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26A sequential model is developed to disaggregate microwave-derived soil moisture from 40 km to 4 km

27resolution using MODIS (Moderate Imaging Spectroradiometer) data and subsequently from 4 km to 500 m

28resolution using ASTER (Advanced Scanning Thermal Emission and Reflection Radiometer) data. The 1 km

29resolution airborne data collected during the three-week National Airborne Field Experiment 2006

30(NAFE'06) are used to simulate the 40 km pixels, and a thermal-based disaggregation algorithm is applied

31using 1 km resolution MODIS and 100 m resolution ASTER data. The downscaled soil moisture data are

32subsequently evaluated using a combination of airborne and in situ soil moisture measurements. A key step

33in the procedure is to identify an optimal downscaling resolution in terms of disaggregation accuracy and

34sub-pixel soil moisture variability. Very consistent optimal downscaling resolutions are obtained for MODIS

35aboard Terra, MODIS aboard Aqua and ASTER, which are 4 to 5 times the thermal sensor resolution. The root

36mean square error between the 500 m resolution sequentially disaggregated and ground-measured soil

37moisture is 0.
^
062 vol./vol. with a bias of −0.045

^
vol./vol. and values ranging from 0.08 to 0.40

^
vol./vol.

38© 2009 Elsevier Inc. All rights reserved.

3940

41

42

43 1. Introduction

44 Predicting the spatio-temporal variability of hydrological processes

45 requiresmodels that operate at different scales: evapotranspiration and

46 infiltration at paddock-scale, run-off and drainage at catchment-scale,

47 and atmospheric circulation at meso-scale. Due to the complexity of

48 interacting processes (Chehbouni et al., 2008), the reliability of model

49 predictions is intimately related to the ability to represent dominant

50 processes in space and time using observations. Remote sensing has

51 shown promise for this application due to its multi-resolution and

52 multi-spectral capabilities (Choudhury, 1994).

53 Among the variables observable from space, soil moisture is one of

54 themost crucial parameters that control hydrometeorological processes

55 from paddock- to meso-scale. However, current and near-future space-

56 borne soil moisture products have a spatial resolution of several tens of

57 kilometers (Crow et al., 2005) —about ~40 km resolution for the

58 forthcoming Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2001)

59 mission—, whichmake their application to hydrological and agricultural

60 models challenging.

61Downscaling methodologies are therefore needed to improve the

62spatial resolution of passive microwave-derived soil moisture. To

63understand how soil moisture scales, the spatial structure of soil

64moisture fields has been statistically described using experimental

65data sets aggregated at a range of resolutions. Those studies (e.g.

66Rodriguez-Iturbe et al., 1995; Das & Mohanty, 2008) conducted over

67different sites and using either remotely sensed or ground-based data,

68conclude that soil moisture behaves as a fractal —i.e. follows a power

69law decay— over a wide range of scales. Moreover, there is a general

70agreement that the fractal behaviour of soil moisture is not simple

71over extended scale ranges, and changes in time (Kim & Barros,

722002b; Dubayah et al., 1997; Western et al., 2002). In particular, the

73recent study of Das and Mohanty (2008) suggests a transition from

74simple fractal (in wet fields) to multi-fractal (in dry fields) behaviour

75during a dry-down period. In practice, the multi-fractal framework

76seems an appropriate basis for downscaling soil moisture fields in

77areas where ancillary data (e.g. topography, soil properties, vegeta-

78tion, rainfall) are available at high resolution (Kim & Barros, 2002a).

79One drawback with statistical approaches is that they require a

80large amount of data given that their validity domain is generally

81limited to the conditions used for calibration. Consequently, there is a

82need to develop methods that use physical and observable para-

83meters. Bindlish and Barros (2002) developed an interpolation

84method to downscale L-band passive microwave data using active

85microwave data at the same wavelength to improve the resolution of
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86 brightness temperature fields prior to soil moisture retrieval.

87 Similarly, Merlin et al. (2008a) developed a deterministic downscaling

88 algorithm that combines 1 km resolution MODIS (MODerate resolu-

89 tion Imaging Spectroradiometer) data and a semi-empirical soil

90 evaporative efficiency model. The main advantage of those

91 approaches (Bindlish & Barros, 2002; Merlin et al., 2008a) over the

92 purely empirical ones based on log–log plots (e.g. Kim & Barros,

93 2002a) is that some physical considerations are used to build a

94 relationship between soil moisture and an ancillary observable; radar

95 backscatter in Bindlish and Barros (2002) and soil evaporative

96 efficiency in Merlin et al. (2008a).

97 In Merlin et al. (2008a), the disaggregation scale was fixed to 10

98 times the spatial resolution of MODIS thermal data to reduce the

99 random uncertainties in disaggregated soil moisture. The authors

100 observed that the sub-pixel variability of disaggregated soil moisture

101 was significantly correlated with the observed fine-scale soil moisture

102 variability, suggesting that the downscaling algorithm could be

103 applied to spatial resolutions finer than 10 km. Nevertheless, that

104 study did not apply the downscaling approach at multiple resolutions.

105 As a follow-up of Merlin et al. (2008a), this paper seeks to identify

106 optimal downscaling resolutions in terms of disaggregation accuracy

107 and sub-pixel spatial variability, and demonstrate the utility of this

108 approach for sequential disaggregation of spaceborne surface soil

109 moisture observations using multi-resolution thermal sensors. The

110 development of a sequential approach is motivated by (i) the fact that

111 high-resolution thermal data such as ASTER (Advanced Scanning

112 Thermal Emission and Reflection Radiometer) data generally have a

113 swath width smaller than the SMOS pixel and (ii) the hypothesis that

114 the use of an intermediate resolution provides a better linearized

115 approximation to a non linear function (e.g. soil evaporative efficiency

116 model). One objective of the paper is to assess this hypothesis using

117 data collected during the three-week National Airborne Field Experi-

118 ment 2006 (NAFE'06). Airborne L-band data are used to simulate the

119 40 km resolution pixels expected from SMOS, and a thermal-based

120 disaggregation algorithm is applied using MODIS and ASTER data.

121 While the first part of the paper focuses on estimating optimal

122 downscaling resolutions with MODIS and ASTER data, the second part

123 takes advantage of these results to develop a sequential model for

124 disaggregating ~40 km resolution microwave-derived soil moisture

125 to 500 m.

126 2. Data

127 The NAFE'06 was conducted from31 October to 20 November 2006

128 over a 40 km by 60 km area near Yanco (−35°N; 146°E) in

129 southeastern Australia. While a full description of the data set is

130 given in Merlin et al. (2008b), a brief overview of the most pertinent

131 details are provided here. The data used in this study are comprised of

132 wind speed measurements, L-band derived soil moisture and MODIS

133 data collected over the Yanco area on twelve days, and ground

134 measurements of 0–5 cm soil moisture and ASTER data collected over

135 three 9 km2 areas included in the Yanco area on one day (16

136 November) of the experiment.

137 2.1. Wind speed

138 Wind speed was monitored at 2 m by a meteorological station

139 (located in the southwestern corner of the Yanco area, see Fig. 1 of

140 Merlin et al. (2008b)) continuously during NAFE'06 with a time step

141 of
^
20 min

^
. The time series is illustrated in Fig. 1 of Merlin et al.

142 (2008a).

143 2.2. Ground soil moisture

144 In situ measurements of 0–5 cm soil moisture were made using

145 HDAS (Hydraprobe Data Acquisition System) on 16 November over

146three 9 km2 sampling areas (denoted as Y2, Y9 and Y12) included in

147the 40 km by 60 km Yanco area (Merlin et al., 2008b). Within each

1489 km2 sampling area, an average of three successive measurements

149was made ~1 m apart at each node of a 250 m resolution grid.

1502.3. PLMR-derived soil moisture

151The near-surface soil moisture was retrieved from the 1 km

152resolution brightness temperature collected by the Polarimetric L-band

153MultibeamRadiometer (PLMR) on eleven days over the 40 kmby 60 km

154area: 31 October, 2, 3, 4, 5, 7, 9, 13, 14, 16, 18 November (Merlin et al.,

1552009). The surface temperature data used for the PLMR soil moisture

156inversion came from MODIS data on clear sky days, and from in situ

157measurements on overcast days. The root mean square difference

158between PLMR-derived and ground-measured soil moisture at 1 km

159resolutionwas estimated to 0.
^
03 vol./vol. in non-irrigated areas. A bias of

160about−0.09
^
vol./vol. was obtained over pixels including some irrigation.

161This bias was explained by a difference in sensing depth between the

162L-band radiometer (~0–3 cm) and in situ measurements (0–5.7 cm),

163associated with a strong vertical gradient in the top 0–6 cm of the

164soil. Moreover on 3 November, which followed a rainfall event, the

165PLMR-derived soil moisture seemed to be affected by the presence of

166water intercepted by vegetation (Merlin et al., 2008b,a). In this study,

167data from this date were discarded.

1682.4. MODIS data

169The MODIS data used in this paper are the Version 5 MODIS/Terra

170(10:30 am) and MODIS/Aqua (1:30 pm) 1 km resolution daily surface

171temperature, and MODIS/Terra 250 m resolution 16-day Normalized

172DifferenceVegetation Index (NDVI). The16-dayNDVIproductwas cloud

173free. In between the first (31 October) and last day (18 November) of

1741 km resolution PLMR flights over the Yanco area, sixteen MODIS

175Version 5 surface temperature images with 0% cloud cover were

176acquired including nine aboard Terra (3, 5, 7, 8,9,10,11,17,18November)

177and seven aboard Aqua (31October, 3, 4, 6, 8, 9,17 November). Note that

178more cloud free images were obtained than from Version 4 surface

179temperature (Merlin et al., 2008a). The overestimation of cloud cover in

180Version 4 products and the subsequent increase of coverage inVersion 5

181land surface temperature products are discussed inWan (2008).MODIS

182data were re-sampled on the same 1 km resolution grid as PLMR-

183derived soil moisture, and MODIS surface temperature was shifted of

184(+1 km E; −0.5 km N) and (+2 km E; 0 N) for Terra and Aqua

185respectively to maximize the spatial correlation with 1 km resolution

186MODIS NDVI, which was used as a reference for the co-registration.

1872.5. ASTER data

188The ASTER/Terra overpass of the NAFE'06 sitewas on 16 November

1892006 at 10:30 am. Radiometric surface temperature was estimated

190from 90 m resolution L1B thermal radiances using the emissivity

191normalization method develop
^
ed by Gillespie (1985) and Realmuto

192(1990) and implemented in ENVI (ENvironment for Visualizing

193Images, http://www.ittvis.com/envi/) image processing software.

194Temperature was computed for each of the five thermal channels

195using a
^
uniform emissivity set to 1, and the actual radiometric

196temperature was assumed to be equal to the highest computed

197temperature. Pre-processing of ASTER-derived radiometric tempera-

198ture consisted of (i) registering the imagewith an accuracy better than

19990 m from reference points (ii) extracting data over three 12 km by

20012 km areas centered over the three 9 km2 sampling areas, (iii)

201removing data that were visually identified as cloud or as cloud shade

202on the ground (note that the scene was cloud free over the three

2039 km2 sampling areas Y2, Y9 and Y12)and (iv) re-sampling data at

204100 m resolution. An important point is that ASTER-derived radio-

205metric surface temperature was not corrected for atmospheric effects.
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206 The rationale is that only the spatial variability of surface temperature

207 (about the mean) is used by the thermal-based disaggregation

208 algorithm of Merlin et al. (2008a). In other words, there is no need

209 for absolute values of surface temperature. Moreover, atmospheric

210 corrections are generally made at a scale of several tens of kilometers

211 (Thome et al., 1998), which is larger than the application scale (12 km

212 in this study). Similar pre-processing was done on 15 m resolution

213 ASTER red and near-infrared reflectances to derive 100 m resolution

214 NDVI over the three 12 km by 12 km areas.

215 3. Towards an optimal downscaling resolution

216 The trade-off between downscaling resolution and accuracywithin a

217 disaggregation framework was already mentioned in a previous study

218 (Merlin et al., 2008a). However, Merlin et al. (2008a) did not apply the

219 downscaling approach at multiple resolutions. One objective of this

220 paper is to identify the optimal downscaling resolution(s) in terms of

221 disaggregation accuracy when using data from three sensors: MODIS

222 aboard Terra, MODIS aboard Aqua and ASTER.

223 3.1. Approach

224 The approach adopted is to (i) aggregate reference (either PLMR-

225 derived or HDAS-measured) soil moisture to the maximum spatial

226 extent (40 kmby60 km for PLMRand3 kmby3 km forHDAS), (ii) apply

227 the disaggregation method at a range of resolutions, and (iii) compare

228 the disaggregated soil moisture to the reference data for each down-

229 scaling resolution. The disaggregation of soil moisture thus requires

230 simultaneous observations of surface temperature and NDVI. Moreover,

231 validation requires soil moisture observations at a common spatial

232 resolution. Among the twelve dates with at least one (either Terra or

233 Aqua) MODIS image with 0% cloud cover, seven are concurrent with

234 PLMR 1 km resolution flights. For the other five dates (6, 8, 10, 11 and 17

235 November), the PLMR-derived soil moisture data of the day before are

236 used. This extrapolation is valid becauseno rainfall occurredbetween the

237 PLMR flight and MODIS overpass on each date. Data are listed in Table 1.

238 Data derived from MODIS, PLMR, ASTER and HDAS are then

239 aggregated to a range of spatial resolutions. MODIS surface tempera-

240 ture, MODIS NDVI and PLMR soil moisture are aggregated successively

241 from 1 to 12 km in 1 km increments over the 40 km by 60 km area.

242 Similarly, ASTER surface temperature, ASTER NDVI and HDAS soil

243 moisture are aggregated successively from 100 to 1200 m in 100 m

244 increments over the three 9 km2 sampling areas. One should note that

245 the spacing between groundmeasurements (250 m)was smaller than

246 the two first aggregation resolutions (100 and 200 m). For these two

247 resolutions, the pixels including no ground measurement were

248discarded from the analysis and only pixels immediately over the

249ground measurement sites included. For simplicity, the different

250spatial resolutions will be denoted using the subscript n, varying from

2511 (native resolution) to 12 (for instance, SMPLMR,4 refers to PLMR-

252derived soil moisture aggregated at 4 km resolution and SMmHDAS,5

253refers to HDAS-measured soil moisture aggregated at 500 m

254resolution).

2553.2. Disaggregation method

256The thermal-based disaggregation approach used in this paper is

257that developed in Merlin et al. (2008a). The equations below

258represent the case of disaggregation using MODIS data for SMOS-

259resolution pixels simulated by aggregating PLMR-derived soil moist-

260ure. Note that all equations also apply for disaggregation using ASTER

261data.

262The soil moisture SMMODIS,n disaggregated at n km resolution at first

263order around the SMOS-resolution soil moisture SMPLMR,40 is written as

SMMODIS;n = SMPLMR;40 +
∂SM

∂SEE
ΔSEEMODIS;n ð1Þ

264265with ∂SM/∂SEE being the partial derivative (evaluated at SMSMOS,40)

266of soil moisture to soil evaporative efficiency (SEE), and ΔSEEn the

267difference between the MODIS-derived SEE estimated at n km

268resolution and its average within the SMOS pixel. Eq. (1) can be

269further simplified by using the simple expression of SEE from Komatsu

270(2003). The downscaling relationship becomes

SMMODIS;n = SMPLMR;40 + SMC × SMPMODIS;n ð2Þ

271272with SMC being a semi-empirical parameter that depends on soil type

273and boundary layer conditions and SMP a normalized soil moisture

274proxy. In Merlin et al. (2008a), the SMP was defined as

SMPMODIS;n =
TMODIS;40 � TMODIS;n

TMODIS;40 � Tmin;1

ð3Þ

275276with TMODIS,n being the soil temperature estimated using MODIS-

277derived NDVI and surface temperature, TMODIS,40 its average within the

278SMOS pixel, and Tmin,1 theminimumMODIS-derived soil temperature at

2791 km resolution. Note that the minimum soil temperature was

280approximated to theminimumMODIS surface temperature. In Komatsu

281(2003), the param
^
eter SMC was calibrated for three different soils as

282function of wind speed

SMC = SMC0 1 +
γ

rah

� �

ð4Þ

283284with SMC0 (vol./vol.) being a soil-dependent parameter (ranging from

285about 0.01
^
vol./vol. for sand to 0.04

^
vol./vol. for clay), and rah (s m

−1)

286the aerodynamic resistance over bare soil. Aerodynamic resistance can

287be estimated from wind speed measurements u (m s−1) at reference

288height Z (m) given the soil roughness z0m (m)

rah =
1

k2u
ln

Z

z0m

� �� �2

ð5Þ

289290with k being the von Karman constant. The soil temperature in Eq. (3) is

291estimated as

TMODIS;n =
Tsurf ;MODIS;n � fv;MODIS;nTv;n

1� fv;MODIS;n

ð6Þ

292293with Tsurf,MODIS,n being the MODIS-derived surface temperature, Tv,n the

294vegetation temperature, and fv,MODIS,n the fractional vegetation cover. In

295Merlin et al. (2008a), the vegetation temperature was approximated to

Table 1t1:1

List of acquisition dates, mean PLMR-derived soil moisture, wind speed measured at

Terra (T) or Aqua (A) overpass time (10:30 am/1:30 pm), and minimum MODIS/Terra,

MODIS/Aqua and ASTER surface temperature.

t1:2
t1:3 Date SMPLMR,40 u (m s−1) Tmin,1 (°C) ASTER

t1:4 vol./vol. T A MODIS/T MODIS/A

t1:5 31 October 0.046 6.0 36.2

t1:6 4 November 0.11 7.6 36.5

t1:7 5 November 0.065 5.0 35.0

t1:8 6 November 0.065⁎ 7.5 37.6

t1:9 7 November 0.043 7.4 33.3

t1:10 8 November 0.043⁎ 9.4 6.3 31.7 35.4

t1:11 9 November 0.040 10.5 4.1 31.4 37.7

t1:12 10 November 0.040⁎ 11.9 36.1

t1:13 11 November 0.040⁎ 5.3 36.8

t1:14 16 November 0.11 13.0 19.0

t1:15 17 November 0.11⁎ 4.5 3.6 32.2 36.3

t1:16 18 November 0.055 5.1 34.7

⁎ PLMR data from the day before.t1:17
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296 Tmin,1 by assuming that vegetationwas not undergoingwater stress, and

297 fractional vegetation cover was estimated as

fv;MODIS;n =
NDVIMODIS;n � NDVImin

NDVI
max�NDVImin

ð7Þ

298299 with NDVImin and NDVImax being the NDVI value that corresponds to

300 bare soil and fully vegetated pixels respectively.

301 In this study, parameters SMC0, NDVImin and NDVImax, as well as

302 wind speed (rah) are assumed to be uniform within the SMOS pixel

303 (model parameters are listed in Table 2). This invariance assumption

304 will be further assessed in view of the disaggregation results obtained

305 at a range of spatial resolutions.

306 3.3. Downscaling resolution versus disaggregation accuracy

307 Two different criteria are developed to estimate an optimal

308 downscaling resolution for each of the three sensors. The first

309 criterion denoted C1 is the condition that the disaggregation error

310 evaluated at the downscaling resolution is equal to the observed sub-

311 pixel variability. Intuitively, if the error on disaggregated soil moisture

312 is smaller than the sub-pixel variability, then the downscaling

313 resolution is too coarse to represent the actual variability; and

314 conversely if the error is larger, then the downscaling resolution is

315 too fine. C1 can be formulated as

RMSEn;n =
―
SDn;1 ð8Þ

316317 with RMSEn,n being the root mean square error evaluated at the

318 (n km) disaggregation resolution between disaggregated and PLMR-

319 derived soil moisture, and
―
SDn;1 the mean standard deviation of 1 km

320 resolution PLMR-derived soil moisture computed within each n2 km2

321 pixel. The n km resolution error is computed as

RMSEn;n = ½ 1

N=n2
∑ðSMMODIS;n � SMPLMR;nÞ

2�
0:5

ð9Þ

322323 with N being the number of 1 km resolution pixels within the 40 km

324 by 60 km study area. The mean sub-pixel variability is computed as

―
SDn;1 =

1

N = n2
∑SDn;1 ð10Þ

325326

=
1

N = n2
∑

1

n2 � 1
∑ðSMPLMR;n � SMPLMR;1Þ

2
� �0:5

ð11Þ

327328

329 The second criterion denoted C2 is the condition that the error

330 evaluated at the native resolution (n=1) is minimum. In other words,

331 C2 is satisfied when the downscaling resolution makes the disag-

332 gregation output the most accurate with respect to the reference soil

333 moisture data obtained at the thermal sensor native resolution. C2 can

334 be formulated as

RMSEn;1 =
1

N
∑ðSMMODIS;n � SMPLMR;1Þ

2
� �0:5

isminimum ð12Þ

335336 with RMSEn,1 being the root mean square error evaluated at 1 km

337 resolution between the n km resolution disaggregated and 1 km

338 resolution PLMR-derived soil moisture.

339 The criteria C1 and C2 can be applied to the three farms Y2, Y9 and

340 Y12 by replacing in Eqs. (8)
^
to (12)

^
PLMR and MODIS by HDAS and

341 ASTER respectively.

3423.4. Application to MODIS

343The disaggregation algorithm of Eq. (2) is applied to each of the

344eight MODIS/Terra images (5, 7, 8, 9, 10, 11, 17 and 18 November) and

345to each of the six MODIS/Aqua images (31 October, 4, 6, 8, 9 and 17

346November), with a downscaling resolution ranging from 1 to 12 km.

347Fig. 1 plots the n km resolution disaggregated soil moisture versus the

348n km resolution PLMR-derived soil moisture for n=1, 2, 4, 8 and 12. It

349is apparent that the noise on disaggregated soil moisture is

350successively reduced by increasing the downscaling resolution.

351However, the range of soil moisture values is also reduced and

352consequently the larger the resolution, the more limited the spatial

353representation of the actual soil moisture heterogeneity is.

354As MODIS data were used for the PLMR soil moisture inversion,

355PLMR-derived and MODIS-disaggregated soil moisture are theoreti-

356cally not fully independent on clear sky days. However, it is argued

357that the cross-correlation of errors in the PLMR soil moisture

358measurements and the disaggregated soil moisture fields is not

359responsible for the good results in Fig. 1. One simple reason is that

360MODIS temperature has a positive impact on PLMR soil moisture

361retrievals (increasing with MODIS temperature) and a negative

362impact on disaggregated soil moisture (decreasing with MODIS

363temperature). Consequently, the cross-correlation of errors in PLMR-

364derived and MODIS-disaggregated soil moisture would actually make

365the results poorer.

366Fig. 2 plots the RMSEn,n evaluated at the downscaling resolution as

367a function of n for each MODIS overpass date, separated according to

368Aqua and Terra data. The average for all dates is also plotted for each

369platform. Themean error decreases from about 0.045
^
vol./vol. at 1 km

370resolution to about 0.015
^
vol./vol. at 12 km resolution for both Aqua

371and Terra. On the same graph is plotted the mean sub-pixel variability

372
―
SDn;1 for all dates. The mean sub-pixel variability increases from 0 to

373about 0.04
^
vol./vol. at 1 and 12 km resolution respectively for both

374Aqua and Terra. The standard deviation is equal to 0 at 1 km resolution

375because only one PLMR measurement is available per downscaled

376pixel at 1 km resolution. Following criterion C1 in Eq. (8), an optimal

377downscaling resolution exists where the RMSE and spatial variability

378lines cross. Inspection of Fig. 2 shows that themean optimal resolution

379is about 3.7 km for MODIS aboard Aqua and 4.2 km for MODIS aboard

380Terra. Although relatively similar for both sensors, the RMSE of

381disaggregated soil moisture are remarkably more spread about the

382mean for Terra than for Aqua. The more consistent disaggregation

383results using MODIS/Aqua compared to MODIS/Terra was already

384mentioned in (Merlin et al., 2008a) when applied to 10 km resolution.

385This is due to the stronger coupling between SEE and soil moisture at

3861:30 pm than at 10:30 am.

387Fig. 3 plots the average and standard deviation of the error RMSEn,1
388(evaluated at the thermal sensor native resolution) as a function n for

389Aqua and Terra data. The mean error is higher for Terra than for Aqua,

390which is consistent with previous results. For both Terra and Aqua, the

391mean error slightly decreases as spatial resolution increases from 1 to

3925 km, and slightly increases for spatial resolutions greater than 5 km.

393Following criterion C2, an optimal downscaling resolution is identified

394at about 5 km for both MODIS/Terra and MODIS/Aqua. Nevertheless,

395the minimum of RMSEn,1 is not very well defined since the dynamics

396of the mean value are smaller than the variability observed within the

Table 2 t2:1

Model parameters.

t2:2
t2:3Parameter Value Unit Source

t2:4SMC0 0.04 vol./vol. Komatsu (2003)

γ 100 s m−1 Komatsu (2003)

t2:6z0m 0.005 m Liu et al. (2007)

t2:7NDVImin 0 − Agam et al. (2007)

t2:8NDVImax 1 − Agam et al. (2007)
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397 data set (shown on Fig. 3 by the standard deviation σ). One limitation

398 of the criterion C2 is that it includes both the uncertainty in the

399 disaggregation output and the uncertainty in PLMR-derived soil

400 moisture at the observation scale, so that the RMSEn,1 can never be

401 lower than the measurement error at the native resolution.

402In summary, the application of criteria C1 and C2 to MODIS/PLMR

403data demonstrates that the optimal downscaling resolution in terms

404of disaggregation accuracy (using the NAFE'06 data set) is about 4 to

4055 km. Also, criterion C1 is better defined than C2 since it smooths out

406the uncertainties associated with random errors in PLMR-derived soil

407moisture.

Fig. 1. Scatterplots of the MODIS-disaggregated versus PLMR-derived soil moisture using all twelve days of data for different downscaling resolutions: 1 km, 2 km, 4 km, 8 km and

12 km. The correlation coefficient R2 is indicated on each plot.

Fig. 2. Estimating an optimal downscaling resolution by comparing the root mean

square error (RMSE) and the sub-pixel soil moisture variability at the disaggregation

scale. The mean (thick line) RMSE is equal to the mean sub-pixel variability at about

4 km for both MODIS/Aqua and MODIS/Terra. The other lines represent the different

dates.

Fig. 3. Root mean square error (RMSE) evaluated at 1 km resolution for downscaling

resolutions increasing from 1 to 12 km. Although the standard deviation (σ) between

dates is high, the RMSE is minimum at 5 km for both MODIS aboard Aqua and MODIS

aboard Terra.
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408 3.5. Application to ASTER

409 The same disaggregation approach is applied to the three 9 km2

410 sampling areas (Y2, Y9 and Y12) using the ASTER/HDAS data collected

411 on 16 November, with a downscaling resolution ranging from 100 to

412 1200 m. Fig. 4 plots the n×100 m resolution disaggregated soil

413 moisture versus the n×100 m resolution aggregated HDAS measure-

414 ments for n=1, 2, 4, 5, 8 and 12. As with MODIS/PLMR data, it is

415 apparent that the accuracy on disaggregated soil moisture increases

416 (and the range of downscaled values decreases) as the downscaling

417 resolution increases. In Fig. 4, three data points are clearly aside from

418 the 1:1 line for downscaling resolutions of 100 m and 200 m. These

419 correspond to the pixels that included a portion of rice field in Y9.

420 Since rice crops were flooded during NAFE'06, no HDAS measurement

421 was made. Consequently, the nearby ground measurements did not

422 represent well the overall “wetness” (including both soil moisture and

423 standing water) of the surface that the disaggregation algorithm

424 actually represents.

425 When comparing Figs. 1 and 4, one observes that the disaggrega-

426 tion approach is much more accurate when applied to MODIS data

427 than when applied to ASTER data. In particular for n=8, the

428 correlation coefficient is about 0.80 for MODIS and0.60 for ASTER.

429 The relatively poor results obtained using ASTER data can be

430 interpreted as a consequence of the spatial variability of soil moisture

431 at fine scale. As the typical crop size in the study area was about 100–

432 300 m, soil moisture fields were much more heterogeneous at 100 m

433 resolution than at 1 km and above. It is suggested that point-scale

434 measurements aggregated at 100–1000 m resolution were generally

435 more uncertain than 1 km resolution remotely-sensed PLMR-derived

436 soil moisture.

437 Fig. 5 plots the RMSEn,n evaluated at the downscaling resolution as

438 a function of n. It is apparent that the error is approximately constant

439 at 100 m and 200 m resolution, which is consistent with the fact that

440 the spacing (250 m)of HDAS measurements was larger than the

441 thermal sensor native resolution so that the spatial variability of HDAS

442 measurements is not represented below 300 m. For all farms, the error

443 is maximum at 200 m, and is minimum at 1200 m resolution with a

444 value of about 0.02
^
vol./vol. On the same graph is plotted the mean

445 sub-pixel variability
―
SDn;1 for each farm. The mean variability is about

446 0.02 vol./vol. at n=1 and is generally maximum at n=12. Note that

447its value at n=1 is not equal to zero as in the case of PLMR data,

448because three successive measurements were made at each sampling

449point, providing the mean local-scale variability of HDAS measure-

450ments. Following criterion C1 in Eq. (8), the optimal downscaling

451resolution for each farm is identified at 300 m, 400 m and 600 m for

452Y2, Y9 and Y12 respectively.

Fig. 4. Scatterplots of the ASTER-disaggregated versus ground-measured soil moisture on 16 November for different downscaling resolutions: 100 m, 200 m, 400 m, 500 m, 800 m

and 1200 m. Highlighted pluses correspond to pixels containing standing water (flooded rice fields). The correlation coefficient R2 is indicated on each plot.

Fig. 5. Root mean square error (RMSE) evaluated at the downscaling resolution (top)

and at 100 m resolution (bottom) for downscaling resolutions increasing from 100 to

1200 m.
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453 Fig. 5 also plots the error RMSEn,1 evaluated at the ASTER native

454 resolution (100 m)as a functionofn. Althoughoneobserves aminimum

455 of the error for Y12 atn=7, nominimum is observed for the other farms

456 (Y2 and Y9). Several hypotheses can be postulated to explain these

457 constrasting results. First, when using groundmeasurements instead of

458 airborne L-band data, reference soil moisture data are representative of

459 the point-scale andmay not be representative of the scales integrated to

460 several hundreds of meters, especially over highly heterogeneous

461 irrigated areas like in Y9. Second, the farm-scale variability in Y2 was

462 about the same as the local-scale variability (uncertainty in a single

463 HDAS measurement). Consequently, the disaggregation over that farm

464 was not expected to improve the accuracy of soil moisture at fine scale.

465 Third, it was seen in the case of MODIS/PLMR that criterion C2 was not

466 very stable from date to date, so no clear result can be expected from

467 only one date with ASTER/HDAS.

468 In summary, the application of criteria C1 and C2 to ASTER/HDAS

469 data suggests that the optimal downscaling resolution in terms of

470 disaggregation accuracy (using the NAFE'06 data set) is about 4 to 5

471 times the thermal sensor resolution. Criterion C1 is again found to be

472 better defined than C2.

473 4. Sequential disaggregation

474 The general approach of the sequential disaggregation using multi-

475 resolution thermal sensors is presented in Fig. 6. The ~40 km resolution

476 SMOS-scale soil moisture generated from PLMR data on 16 November is

477disaggregated at an intermediate resolution (4 km in Fig. 6) using

478MODIS data and the MODIS-disaggregated soil moisture is disaggre-

479gated again at a finer resolution using ASTER data. Note that theMODIS

480data on 16 November were not cloud free over the 40 km SMOS-scale

481pixel so that the MODIS data on 17 November were used instead.

4824.1. A sequential model

483The sequential model is written as

SMSi+1
= SMSi

+
∂SM

∂SEE
ΔSEESi+1

ð13Þ

484485with Si being the sensor of index i. In our case, S0, S1 and S2
486corresponds to SMOS, MODIS and ASTER respectively. By using this

487notation, Eqs. (2) and (3) become

SMSi+1
= SMSi

+ SMC × SMPSi+1
ð14Þ

488489with

SMPSi+1
=

TSi � TSi + 1

TSi � Tmin

ð15Þ

490491From the above equations, one is able to identify the parameters that

492do not vary with scale. In particular, the minimum soil temperature

Fig. 6. Schematic diagram presenting the sequential disaggregation of SMOS-scale soil moisture using MODIS and ASTER data.
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493 Tmin and the soil property SMC are assumed to be scale-invariant. An

494 important point is that these assumptions might not be valid in the

495 case of heterogeneous soil within the SMOS-scale pixel. In particular,

496 Merlin et al. (2008a) demonstrated that estimating SMC at high

497 resolution improved significantly the disaggregation accuracy. How-

498 ever, the scale-invariance of SMC was not tested in this paper since

499 only one ASTER image was available whereas a time series would be

500 required (Merlin et al., 2008a).

501 4.2. Application

502 Based on the results of the previous section, the intermediate

503 resolution is set to four times the MODIS native resolution (4 km) and

504 the target resolution to five times the ASTER native resolution

505 (500 m). In practice, three data sets were derived by defining a

506 4 km resolution pixel centered on each of the three sampling areas

507 (see black outlines in Fig. 6). This pixel was used to create over the

508 SMOS-scale pixel a 4 km resolution grid, onwhich the 1 km resolution

509 MODIS and PLMR data were aggregated. The sequential model of

510 Eq. (14) was finally applied to each data set.

511 Fig. 7 plots the 4 km resolutionMODIS-disaggregated soil moisture

512 versus the 4 km resolution PLMR-derived soil moisture for each of the

513 three data sets. The rootmean square error is 0.026
^
vol./vol.

^
Fig. 7 also

514 plots the 500 m resolution ASTER-MODIS-disaggregated soil moisture

515 versus the 500 m resolution HDAS-measured soil moisture in each

516 farm. The sequentially disaggregated soil moisture has a RMSE of

517 0.062
^
vol./vol. and a bias of −0.045

^
vol./vol

^
. Results are degraded

518 compared to the case when the ASTER-disaggregated soil moisture

519 was based on HDAS-aggregated measurements and not on MODIS-

520 disaggregated soil moisture. The increase of uncertainty could be due

521to the disaggregation method and/or the soil moisture retrieval

522algorithm. The bias on disaggregated soil moisture is estimated as
^
523−0.047,−0.040 and−0.049

^
vol./vol. for Y2, Y9 and Y12 respectively.

524Although a persist
^
ent bias of about −0.045

^
vol./vol. tends to

525corroborate the hypothesis of a bias in the PLMR-derived soil moisture

526on 16 November, no conclusion can be drawn from only three

527independent data sets.

528Errors on disaggregated soil moisture might also come from the

529disaggregation method itself, which may not fully represent the non-

530linear behaviour of the relationship between SEE and soil moisture.

531The effect of this non-linearity is clearly visible in Fig 7 where MODIS
^
-

532disaggregated soil moisture tends to saturate at PLMR
^
-derived soil

533moisture values higher than 0.20
^
vol./vol

^
. Moreover, our sequential

534model did not account for the propagation of errors in the

535disaggregation. In particular, a random error in MODIS-disaggregated

536soil moisture at 4 km resolution would behave as a bias on 500 m

537resolution ASTER-MODIS-disaggregated soil moisture within each

5384 km resolution pixel.

539One way to limit the increase of uncertainty associated with error

540propagations would be to choose a coarser target resolution. In

Fig. 7. Scatterplots of the 4 km resolutionMODIS-disaggregated versus 4 km aggregated

PLMR-derived soil moisture (top) and the 500 m resolution ASTER-MODIS-disaggre-

gated versus 500 m HDAS measurements (bottom).

Fig. 8. Scatterplots of the 1 km resolution ASTER-MODIS-disaggregated soil moisture

versus HDAS measurements for three different intermediate resolutions: 4 km, 8 km

and 12 km, and for the case of “no intermediate resolution”.

Fig. 9. Root mean square error on the 1 km resolution ASTER-MODIS-disaggregated soil

moisture for an intermediate resolution increasing from 3 to 12 km. The error obtained

in the case of “no intermediate resolution” is also indicated.
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541 particular, output errors are expected to be reduced by setting the

542 downscaling resolution to a value larger than the resolution that was

543 found to be optimal when using one sensor (MODIS or ASTER)

544 independently from the combination of both.

545 4.3. Sensitivity to intermediate resolution

546 Due to propagation errors from the coarser to finer resolutions, the

547 combination of multi-source (MODIS and ASTER) data is likely to

548 increase the disaggregation uncertainty. Consequently, one may argue

549 that a more efficient approach than combiningMODIS and ASTER data

550 would be the direct disaggregation of SMOS-scale soil moisture using

551 ASTER data only. The point is the swath width of ASTER (60 km) is

552 much narrower than that of SMOS (~1000 km). In particular, the

553 40 km by 60 km area covered by PLMR (SMOS-scale pixel) during

554 NAFE'06 was not entirely covered by ASTER. Therefore, the disag-

555 gregation of SMOS-scale soil moisture requires thermal data at an

556 intermediate resolution (MODIS) before the use of high-resolution

557 (ASTER) data over smaller focus areas.

558 To assess the sensitivity of disaggregation results to intermediate

559 resolution, an additional analysis is presented. The target resolution is

560 nowfixed to1 km, and the intermediate resolution is increased from3 to

561 12 km in 1 km increments. The 1 km resolution ASTER-MODIS-

562 disaggregated soil moisture is then compared to groundmeasurements

563 aggregated at 1 km resolution. Pre-processing included (i) defining a

564 pixel with a resolution ranging from3 to 12 kmand covering each of the

565 three 9 km2 sampling areas (ii) creating a 3–12 km resolution grid over

566 the SMOS-scale pixel based on that pre-defined pixel and

567 (iii) aggregating 1 km resolution MODIS and PLMR data at 3
^
–12 km

568 resolution on thatpre-defined grid. The sequentialmodel of Eq. (14)was

569 finally applied to each data set for an intermediate resolution ranging

570 from 3 to 12 km.

571 Fig. 8 plots the 1 km resolution ASTER-MODIS-disaggregated

572 versus HDAS-measured soil moisture for three different intermediate

573 resolutions: 4, 8 and 12 km and for the case of “no intermediate

574 resolution”. For the case “no intermediate resolution”, the SMOS pixel

575 is disaggregated at 1 km resolution directly using only the ASTER data.

576 As the ASTER image did not entirely cover the SMOS pixel, the mean

577 temperature required in Eq. (15) was estimated within the overlap

578 area of ASTER and PLMR data, which represented about 80% of the

579 SMOS pixel. The RMSE on sequentially disaggregated soil moisture is

580 0.060 and 0.077
^
vol./vol., the bias −0.049 and −0.063

^
vol./vol., and

581 the correlation coefficient 0.68 and 0.64 at 4 km and
^
~
^
40 km

582 resolution respectively. The error is plotted as a f
^
unction of

583 intermediate resolution in Fig. 9. It is apparent that the error is

584 minimum at 3–5 km and slightly increases with intermediate

585 resolution, meaning that the optimal intermediate resolution is the

586 highest. Note that the oscillation of the RMSE around its upward trend

587 is mainly due to the change of the spatial extent of input data each

588 time data are aggregated to a different intermediate resolution. For

589 intermediate resolutions ranging from 3 to 12 km, the error is lower

590 than that obtained in the case of “no intermediate resolution”. This

591 shows that the use of MODIS data in the sequential disaggregation

592 increases the accuracy on ASTER-disaggregated soil moisture. It is

593 suggested that the use of an intermediate resolution between SMOS

594 and ASTER is able to reduce the non-linearity effects across scales

595 between soil evaporative efficiency and soil moisture, despite the

596 increase of uncertainties associated with error propagations.

597 5. Conclusion

598 A sequential model was developed to disaggregate microwave-

599 derived soil moisture recursively from 40 km to 4 km resolution using

600 MODIS data and from 4 km to 500 m resolution using ASTER data. The

601 airborne and ground data collected during the three-week NAFE'06

602 were used to simulate coarse-scale pixels, and a thermal-based

603disaggregation algorithm was applied using 1 km resolution MODIS

604and 100 m resolution ASTER data. A key step in the procedure was to

605identify an optimal downscaling resolution in terms of disaggregation

606accuracy and sub-pixel soil moisture variability by using two criteria.

607The first criterion C1 was to look for the spatial resolution such that

608the RMSE evaluated at the downscaling resolution be equal to the sub-

609pixel soil moisture variability, while the second criterion C2 was to

610look for the spatial resolution that minimized the RMSE evaluated at

611the thermal sensor native resolution (1 km for MODIS or 100 m for

612ASTER). Very consistent optimal downscaling resolutions were

613obtained for MODIS aboard Terra, MODIS aboard Aqua and ASTER,

614which were 4 to 5 times the thermal sensor resolution.

615The
^
~
^
40 km resolution SMOS-scale soil moisture generated from

616airborne L-band data on 16 November was disaggregated at an

617intermediate resolution (4 km) using MODIS data and the MODIS-

618disaggregated soil moisture was disaggregated again at 500 m

619resolution using ASTER data. The RMSE between the 500 m resolution

620sequentially-disaggregated and ground-measured soil moisture was

6210.062
^
vol./vol. with a bias of−0.045

^
vol./vol. and soil moisture values

622ranging from 0.08 to 0.40
^
vol./vol. To assess the impact of the

623intermediate resolution on disaggregation accuracy, a different

624approach was proposed by setting the target resolution to 1 km and

625by increasing the intermediate resolution from 3 to 12 km. The

626optimal intermediate resolution was found to be 3–5 km, meaning

627that the use of MODIS data reduced the non-linearity effects across

628scales between SMOS and ASTER resolutions, despite the increase of

629uncertainties associated with the combination of MODIS and ASTER

630data.

631Beyond the application of multi-resolution soil moisture data to a

632range of environmental sciences, such an approach could greatly

633facilitate the validation of coarse-scale microwave-derived soil

634moisture data using point-scale ground measurements. The sequen-

635tial model is being implemented over the Valencia Anchor Station area

636(Lopez-Baeza et al., 2007) in the SMOS calibration/validation

637framework.

638Note that the operational application of thermal-based methods

639would require high-spatial-resolution thermal data acquired at high-

640temporal-resolution, typically 2–3 days. However, high-spatial-reso-

641lution (ASTER-like) thermal data are currently available on a monthly

642basis, which raises the issue of disaggregating low-spatial-resolution

643(MODIS-like) thermal data at high-temporal-resolution (Agam et al.,

6442007).

645Refinements of the sequential disaggregation method would

646include a physical calibration of the soil evaporative efficiency

647model, which is at present semi-empirical. Moreover, the disaggrega-

648tion accuracy is affected by the non-linearity of that exponential

649function. Recent developments have accounted for the non-linearity

650of the models used in the disaggregation of remote sensing data with

651the projection technique (Merlin et al., 2006) or the Taylor series

652including derivative terms at orders superior to 1 citepmerlin08c. The

653applicability of those approaches and their stability still need to be

654confirmed at a range of spatial resolutions.
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