level early assessment of ozone injuries
758	by passive fluorescence and photochemical reflectance index. International Journal of
759	<i>Remote Sensing</i> , 29 , 5409-5422.
760	Meroni M, Rossini M, Picchi V, Panigada C, Cogliati S, Nali C, Colombo R (2008b)
761	Assessing steady-state fluorescence and pri from hyperspectral proximal sensing as
762	early indicators of plant stress: The case of ozone exposure. Sensors, 8, 1740-1754.
763	Methy M (2000) Analysis of photosynthetic activity at the leaf and canopy levels from
764	reflectance measurements: A case study. <i>Photosynthetica</i> , 38 , 505-512.
765	Monteith JL (1972) Solar-radiation and productivity in tropical ecosystems. Journal of
766	Applied Ecology, 9 , 747-766.
767	Monteith JL (1977) Climate and efficiency of crop production in britain. Philosophical
768	Transactions of the Royal Society of London Series B-Biological Sciences, 281, 277-
769	294.
770	Moya I, Camenen L, Evain S, et al. (2004) A new instrument for passive remote sensing 1.
771	Measurements of sunlight-induced chlorophyll fluorescence. Remote Sensing of
772	<i>Environment</i> , 91 , 186-197.
773	Nichol C, Lloyd J, Shibistova O, et al. (2002) Remote sensing of photosynthetic-light-use
774	efficiency of a siberian boreal forest. <i>Tellus Series B-Chemical and Physical</i>
775	<i>Meteorology</i> , 54 , 677-687.
776	Ozanne CMP, Anhuf D, Boulter SL, <i>et al.</i> (2003) Biodiversity meets the atmosphere: A
777	global view of forest canopies. <i>Science</i> , 301 , 183-186.
778	Papale D, Valentini A (2003) A new assessment of european forests carbon exchanges by
779	eddy fluxes and artificial neural network spatialization. <i>Global Change Biology</i> , 9 ,
780	525-535.
781	Plascyk JA (1975) Mk ii fraunhofer line dicsriminator (fld-ii) for airborne and orbital remote-
781	sensing of solar-stimulated luminescence. <i>Optical Engineering</i> , 14 , 339-346.
782	Rascher U (2007) Flex - fluorescence explorer: A remote sensing approach to quantify spatio-
783 784	temporal variations of photosynthetic efficiency from space. <i>Photosynthesis Research</i> ,
785	91, 293-294.
105	μ , <i>μ</i>

786	Rascher U, Nedbal L (2006) Dynamics of photosynthesis in fluctuating light - commentary.
787	Current Opinion in Plant Biology, 9, 671-678.
788	Rascher U, Nichol CL, Small C, Hendricks L (2007) Monitoring spatio-temporal dynamics of
789	photosynthesis with a portable hyperspectral imaging system. <i>Photogrammetric</i>
790	Engineering and Remote Sensing, 73, 45-56.
791	Rascher U, Pieruschka R (in press) Spatio-temporal variations of photosynthesis - the
792	potential of optical remote sensing to better understand and scale light use efficiency
793	and stresses of plant ecosystems. Precision Agriculture,
794	Reichstein M, Falge E, Baldocchi D, et al. (2005) On the separation of net ecosystem
795	exchange into assimilation and ecosystem respiration: Review and improved
796	algorithm. Global Change Biology, 11 , 1424-1439.
797	Reichstein M, Tenhunen JD, Roupsard O, et al. (2002) Severe drought effects on ecosystem
798	co2 and h2o fluxes at three mediterranean evergreen sites: Revision of current
799	hypotheses? Global Change Biology, 8, 999-1017.
800	Running SW, Nemani RR, Heinsch FA, Zhao MS, Reeves M, Hashimoto H (2004) A
801	continuous satellite-derived measure of global terrestrial primary production.
802	<i>Bioscience</i> , 54 , 547-560.
803	Schmid HP, Lloyd CR (1999) Spatial representativeness and the location bias of flux
804	footprints over inhomogeneous areas. Agricultural and Forest Meteorology, 93, 195-
805	209.
806	Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: Major
807	developments during the past years in retrospect. Progress in Botany, 53, 151-173.
808	Schreiber U, Bilger W, C. N (1995) Chlorophyll fluorescence as a nonintrusive indicator for
809	rapid assessment of in vivo photosynthesis. In: <i>Ecophysiology of photosynthesis</i> (eds
810	Schulze ED, Caldwell MM), pp. 49-70. Springer, Berlin, Heidelberg, Nwe York.
811	Schulze ED, Caldwell MM (Eds.) (1995) Ecophysiology of photosynthesis. Ecological
812	studies, Springer Verlag, Berlin, Heidelberg.
813	Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and
814	photosynthesis - from steady-state to dynamics - from homogeneity to heterogeneity.
815	Plant Cell and Environment, 29, 340-352.
816	Sims DA, Luo HY, Hastings S, Oechel WC, Rahman AF, Gamon JA (2006) Parallel
817	adjustments in vegetation greenness and ecosystem co2 exchange in response to
818	drought in a southern california chaparral ecosystem. Remote Sensing of Environment,
819	103 , 289-303.
820	Tollenaar M, Daynard TB (1978) Leaf senescence in short-season maize hybrids. Canadian
821	Journal of Plant Science, 58, 869-874.
822	Turner DP, Ritts WD, Cohen WB, et al. (2003a) Scaling gross primary production (gpp) over
823	boreal and deciduous forest landscapes in support of modis gpp product validation.
824	Remote Sensing of Environment, 88, 256-270.
825	Turner DP, Ritts WD, Cohen WB, et al. (2005) Site-level evaluation of satellite-based global
826	terrestrial gross primary production and net primary production monitoring. Global
827	<i>Change Biology</i> , 11 , 666-684.
828	Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003b) A
829	cross-biome comparison of daily light use efficiency for gross primary production.
830	Global Change Biology, 9, 383-395.
831	Valentinuz OR, Tollenaar M (2004) Vertical profile of leaf senescence during the grain-filling
832	period in older and newer maize hybrids. Crop Science, 44, 827-834.
833	van der Tol C, Verhoef W, Rosema A (2009) A model for chlorophyll fluorescence and
834	photosynthesis at leaf scale. Agricultural and Forest Meteorology, 149, 96-105.
835	WALZ (2008).

- Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density
 effects due to heat and water-vapour transfer. *Quarterly Journal of the Royal Meteorological Society*, **106**, 85-100.
- Wofsy SC, Goulden ML, Munger JW, *et al.* (1993) Net exchange of co2 in a midlatitude
 forest. *Science*, **260**, 1314-1317.
- Zarco-Tejada PJ, Miller JR, Pedros R, Verhoef W, Berger M (2006) Fluormodgui v3.0: A
 graphic user interface for the spectral simulation of leaf and canopy chlorophyll
 fluorescence. *Computers & Geosciences*, 32, 577-591.
- Zhanqing L, Moreau L (1995) A new approach for remote sensing of canopy-absorbed
 photosynthetically active radiation. I: Total surface absorption. *Remote Sensing of Environment*, 55, 175-191.
- 847
- 848
- 849

850 Tables

Period	Date	Time window (hh:mm, UTC)
1	30. June	14:30-19:30
2	05. September	10:30-18:00
2	06. September	09:00-17:00
2	07. September	09:30-18:00
3	12. September	09:00-16:50

Table 1. Summary of available day courses of radiometric measurements of a corn canopy.

Table 2: Statistical parameters characterizing the relationship of LUE_{EDDY} and optical parameters (F_{Syield} = fluorescence yield; F_{Syield} _time = time shifted F_{Syield} ; PRI = Photochemical Reflectance Index; PRI_time = time shifted PRI, p-value = significance of

		June	Sep (57.)	Sep (12.)	average
R ²	F _{Syield}	0.04	0.17	0.14	0.12
	F_{Syield}_{time}	0.56	0.46	0.59	0.54
	PRI	0.13	0.02	0.65	0.27
	PRI_time	0.44	0.04	0.19	0.22
RMSE	F _{Syield}	0.026	0.005	0.004	0.0117
	F_{Syield}_{time}	0.013	0.005	0.001	0.0063
	PRI	0.029	0.017	0.006	0.0173
	PRI_time	0.060	0.018	0.003	0.0270
p-value	F _{Syield}	0.99	0.06	0.38	0.48
	F_{Syield}_{time}	0.40	0.96	0.46	0.60
	PRI	0.98	0.30	0.99	0.76
	PRI_time	0.95	0.94	0.86	0.92
n	F _{Syield}	11	49	15	
	F_{Syield}_{time}	8	31	14	
	PRI	11	43	15	
	PRI_time	8	31	14	

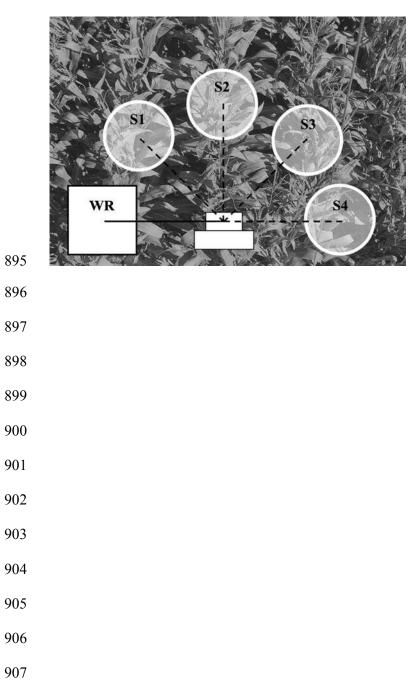
856 correlation; n = number of measurements).

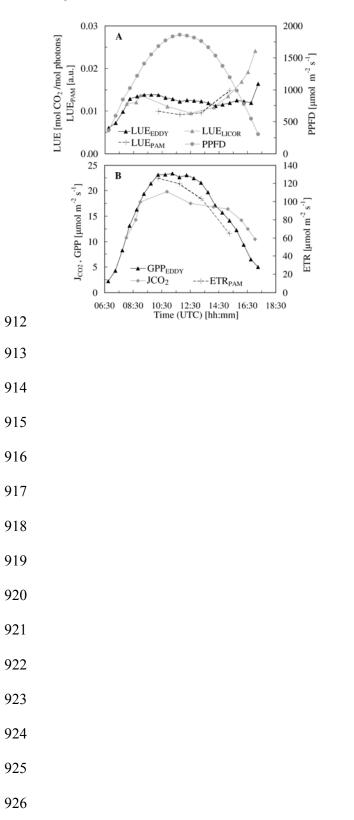
858 Table 3: Statistical parameters characterizing the relationship of modeled and measured GPP

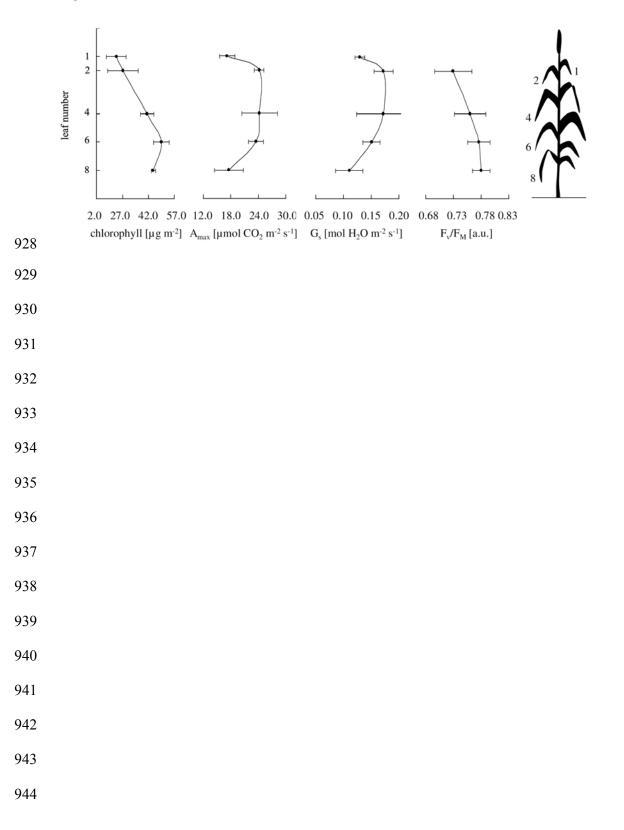
859 F_{Syield} = fluorescence yield; F_{Syield} _time = time shifted F_{Syield} ; PRI = Photochemical

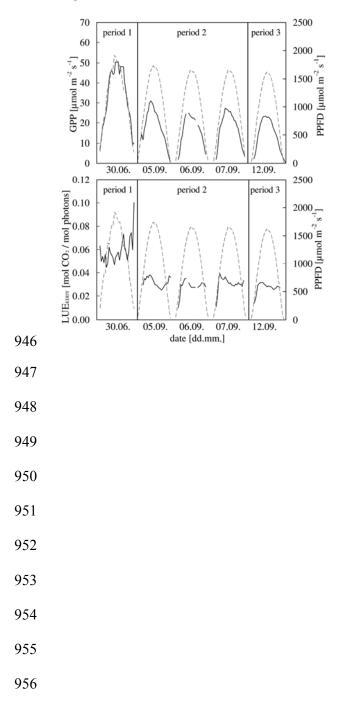
- 860 Reflectance Index; PRI_time = time shifted PRI; const. LUE = constant Light Use
- 861 Efficiency).

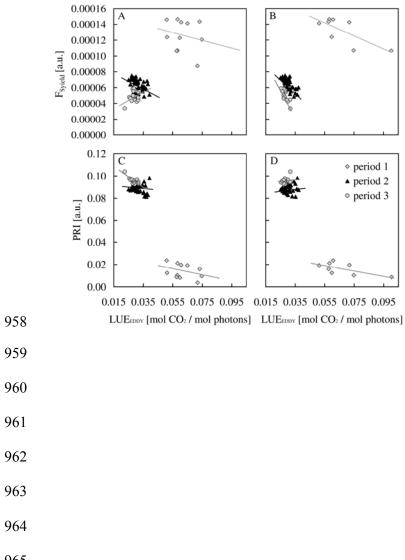
		June	Sep (57.)	Sep (12.)	avg.
R ²	const. LUE	0.91	0.92	0.95	0.93
	F _{Syield}	0.30	0.83	0.89	0.67
	F_{Syield} time	0.83	0.97	0.98	0.93
	PRI	0.20	0.05	0.52	0.26
	PRI_time	0.52	0.34	0.87	0.58
RMSE	const. LUE	4.42	2.51	1.48	2.80
	F _{Syield}	12.40	2.75	2.15	5.77
	F_{Syield}_{time}	4.55	1.91	0.97	2.48
	PRI	13.20	11.40	3.15	9.25
	PRI_time	7.39	10.94	7.98	8.77

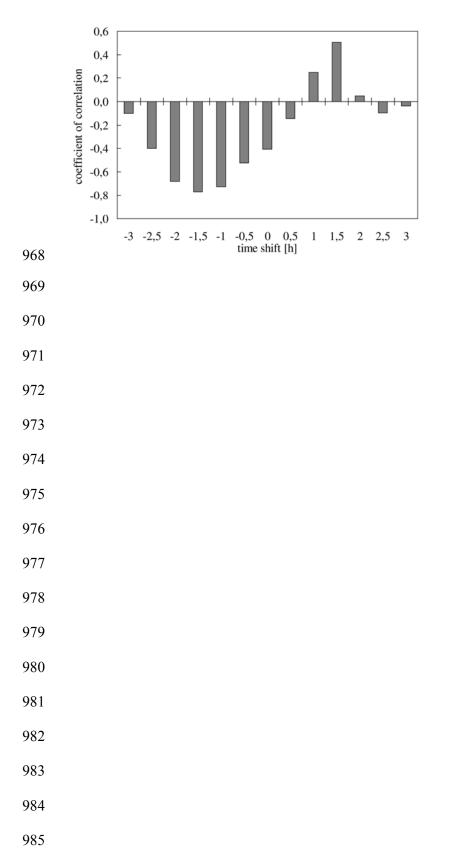

862

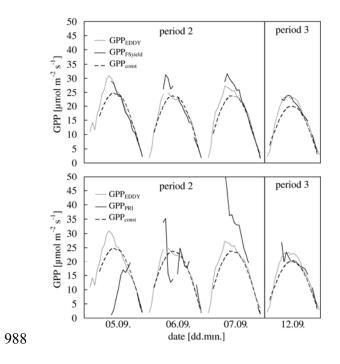

863


865 figure captions


- Figure 1: Position and dimension of spectrometer footprint (S 1 to 4) for a corn at averagecanopy height. The position of the white reference panel (WR) is also indicated.
- Figure 2: Comparison of diurnal courses of leaf and canopy LUE and GPP of corn at the 13th
 of September. A: incident PPFD and LUE estimated from different sources: canopy
 level eddy flux measurements, LUE_{EDDY}, leaf level gas exchange, LUE_{LICOR}, and leaf
 level active fluorometry, LUE_{PAM}. B: production related information as estimated from
 eddy flux measurements, GPP_{EDDY}, gas exchange, JCO₂, and active-fluorometry,
 ETR_{PAM}.
- 874 Figure 3: Mean vertical distribution (n=3 plants) of chlorophyll, maximum assimilation rate (A_{max}) , stomatal conductance (G_s) , and maximum quantum yield of PSII (F_v/F_m) for a 875 876 senescent corn plants. Horizontal bars referrer to +/- 1 standard deviation. Vertical profiles were collected at the 13th of September and are expressed in term of leaf 877 number, first and 8th leaves being the uppermost and the lowermost, respectively. The 878 879 plant drawing on the right indicates the leaf vertical position. The decline of parameters 880 from middle to top and middle to bottom is due to senescence (refer the text above for 881 an explanation).
- Figure 4: Diurnal courses of GPP_{EDDY} (continuous curve, A (top)) and LUE_{EDDY} (continuous
 curve, B (bottom)) derived from eddy-flux measurements during the three measurement
 periods. Incident PPFD is reported for reference (dashed curve).
- Figure 5: Relationship between LUE_{EDDY} and optical parameters (fluorescence yield and PRI). A,C: Relationship without time shift. B,D: with time shift. Period 1 corresponds to the 30th of June, period 2 to the 5th – 7th of September and period 3 to the 12th of September


- 889 Figure 6: Coefficients of determination (R) for cross-correlation based time shift analysis.
- 890 F_{Syield} were shifted against fixed LUE_{EDDY} data.
- 891 Figure 7: Diurnal courses of modeled and measured GPP_{EDDY} signal. A: GPP_{FSyield} based on
- 892 fluorescence yield. B: GPP_{PRI} based on PRI. GPP_{const} refers to GPP modeled with a
- 893 constant LUE.





987 Figure 7

