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Abstract—Scene classification of high resolution remote sensing
(RS) images has attracted increasing attentions due to its vital
role in a wide range of applications. Convolutional Neural
Networks (CNNs) have recently been applied on many computer
vision tasks and have significantly boosted the performance
including imagery scene classification, object detection and so on.
However, classification performance heavily relies on the features
that can accurately represent the scene of images, thus, how to
fully explore the feature learning ability of CNNs is of crucial
importance for scene classification. Another problem in CNNs
is that it requires a large number of labeled samples, which is
impractical in RS image processing. To address these problems, a
novel sparse representation-based framework for small-sample-
size RS scene classification with deep feature fusion is proposed.
Specially, multi-level features are first extracted from different
layers of CNNs to fully exploit the feature learning ability of
CNNs. Note that the existing well-trained CNNs, e.g., AlexNet,
VGGNet, and ResNet50, are used for feature extraction, in which
no labeled samples is required. Then, sparse representation-based
classification is designed to fuse the multi-level features, which
is especially effective when only a small number of training
samples are available. Experimental results over two benchmark
datasets, e.g., UC-Merced and WHU-RS19, demonstrated that the
proposed method can effectively fuse different levels of features
learned in CNNs, and clearly outperform several state-of-the-art
methods especially with limited training samples.

Index Terms—scene classification, remote sensing, sparse rep-
resentation, deep feature learning, small training size

I. Introduction

SCENE classification of remote sensing (RS) images has

received increasing attentions. In recent years, with the

rapid development of satellite RS technology and a series of

earth observation programs, RS images have greatly promoted

the development of techniques to scene classification, object

detection, and so on. The aim of scene classification is to

automatically assign semantic labels to given images based

on a priori knowledge. Scene classification has been used

in many practical applications, such as land-use/land-cover

investigation, environmental monitoring, traffic supervision

and urban planning [1]–[4]. Although great efforts have been

made, scene classification still is challenging in the field of
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RS image processing areas, because it is requisite to interpret

RS images with more intelligent approaches [5]–[8].

In the past decades, many researchers assumed that RS

images from the same category owned similar statistical-

ly holistic attributes, and lots of attentions had been paid

to constructing various effective features. Color and texture

histograms are representative low-level features that were

early used for such a purpose [9], [10]. Afterwards, Scale

Invariant Feature Transform (SIFT) and Histogram of Oriented

Gradients (HOG), which can extract local features of scene

images [11], [12], have improved the performance of scene

classification [13]–[15]. However, these low-level features may

not adequately represent semantic information of complex RS

images. To overcome this limitation, many mid-level features

are utilized for scene classification, in which the bag-of-

words (BOW) model [16]–[18] is one of the most effective

methods. For example, a scene classifier with local-global

BOW features was proposed in [19], which can combine

local and global features at the histogram level. In addition,

other models based on mid-level features such as the Latent

Dirichlet Allocation (LDA) and spatial class LDA (scLDA)

model [20]–[23] were proposed for scene classification. How-

ever, the aforementioned features generally require a priori

knowledge and domain expert experience, and lack robustness

and flexibility.

Recently, deep learning (DL) has demonstrated its advan-

tages in the field of computer vision. In particular, Convo-

lutional Neural Network (CNN) based methods have greatly

improved the performance of image classification and object

detection, such as classical AlexNet [24], VGGNet [25], Incep-

tion Net [26] and ResNet [27]. These CNN-based frameworks

can automatically learn to extract high-level discriminative

features which have been widely used. Meanwhile, CNN-

based methods are also used in RS, and achieve promising

results. In 2016, the deep CNN was firstly used for scene

classification in RS and greatly enhanced the performance

[28]. Zhou et al. investigated the extraction of deep feature

representations based on pre-trained CNN architectures for

scene classification tasks [29]. Some work attempted feature

fusion for scene classification. For example, a fusion strategy

for integrating multilayer features of a pretrained CNN for

scene classification and achieved the competitive performance

compared with fully trained CNN models, fine-tuning CNN

models, and other related models [30]. The multilayer s-

tacked covariance pooling was proposed to combine multilayer
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feature maps obtained by pre-trained CNN models [31]. In

addition, metric learning was also introduced to learn much

more discriminative features to boost the performance of scene

classification [32]. Recently, extensive CNN-based methods

have been proposed to address the limitations in RS. For

example, a scale-free CNN was introduced to address the

problem that fine-tuning process often needs fixed-size input

images [33]. The marginal center loss with an adaptive margin

model was presented to overcome the limitation of images

with large intra-class variations [34]. Recently, a deep few-

shot learning method for the scene classification has been

developed [35]. Generally, deep learning based classification

algorithms, such as CNN-based ones, require a large amount

of labeled data for the system to learn, which amplifies the

computational complexity and also the risk of under-fitting.

SR own powerful ability to represent higher dimensional data

using few measured values, which is especially effective for

classification task with small number of training samples.

Thus, in order to conduct scene classification under small-

training-sample situation, we adopt SRC as the final classifier.

The aforementioned CNN-based methods implement scene

classification through designing more effective features. There-

fore, extracting those features that adequately represent the

scene in images plays a crucial role in RS scene classification.

However, existing methods focus on extracting high-level top-

layer features, but ignoring the intermediate-layer features

for convulutional layers. Actually, different types of features,

including top layer features and intermediate convolutional

features, own different strengths and limitations in a specific

task. The top layer features can well represent the overall

content of RS images, while intermediate features for con-

vulutional layers may describe sufficient partial details and

object information. Besides the performance of SRC is limited

by the features and algorithms. Thus, we propose the multi-

layer feature extraction and fusion strategy. In this way, the

similarity of a test sample to the training samples will be

measured in the space fromed by multi-level features extracted

from CNNs, and such compromise between top-layer features

and intermediate convolutional features will be benifical for

classification.

In brief, we analyze the advantages and disadvantages of

SRC and CNNs under the condition of small samples, and

combine these two methods to solve the problem of scene

classification of small sample remote sensing images. To make

fully use of the advantages of multi-level features learned from

CNNs, a novel sparse representation framework is constructed

to fuse and balance the contribution of these two types of

features in this paper. Different from the previous methods

based on CNNs which need to be trained with large-scale

scene images, our proposed method extracts different levels

of features from well-trained CNNs, avoiding the limitation

of training CNN with large-scale RS imagery samples. In

addition, this approach collaborates multi-level features by

sparse representation and achieves much more competitive

performance.

The major contributions of our work are as follows.

1) We propose the strategy to fuse multi-level features

including those from intermediate convolutional layers

and the top layer for scene classification, which is greatly

different from the existing work using single feature from

the top layer.

2) We present a novel sparse representation classification

framework which builds the fusion classifier correspond-

ing to multi-level features, and fuses their contributions

for scene classification of RS images.

3) The proposed method addresses the few-shot classifica-

tion problem of RS images, since multi-level features

are extracted from the well-trained CNNs. As a result,

competitive results are obtained through the sparse rep-

resentation classification framework based on multi-layer

framework.

The remainder of this paper is organized as follows. In Sec-

tion II, the recent CNN-based scene classification methods and

the progress of feature extraction are introduced. In Section III,

the details of our proposed sparse representation framework

and feature fusion strategy are described. In Section IV,

experiments are conducted to validate the proposed method.

Finally, the conclusion is drawn in Section V.

II. RelatedWork

A. Features for Scene Classification

Features used for representing scene images for classi-

fication can be divided into the following two categories:

handcrafted features and DL features.

1) Handcrafted Features: Most early methods in scene

classification of RS images are based on handcrafted features.

For example, Zohrevand et al. applied the local SIFT features

to extract key points and the corresponding descriptors of

scene images [11]. Sun et al. presented a popular method

called boosted HOG features to detect pedestrians and ve-

hicles in static images [36]. Gan et al. proposed a measure

of continuous interval rotating detection sliding window of

HOG feature in RS images for ship detection [37]. As the

development of scene classification technology, researchers

have proposed methods using the combination of multiple

different features. For example, Chu and Zhao proposed a

feature fusion scheme for scene classification by integrating

the global GIST and local SIFT with weights, and improved

the classification performance [38]. Local region character-

istics and overall structure of scene images are used for

scene classification by combining different local and global

descriptors [39]. Zhao et al. proposed a concentric circle-

structured multi-scale BOW method using multiple features

for land-use scene classification [18]. Nevertheless, the rep-

resentation ability of handcrafted features grows weaker with

the increasing complexity of scene classification tasks.

2) DL Features: CNNs have been widely applied as the fea-

ture extractor in computer vision tasks due to their surpassing

performance. Cheng et al. investigated the use of deep CNNs

for scene classification [28]. Fang et al. adopted the pre-trained

CaffeNet model with fine-tuning, the proposed method was

robust and efficient [40]. Liu et al. presented a random-scale

Stretched Convolutional Neural Network (SRSCNN) to solve

scale variations of the same object in different scenes [41]. Li

et al. employed a deep feature fusion model which extracted
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Fig. 1. The overall flowchart of our proposed sparse representation classification framework to fuse multi-level features extracted from both the intermediate
convolutional layers and the top layers in a CNN for RS imagery scene classification.

features from pre-trained and fine-tuned ResNet50 and VGG16

[42]. Tian et al. proposed a CapsNet-based network structure

called Res-CapsNet for RS scene classification, and achieved

improved performance [43]. Genrally, these methods require a

large number of training samples whether by using handcraft

features or deep features. When the number of training sample

is limited, their performance may degrade a lot.

B. Sparse Representation Classification

Sparse representation is a signal representation in a small

vector space comprising of few non zero entries. In the recent

image classification applications, sparse representation has

become a vital method because of its ability to represent

higher dimensional data. Ali et al. proposed a mathematical

approach to map the sparse representation vector to Eu-

clidian distances and achieved better performance [44]. Hsu

et al. proposed to integrate spectral and spatial information

into a joint sparse representation simultaneously in order to

increase performance of hyperspectral image classification

[45]. Rong et al. presented a spectral-spatial classification

framework based on joint superpixel-constrained and weighted

sparse representation for HSI classification [46]. Sumarsono

et al. improved the performance of various classifiers using the

traditional linear discriminant analysis followed by maximum

likelihood classifier with low-rank subspace representation

[47]. Sheng et al. presented a cluster structured sparse coding

(CSSC) method by unifying sparse coding and structural

clustering [48]. In other vision fields, Jiang et al. proposed a

face recognition algorithm based on sparse representation and

feature fusion to improve the accuracy of face recognition [49].

Lan et al. proposed a new joint sparse representation model

to properly select appropriate features for robust feature-

level fusion to address different types of variations such as

illumination, occlusion, and pose [50].

Although these algorithms based on sparse representation

or feature fusion have achieved great classification perfor-

mance, they use the low-level features like Gabor and HOG

instead of deep features learned in CNN. These handcrafted

features limit the classification ability of sparse representation

framework. In order to combine the advantages of CNNs and

sparse representation classification, we proposed a novel s-

parse representation-based framework with deep feature fusion

strategy.

III. The ProposedMethod

A. Overview of the Proposed Classification Scheme

In order for remote sensing scene classification under small

training samples, as shown in Fig 1, we proposed a novel
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sparse representation based feature fusion framework to ex-

plore the feature learning advantage of well-trained CNNs and

small-training-sample classification superority of SR classifier.

The proposed framework mainly consists of the following two

modules:

1) Feature Extraction and Dictionary Construction: Aim-

ing at addressing the few-shot classification, the well-trained

CNNs, e.g., AlexNet [24], VGGNet [25], ResNet [27], etc., is

used for feature representation, by which the large amount of

labeled samples to train CNNs are avoided. Moreover, in order

to well explore the feature representation ability of existing

well-trained CNNs, multi-level features are used for feature

representation of remote sensing scenes.

2) Feature Fusion and Sparse Representation Classifica-

tion: A sparse representation model is used to fuse these multi-

level features for remote sensing scene classification, which

balance the contribution of features from different layers of

CNNs. Moreover, the proposed SR-based fusion also does not

require large amont of training samples for classification.

B. Feature Extraction and Dictionary Construction

Inputs Conv2_2 Conv3_4 Conv4_4 Conv5_4

Fig. 2. Visualizations of convolutional feature maps. The feature maps are
extracted from different convolutional layers of VGG19-Net.

Generally, features from last or second fully connected

layers of a well-trained CNN are used as features to represent

the scene. However, the output of many intemediate layers

also imply many useful features. Fig. 2 visualizes some

feature maps derived from different convolutional layers of

VGG19-Net. It is observed that these features generated by

intermediate convolutional layers have high-level semantic

representation. In order to fully explore the feature representa-

tion ability of these well-trained CNNs, features from not only

fully connected layers, but also intermediate convonlutional

layers are used to represent remote sensing scene.

Generally, the feature output of intermediate convonlutional

layers are highly redundant, which significantly increases the

computation complexity and even weakens the performance of

subsequent scene classification. Therefore, in order to reduce

redundant information and computational complexity, a simple

but effective strategy called global average pooling (GAP) is

adapted to generate a new processed feature. Assume that the

feature extracted from the j-th feature map of the i-th used

intermediate convolutional layer is denoted as fConvi
1≤ j≤chi

∈ Rwi∗hi ,

in which wi, hi, and chi is the width, height, and the channel

number of the i-th used intermediate convolutional layer. When

the GAP strategy is used for dimensionality reduction, the

feature from the i-th used intermediate convolutional layer

fConvi can be obtained as

fConvi =
[

GAP
(

fConvi
1

)

, · · · ,GAP
(

fConvi
chi

)

]

∈ Rchi . (1)

As a result, the feature extracted from all the selected convo-

lutional layers can be denoted as

fConv =
[

fConv1
, · · · , fConvn] ∈ Rd1 , (2)

in which n is number of the selected convolutional layers,

and d1 =
∑n

1 chi is the dimension of the multi convolutional

feature fConv. Similarly, the feature extracted from the top layer

is denoted as fTop ∈ Rd2 .

The second step of this module is separately constructing

dictionaries for sparse representation classification with multi-

level features. Let the convolutional feature dictionary consist-

ing of c classes be denoted as

DConv =
[

DConv
1 ,DConv

2 , · · · ,DConv
c

]

∈ Rd1×N
, (3)

with N being the total number of training samples for c classes.

DConv
i

is the multi convolutional features of ni training samples

(
∑c

i=1 ni = N) from the i-th class, denoted as

DConv
i =

[

fConv
i1
, fConv

i2
, · · · , fConv

ini

]

∈ Rd1×ni . (4)

In addition to the feature dictionary from convolutional

layers, another feature dictionary from fully connected layers

is also considered, which is represented as

DTop =
[

D
Top

1
,D

Top

2
, · · · ,D

Top
c

]

∈ Rd2×N
, (5)

where D
Top

i
, i = 1, 2, . . . , c represents features of fully connect-

ed layers for the i-th training sample. Generally, the outputs

of fully connected layers from a well-trained CNNs are used

for such D
Top

i
, i = 1, 2, . . . , c.

C. Feature Fusion and Sparse Representation Classification

The sparse representation classification (SRC) framework

is first introduced for face recognition and proved to be

an effective tool for classification. In SRC, it is assumed

that a testing sample can be well approximated by a linear

combination of a few atoms from an over-complete dictionary

in which the number of atoms is far more than the dimensions.

Under the ideal conditions, the coefficients of the atoms that

have no relationship with the class of the testing sample tend

to be zeros, which leads the coefficient vector to be sparse. In

other words, the testing sample can be represented by training

samples of the same class but with different weights. Thus,

its class label can be predicted by finding a set of training

samples that produce the best approximation. Mathematically,

to find these training samples, we need to solve the following

optimization problem.

min
α

‖α‖0 s.t. y = Dα, (6)



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3084441, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5

where y represents a testing sample, D is the constructed

dictionary, and α the coefficient of sparse representation,

besides ‖α‖0 counts the number of non-zero elements in α.

After obtaining the sparse coefficient α̂, the class-specific

residuals of y can be computed as

ri(y) = ‖y − Diα̂i‖2, i = 1, 2, · · · , c. (7)

Finally, a predicted classification label is determined as Eq.(8).

class(y) = arg min{ri}, i = 1, 2, · · · , c. (8)

In the feature representation step, two kinds of feature

dictionary are constructed to represent remote sensing scenes:

convolutional feature dictionary DConv and fully connected

feature dictionary DTop. When these two kinds of features are

used, each of them can be modeled by the sparse representaion

model defined in 6. Consequently, in order to fuse these multi-

level features of CNNs for remote sensing scene classifiction,

an efficient mathematical model based on SRC is proposed as

min θ1
∥

∥

∥α
Top
∥

∥

∥

0
+ θ2
∥

∥

∥α
Conv
∥

∥

∥

0

s.t. yTop = DTop
α

Top
,

yConv = DConv
α

Conv
, (9)

in which α
Top and α

Conv represent the coefficient of sparse

representation using features from fully connected layers and

convolutional layers, respectively, θ1 and θ2 are the parameters

to balance the reconstruction from different kinds of features

by SRC, and θ1 + θ2 = 1.

For a given testing sample y, we first extract the features

yTop and yConv through the CNN-based feature extractor as

mentioned in Section III-B. Then, we adopt the Orthogonal

Matching Pursuit (OMP) to estimate the two sparse repre-

sentation coefficient α̂Top and α̂
Conv. Next, the corresponding

residual r
Top

i
(yTop) and rConv

i
(yConv) are obtained by Eq. (7).

Finally, the residuals are fused with weighting hyperparame-

ters θ1 and θ2. The fusion model is formulated as

rF
i (y) = θ1r

Top

i
(yTop) + θ2rConv

i (yConv)

= θ1

∥

∥

∥

∥

yTop − D
Top

i
α̂

Top

i

∥

∥

∥

∥

2
+ θ2

∥

∥

∥

∥

yConv − DConv
i α̂

Conv
∥

∥

∥

∥

2
, (10)

where θ1 + θ2 = 1, and rF
i

(y) is the final feature residual after

fusion. According to rF
i

(y) of Eq. (10), a label of y can be

found by using Eq. (8).

The overall procedure is summarized in Algorithm 1.

Obviously, the proposed sparse representation framework and

feature fusion strategy can correctly classify testing samples

that are misclassified into fault categories if using single-level

feature alone.

D. Computational Complexity

In this part, we analyze the computational complexity of the

proposed methods according to the steps of Algorithm 1. Since

the complexity of OMP with the dictionary size being m × n

is about 2Kmn + 3K2m [51], the total complexity of getting

α̂
Top and α̂

Conv is 2K(d1 + d2)N + 3K2(d1 + d2). Then, that of

computing and fusing residuals is about (d1+d2)N, which can

be ignored compared to the above calculation. Thus, the total

complexity of the proposed algorithm is about 2K(d1+d2)N+

Algorithm 1 The overall procedure of the proposed method

Input: Ytrain,Ytest, parameters θ1 and θ2
Output: class(y).

1: Fine-tune the pretrained CNN or train it from scratch.

2: Construct the dictionaries DConv and DTop according to (3)

and (5) on the training samples Ytrain.

3: for y in Ytest do

4: Find the α̂
Top and α̂

Conv by solving (6) using OMP.

5: Compute r
Top

i
and rConv

i
according to (7).

6: Fuse the residuals r
Top

i
and rConv

i
using (10).

7: Attach a label to the testing sample y using (8).

8: end for

3K2(d1+d2), which is greatly influenced by K, but little by d1,

d2, and N. Since this paper mainly focuses on small samples,

the size of the dictionary and sparsity is not large. As a result,

the proposed method is efficient.

IV. Experiments

In this section, we adapt the proposed SRC-based frame-

work for scene classification of RS images. To demonstrate

the effectiveness and superiority of the proposed method, we

conduct different experiments on two challenging datasets

including UC-Merced21 [52], and WHU-RS19 [19], [53],

[54].

A. Experimental Setup

Feature Extraction: We adapt three classical CNNs, in-

cluding AlexNet, VGG19-Net and ResNet50 to extract the

proposed multi-level features. Specifically, AlexNet is trained

from scratch, VGG19-Net and ResNet50 is fine-tuned with a

small size training samples (up to 10% of all training samples).

Note that in AlexNet and VGG19-Net, the top-layer feature

is from the last fully connected layer. As for the ResNet50,

the last convolutional layer in ResNet50 is selected as the top-

layer feature.

Hyperparameters Setting: When fusing the representa-

tion residuals, two hyperparameters θ1 and θ2 balancing the

impact of different features on scene classification need to

be preset. We tune the value of θ1 from the range of

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and θ2 subjects to

θ2 = 1 − θ1.

Compared Implementations: To completely demonstrate

the effectiveness of our proposed method, we implement the

following variants for our method.

1) The SRC methods with the features extracted from only

intermediate convolutional layers of three CNNs, are

denoted as ‘AlexNet+LF+SRC’, ‘VGG19+LF+SRC’ and

‘ResNet50+LF+SRC’;

2) The SRC methods with the features extracted from only

top layers of the VGG19-Net and AlexNet, are denoted

as ‘AlexNet+GF+SRC’, ‘VGG19+GF+SRC’. While for

ResNet50, that with the feature extracted from the last

convolutional layer is denoted as ‘ResNet50+GF+SRC’;
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3) The SRC methods of our complete implementation

which fuses the proposed multi-level features, are denot-

ed as ‘AlexNet+GLF+SRC’, ‘VGG19+GLF+SRC’ and

‘ResNet50+GLF+SRC’.

In addition, the following two CNN-based implementations

are also considered.

4) The AlexNet trained from scratch, the fine-tuned VGG19-

Net and the fine-tuned ResNet50;

5) The end-to-end CNNs which also fuse multi-level fea-

tures used in our method, are denoted as ‘AlextNet+GLF’

and ‘VGG19+GLF’.

B. Experiments on UC-Merced Dataset

The first dataset is the UC-Merced Land Use dataset con-

sisting of 21 classes, including agricultural, airplane, baseball

diamond, beach, buildings, chaparral, dense residential, forest,

freeway, golf course, harbor, intersection, medium density

residential, mobile home park, overpass, parking lot, river,

runway, sparse residential, storage tanks, and tennis courts.

There are 100 images for each class, in which each image mea-

sures 256 × 256 pixels. The images were manually extracted

from large images from the USGS National Map Urban Area

Imagery collection for various urban areas around the country.

The pixel resolution of this public domain imagery is 1 foot.

Sample images of each land-use class are illustrated in Fig. 3.

（1） （2） （3） （4） （5） （6）

（7） （8） （9） （10） （11） （12）

（13） （14） （15） （16） （17） （18）

（19） （20） （21）

Fig. 3. Sample images of UC-Merced dataset. (1) Agriculture, (2) Airplane,
(3) Baseballdiamond, (4) Beach, (5) Buildings, (6) Chaparral, (7) Denseres-
idential, (8) Forest, (9) Freeway, (10) Golfcourse, (11) Harbor, (12) Inter-
section, (13) Mediumresidential, (14) Mobilehomepark, (15) Overpass, (16)
Parkinglot, (17) River, (18) Runway, (19) Sparseresidential, (20) Storagetanks,
and (21) Tenniscourt.

The UC-Merced dataset adopts 2% to 10% of the samples

as the training set, and the rest are used for testing. The

training ratio increases from 2% to 10%, with the increasing of

2%. Therefore, the number of samples corresponding to these

training ratios for each class is 2, 4, 6, 8 or 10 shots. And

the details are shown in Table I. The classification results are

TABLE I
The number of samples corresponding to different training ratios on UCM

dataset.

Ratios 2% 4% 6% 8% 10%

Samples 2 4 6 8 10

listed in Table II. The following conclusions can be obtained

from Table II.

1) With the increase of training sample ratio from 2% to

10%, the performance of almost all methods is improved. For

example, the classification accuracy of AlexNet is 25.656%

when the training ratio is 2%, and is increased to 48.360%

under the training ratio of 10%. The accuracy of ‘fine-tuned

VGG19’ is increased from 38.630% to 66.720%, when the

training ratio is increased from 2% to 10%. The fine-tuned

ResNet50 also has the similar increased accuracy.

2) The proposed multi-level features are effective for clas-

sification even in the end-to-end networks, especially when

the training sample ratio is very small. When the training

ratio is 2%, ‘AlexNet+GLF’ and ‘VGG19+GLF’ improves the

classification accuracy by 1.649% and 4.664%, compared with

‘AlexNet’ and ‘fine-tuned VGG19’, respectively.

3) The SRC has better classification performance than the

corresponding end-to-end CNN under the condition of same

features, especially in limited training samples. When only

the top-layer feature is used for SRC, ‘AlexNet+GF+SRC’

has boosted the classification accuracy by about 1% under

all training ratios, compared with the original ‘AlexNet’.

More effectively, the method based on VGG19-Net back-

bone ‘VGG19+GF+SRC’ has enhanced the accuracy by

more than 10%. In addition, the accuracy increasement of

‘ResNet50+GF+SRC’ is about 20% under the training ratio

of 2%, while it becomes about 2% under the training ratio

of 10%. When only the intermediate-layer feature is used for

SRC, the same conclusion as that obtained when only the top-

layer feature is used, can be drawn.

4) The features extracted from the intermediate convolution-

al layers also play a vital role for classification as the top-layer

features do, even are more important. By comparing ‘AlexNet

(or VGG19 or ResNet50)+LF+SRC’ and ‘AlexNet (or VGG19

or ResNet50)+GF+SRC’, the classification accuracy is at the

similar level. This is also the reason that the features fusion

strategy is proposed to enhance the classification performance.

5) The proposed SRC framework which fuses the multi-

level features has clear superiority in scene classification of

RS images. The accuracy of the proposed method is obvi-

ously better than that of the corresponding CNN, including

the original network structure and the improved structure

with multi-level features. For example, compared to AlexNet,

‘AlexNet+GLF+SRC’ boosts the overall classification accura-

cy by 3.2% to 6% under different training ratios. Compared

to fine-tuned VGG19-Net, ‘VGG19+GLF+SRC’ enhances the

overall accuracy by 19% under 2% training ratio, the im-

provement is reduced when the training ratio is 10%, but also

exceeds 10%. Besides, ‘ResNet50+GLF+SRC’ also improves

classification performance to varying degrees. The accuracy is

also better than that of the SRC methods using only top-layer
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TABLE II
The Overall Classification Accuracy Comparison on UCM dataset.

Methods
Accuracy(%)

2% 4% 6% 8% 10%

AlexNet 25.656 33.235 40.121 47.153 48.360

AlexNet+GLF 27.305 34.176 43.212 50.880 48.942

AlexNet+GF+SRC 26.531 34.176 41.084 48.758 48.889

AlexNet+LF+SRC 28.717 37.748 45.744 50.880 51.217

AlexNet+GLF+SRC 28.863 38.889 46.707 52.950 54.074

fine-tuned VGG19 38.630 49.355 54.255 60.611 66.720

VGG19+GLF 43.294 54.970 57.900 60.973 64.021

VGG19+GF+SRC 55.928 67.212 72.087 73.602 77.301

VGG19+LF+SRC 57.434 68.551 69.656 73.291 75.608

VGG19+GLF+SRC 57.823 69.296 72.391 74.327 77.407

fine-tuned ResNet50 40.180 56.845 69.149 73.290 84.402

ResNet50+GF+SRC 60.884 72.470 76.899 82.557 86.190

ResNet50+LF+SRC 60.009 71.528 75.836 80.538 85.291

ResNet50+GLF+SRC 61.618 73.611 77.710 83.592 87.672

TABLE III
The number of samples corresponding to different training ratios on

WHU-RS19 dataset.

Ratios 2% 4% 6% 8% 10%

Samples 1 2 3 4 5

features or convolutional-layer features.

C. Experiments on WHU-RS19 Dataset

The second RS dataset is a 19-class Google image dataset

of WHU-RS19 designed by Wuhan University. The dataset is

acquired from Google Earth and mainly covers urban areas,

and there are 50 images for each of the following classes:

airport, beach, bridge, commercial area, desert, farmland,

football field, forest, industrial area, meadow, mountain, park,

parking, pond, port, railway station, residential area, river and

viaduct. Each image measures 600 × 600 pixels, with a 0.5m-

8m spatial resolution. Fig. 4 shows representative images of

each class.

The WHU-RS19 dataset still randomly chooses 2% to 10%

samples of each class for training and the rest for testing. The

relationship between training ratio and sample size is shown in

Table III; The classification results are listed in Table IV. On

a whole, the same conclusions drawn from the experiments on

UC-Merced dataset can be obtained. Therefore, on this dataset,

we give some special cases and analysis as follows:

1) The fine-tuned ResNet50 performs the best except under

the training ratio of 2%, and the fine-tuned VGG19 performs

better than AlexNet. The accuracy of fine-tuned ‘ResNet50’

is only 14.286% under 2% training ratio, which is far lower

than AlexNet and VGG19-Net. However, it achieves higher

accuracies than the two under the training ratios of 4%, 6%,

8% and 10%. The reason may be that very few samples cause

underfitting to a deeper CNN.

2) The SRC based method generally offers better perfor-

mance than the corresponding end-to-end CNN under the

（1） （2） （3） （4） （5） （6）

（7） （8） （9） （10） （11） （12）

（13） （14） （15） （16） （17） （18）

（19）

Fig. 4. Sample images of WHU-RS19 dataset. (1) Airport, (2) Beach, (3)
Bridge, (4) Commercial, (5) Desert, (6) Farmland, (7) Footballfield, (8) Forest,
(9) Industrial, (10) Meadow, (11) Mountain, (12) Park, (13) Parking, (14)
Pond, (15) Port, (16) Railwaystation, (17) Residential, (18) River, and (19)
Viaduct.

same features. However, ‘AlexNet+GF+SRC’ weakens the

classification performance under the 2% and 10% training

ratios. One possible reason is the large size of convolution

kernel and the shallow network structure limit the ability to

extract features of AlexNet. In addition, ‘AlexNet (VGG19 or

ResNet50)+LF+SRC’ performs obviously better than AlexNet

(VGG19 or ResNet50) under all training ratios.

3) The proposed method can effectively improve the scene

classification accuracy, especially under the case of few train-

ing samples, even only 1 training sample for each class, such

as the training ratio is 2% of 50 samples. It is worth men-

tioning that although the accuracy of ‘fine-tuned ResNet50’

is only 14.286% under the training ratio of 2%, the accuracy

of the proposed ‘ResNet50+GLF+SRC’ is 69.387%, with an
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TABLE IV
The Overall Classification Accuracy Comparison onWHU-RS19 dataset.

Methods
Accuracy(%)

2% 4% 6% 8% 10%

AlexNet 31.686 38.816 42.105 46.110 53.567

AlexNet+GLF 33.830 40.24 42.777 48.741 53.918

AlexNet+GF+SRC 30.397 38.816 43.113 47.597 51.579

AlexNet+LF+SRC 35.338 40.789 44.793 48.512 54.503

AlexNet+GLF+SRC 35.553 41.886 45.465 49.428 56.491

fine-tuned VGG19 28.679 37.719 43.001 51.030 62.105

VGG19+GLF 33.730 42.760 47.140 49.656 54.153

VGG19+GF+SRC 47.798 65.351 69.317 77.002 77.193

VGG19+LF+SRC 49.409 69.079 70.436 76.545 77.427

VGG19+GLF+SRC 50.698 69.847 70.997 77.459 78.596

fine-tuned ResNet50 14.286 43.531 54.983 69.908 76.490

ResNet50+GF+SRC 65.736 79.715 84.786 86.155 88.421

ResNet50+LF+SRC 67.776 79.824 84.450 85.126 87.602

ResNet50+GLF+SRC 69.387 80.482 85.682 86.842 88.655

improvement more than 55%.

In conclusion, compared to classic CNN classifiers, our

proposed SRC framework with feature fusion strategy has

effectively boosted the scene classification performance for RS

images.

D. Comparison with State-of-the-art Methods

To further demonstrate the superiority of our method, we

conduct a comprehensive comparison with state-of-the-arts

that have been evaluated on the UC-Merced and WHU-RS19

datasets. The comparison methods include Attention Recurrent

Convolutional Network (ARCNet) [55], the method based on

the Improved Cross-Entropy Loss (ICEL) [56], and that based

on Multilayer Stacked Covariance Pooling (MSCP) [31].

The comparison results of accuracy on two datasets are

show in Table III and Table IV, respectively. The accuracy

of the proposed method on both datasets is obviously higher

than that of the other comparison methods under all the ratios

of training samples. It is observed from Table V that when

the training ratio is 10%, the proposed method improves the

accuracy by at least 2.9% on UCM dataset. As the training

ratio decreases from 10% to 2%, the advantage of our method

becomes more prominent, which indicates that it effectively

improves the scene classification performance especially for

few-shot classification.

Table VI presents similar results as Table V. It is worth

mentioning that WHU-RS19 dataset has less RS images than

UCM dataset. Therefore, our method achieves greater gain

on WHU-RS19 in Table VI than on UCM in Table V under

the training ratio of 2%-6%. All these results demonstrate

the effectiveness and superiority of our few-shot RS scene

classification.

E. Explorations on Hyperparameters

Since the contribution for SRC of each type of feature may

affect the final classification accuracy, it should be explored for

better fusion results and empirical settings for similar fusion

work. The hyperparameter settings have been introduced in

Section IV-A. The classification accuracies based on AlexNet

with different values of θ1 on UC-Merced and WHU-RS19

are shown in Fig. 5a and Fig. 5d, respectively. In addition,

those based on VGG19-Net and ResNet50 are shown in Fig.

5b, Fig. 5e, Fig. 5c, and Fig. 5f.

When θ1 is 0, the top features do not contribute anything in

feature fusion, while intermediate features contribute all. On

the contrary, the top features contribute all when θ1 = 1.

A suitable range of θ1 can always be found, which makes the

classification accuracy of multi-level feature fusion higher than

that of single feature. This proves the advantage of multi-layer

feature fusion for classification. For AlexNet, when θ1 is small,

the performance is better, indicating that the features of the

intermediate layer play a more important role in fused feature

for classification in AlexNet. For deeper CNNs including

VGG19 and ResNet50, the large hyperparameter θ1 leads to

the best classification accuracy in most cases.

F. Explorations on Intermediate Features Fusion

In terms of classical CNNs with the top layers, such as

AlexNet and VGG19-Net, we propose the feature fusion strat-

egy to complement the top-layer feature and the intermediate

convolutional-layer feature each other. However, an issue that

cannot be ignored is how to choose the intermediate features

from different convolutional stages, or which stages should be

selected. To make fully use of the intermediate features, we

conduct the experiments on WHU-RS19 dataset to solve these

problems.

Inspired by the architectures of AlexNet and VGG19-Net,

intermediate features from the last three convolutional stages,

denoted as Fconv1, Fconv2, and Fconv3 numbered from the

distance to the output layer, are selected. Then, the new

feature is formed by concatenating the last one, two, and

three intermediate features, that is, Fconv1, Fconv1 + Fconv2,

Fconv1 + Fconv2 + Fconv3. Note that no fully connected feature

in top layer is considered in this experiment. Fig. 6 and Fig.
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(c) ResNet50 on UC-Merced21
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(d) AlexNet on WHU-RS19
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(e) VGG19 on WHU-RS19
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(f) ResNet50 on WHU-RS19

Fig. 5. Classification accuracy with different θ1 values based on AlexNet, VGG19-Net, and ResNet50 on UC-Merced and WHU-RS19 datasets.

TABLE V
The Comparison between Ours and Some State-of-the-artMethods on UCM dataset.

Methods
Accuracy(%)

2% 4% 6% 8% 10%

ARCNet [55] 47.667 60.119 73.455 75.763 84.021

ICEL [56] 49.854 61.310 70.061 78.157 82.12

MSCP [31] 14.14 59.23 75.87 82.65 84.75

Ours 61.618 73.611 77.710 83.592 87.672

TABLE VI
The Comparison between Ours and Some State-of-the-artMethods onWHU-RS19 dataset.

Methods
Accuracy(%)

2% 4% 6% 8% 10%

ARCNet [55] 41.890 63.158 68.192 74.020 81.871

ICEL [56] 24.812 63.158 66.517 75.515 75.906

MSCP [31] / / 48.98 79.75 85.68

Ours 69.387 80.482 85.682 86.842 88.655

TABLE VII
The Comparison between Ours and Data AugmentationMethod onWHU-RS19 dataset.

Methods
Accuracy

2% 4% 6% 8% 10%

VGG19 30.29 42.544 54.871 67.62 72.865

f-VGG19 34.479 44.627 56.439 70.59 68.187

f-VGG19+DataAug 45.435 65.57 68.757 76.201 78.012

f-VGG19+GLF+SRC 51.88 62.281 75.924 79.748 80.935

VGG19+GLF+SRC 52.202 64.583 73.348 81.579 82.222

7 show the classification result of concatenated features based

on AlexNet and VGG19-Net backbones, respectively.

It is observed from Fig. 6 that the new feature concatenated

by Fconv1 and Fconv2 of AlexNet achieves the best classifi-

cation performance among the three new features. However,

for VGG19-Net, Fig. 7 demonstrates that Fconv1 can provide
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Fig. 6. Classification result of different intermediate features based on
AlexNet.
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Fig. 7. Classification result of different intermediate features based on
VGG19-Net.

almost the best result except under the training ratio of 2%.

These experimental results indicate that the CNN with weaker

feature extraction ability which is caused by shallow archi-

tecture, large-size convolutional kernels or very few samples

for training, needs more intermediate convolutional features

to improve the classification performance, but the redundance

brought by more intermediate features is also an issue to

be considered. While for the network with strong feature

extraction ability, more intermediate features may degrade the

classification performance.

G. Explorations on Fine-tuned and Data Augmentation

In order to demonstrate that the proposed method has a

significant improvement under the condition of small-sample-

size for remote sensing scene classification, the following

variants are implemented over WHU-RS19 dataset:

1) ‘VGG19’: the original VGG19 is directly used for scene

classification by fine-tuning the weights of the last fully

connected layer;

2) ‘f-VGG19’: compared to the original VGG19, all layers

involved in VGG19 are fine-tuned to achieve better per-

formance;

3) ‘VGG19+GLF+SRC’: our proposed SRC-based method

fuses the multi-level features of the original VGG19;

4) ‘f-VGG19+GLF+SRC’: our proposed SRC-based

method fuses the multi-level features of the ‘f-VGG19’;

5) ‘f-VGG19+DataAug’: the VGG19 is re-trained using data

augmentation strategy. For the data augmentation, the

rotation, horizontal and vertical shift, and horizontal flip

are all considered.

The results of all these algorithms over WHU-RS19 dataset

are shown in Table VII. It is observed that:

1) The f-VGG19 can achieve better results than VGG19 in

almost all training ratios except for the training set of 10%.

This is because fine-tuning all the layers is better than just

fine-tuning the last classification layer.

2) When combined with multi-level features and sparse rep-

resentation classification, the results of f-VGG19+GLF+SRC

is a little worse than VGG10+GLF+SRC, indicating that fine-

tuning with a small number of samples may degrade the

feature representation ability of VGG19 for remote sensing

images.

3) Compared to fine-tuned VGG19 with data augmentation,

our proposed method achieves much better imporvements in

most instances. Only at 4% training ratio, the results of the

two are roughly the same. These experiments demonstrate

the effectiveness of our proposed sparse representation-based

framework which fuses multi-level features for scene classifi-

cation of small samples remote sensing images.

V. Conclusion

In this paper, we propose a novel few-shot classification

framework using sparse representation to fuse the multi-level

features extracted from CNNs to boost the performance of RS

imagery scene classification. The proposed method aims to

solve the following problems. First, the existing CNN-based

methods extract multi-level features from different layers of

CNNs, but feed only single-level to the classifier and neglect

the other features with important information. Second, the

training of CNNs requires many training samples, which

is generally unavailable in the application of RS. Thus, in

order to address these problems, the proposed framework

includes the two main modules. The one is multi-layer feature

extraction, which can extract different levels of features from

both the top layer and the intermediate layers to obtain more

rich representation for scene classification. The other one

is feature fusion based sparse representation classification,

in which a simple but highly effective strategy is devised

to fuse multi-level features for classification. Experimental

results on two public benchmark datasets demonstrate that

the proposed few-shot classification framework using sparse

representation embedded with multi-level deep feature fusion

certainly boosts the classification performance compared to

single-feature-based methods. Moreover, the proposed method

achieves the state-of-the-art results under the case of limited

training samples, even only 1 or 2 training samples per class.
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