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Introduction

Over past centuries, land use in Estonia 
has had a substantial impact on land cover. 
While the share of forest land has been as 
small as 20–25%, it has gradually increased 
as a consequence of land drainage, a de-

crease in the number of households man-
aging small farms, and the abandonment 
of arable land (Kremser, 1998; Etverk, 2003; 
Jõgiste et al., 2018). Resource assessment 
is a prerequisite for decision-making and 
planning. To facilitate assessment, field 
survey and monitoring results are stored 
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as data tables and maps, in formats sup-
porting numeric and spatial queries and 
analyses. Up-to-date data on land cover 
and land use form the basis for policy im-
plementation in forestry, agriculture, and 
rural development.

Forest inventory provides the woodland 
owner with data required for forest man-
agement planning. Forest land is divided 
into patches based on the properties of soil 
and plant cover, enabling the forest stand 
on each generated unit to be characterized 
by mean values of inventory variables (tree 
species composition, forest height, wood 
volume, age of stand elements, etc.) with 
a sufficiently small variability within each 
unit (Krigul, 1972; Vaus, 2005). Such forest 
management inventories (FMIs) have been 
conducted in Estonia over the past 150 
years, with a typical FMI repetition cycle 
of 10 years (Meikar, 1998). Forest land-use 
summaries have been published on the ba-
sis of FMI data (Aru & Okas, 1959; Aru et 
al., 1975; Tappo, 1982; Polli & Viilup, 1989; 
Viilup, 1995).

The FMI would give a complete over-
view of Estonian forests if all data were 
accessible. Natural though full accessibil-
ity is in the case of state-owned forests, 
however, it is not feasible for forests in 
private ownership. The records from FMI 
databases are updated only when the for-
est owner considers it necessary. To over-
come these problems, many countries 
have a second type of forest inventory, a 
National Forest Inventory (NFI) based on 
a regularly spaced sample of field plots 
7–15 m in radius, instrumentally measured 
(NFIEUROPE, 1997; Tomppo et al., 2010). 
The first known Estonian forest-inventory 
tests covering a substantial area and based 
on sample plots were conducted by Prof. 
A. Nilson in the Järvselja Experimental and 
Training Forest District at the beginning 
of the 1970s. P. Kohava from the Estonian 
Forest Survey Centre tested an NFI de-
sign on the Estonian island of Hiiumaa in 
1997 (Kohava, 1998). An independent test 
at the end of the 1990s was carried out by 

Metsaekspert OÜ (Metsainventuur, 2000a; 
2000b). The basic principles of the current 
Estonian NFI design have been published 
by Adermann (2010). The latest complete 
and exhaustive FMI- and NFI-based over-
view of forests in Estonia can be found in 
the yearbook series Forest (Forest, 2020; 
first issued as Forest, 1995). However, the 
statistics are not presented at a finer level of 
detail than the individual county, because 
there are insufficient field observations for 
smaller land units, such as the individual 
municipality.

Forest land surveys have used remote 
sensing since 1920, when half a million 
acres of forest land was inventoried in 
Canada on the basis of preliminary aerial 
photography (Howard, 1991). Aerial pho-
tography has been used for FMI in Esto-
nia since 1961 when monochrome aerial 
photos were taken on emulsions sensitive 
to the visible and near-infrared part of the 
spectrum over Järvselja forests in south-
east Estonia, as a basis for the construction 
of 1:10,000 forest-stand maps.

The automated processing of re-
mote-sensing data to support the con-
struction of maps of forest-inventory 
variables was proposed for the particu-
lar case of Finland by Poso et al. (1990). 
In many countries, the task of combining 
NFI sample plots with feature variables 
from remote sensing has been addressed 
either with the k-nearest neighbour algo-
rithm (k-NN) (Fazakas et al., 1999; Fran-
co-Lopez et al., 2001) or with the k-MSN 
algorithm (Packalén & Maltamo, 2007). 
Tamm & Remm (2009) tested an applica-
tion of machine learning to the estimation 
of standing-wood volume for forest stands 
in northeastern Estonia, using multispec-
tral satellite images. Peterson & Aunap 
(1998) showed that multitemporal Landsat 
MSS images can be used in Estonia to map 
changes of agricultural land use. Lang et al. 
(2014) used k-NN to predict wood volume 
and tree species composition in Estonia’s 
Laeva test site, on the basis of data from the 
Landsat-8 Operational Land Imager (OLI) 
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and from airborne laser scanning (ALS). 
In many countries, airborne lidar data 
have been used extensively during the last 
decade for the estimation of forest varia-
bles, because the three-dimensional point 
clouds contain information that strongly 
correlates with forest height and wood 
volume (Næsset, 1997; Næsset et al., 2004; 
Næsset, 2005; Lang et al., 2012; Kotivuori et 
al., 2016).

Although many countries have already 
incorporated multispectral satellite images 
and airborne laser scanning data into their 
NFI systems to construct maps of forest 
variables (McRoberts & Tomppo, 2007; 
Barrett et al., 2016), and even though Es-
tonia completed its first nationwide sam-
pling campaign as early as 1999 (Kohava, 
2000), such a module has until now been 
missing from the Estonian NFI. Through 
a synthesis of previous research, the pres-
ent study offers a module at a high level of 
technical readiness, enabling the Estonian 
NFI to incorporate remote-sensing data 
into its construction of maps of principal 
forest-inventory variables (forest height, 
wood volume, and tree species compo-
sition). We present data processing prin-
ciples, describe models, and report test 
results for our remote-sensing support 
module. Additionally, we discuss basic 
principles for constructing a map of errors, 
and propose methods for the annual up-
dating, in the light of both forest growth 
and disturbances, of the predicted forest 
height and standing-wood volume maps.

Material and Methods

Forests in Estonia 
The main forest-forming tree species in 
Estonia are European aspen (Populus trem-
ula L.), silver birch (Betula pendula Roth), 
downy birch (B. pubescens Ehrh.), black al-
der (Alnus glutinosa (L.) Gaertn.), grey alder 
(A. incana (L.) Moench), Norway spruce 
(Picea abies (L.) Karst.), Scots pine (Pinus 
sylvestris L.), and common ash (Fraxinus 

excelsior L.). Depending on soil fertility and 
forest management, these species occur 
either in a variety of mixtures or as pure 
stands. Norway spruce forms a mid-storey 
in many stands growing on fertile soils. 
Forest land (23,308 km2) accounts for more 
than half (53.6%) of the Estonian terrestrial 
territory (Forest, 2020). About 47% of the 
forest land is owned by the state. The rest 
belongs largely to private owners, with a 
small share owned by municipalities and 
other public institutions. According to 
the forest register, more than 31% of for-
est land is drained to improve tree growth 
conditions. On 24.6% of Estonian forest 
land, use is restricted under a variety of na-
ture-protection regulations (Forest, 2020). 
Wood is harvested through thinning and 
through shelter-wood cuttings, and also 
through the creation of small clearfellings 
(to a maximum area of 7 ha) with retention 
trees (Forestman, 2007; Forestact, 2016). 
More than 50% of the forest land use is 
classified as retention forestry (Gustafs-
son et al., 2012). Since the year 2000, the 
annual regeneration fellings and annual 
maintenance fellings have been in the re-
spective area ranges of 17.1–38.8 thousand 
ha and 24.6–42.9 thousand ha (Forest, 
2020). The average size of a forest stand is 
1.25 ha. Forests are seminatural, with all 
the above-mentioned tree species regener-
ating naturally, and with Norway spruce 
and Scots pine occurring both under culti-
vation and with natural regeneration. The 
share of forest land has been increasing 
since the end of World War II, due to the 
abandonment of agricultural land. Lead-
ing the process of abandonment are those 
land parcels which are smaller and more 
remote from roads (Mandel et al., 2019).

Sampling design of the Estonian NFI
The first Estonian-wide NFI with a sample 
plot layout similar to the current NFI was 
launched in 1999 (Kohava, 2000). With a 
rather modest budget and equipment, the 
NFI was able to give a fairly accurate as-
sessment of the forest area, resources, and 
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Figure 1. Cluster network of the Estonian NFI (2014–2018).

Joonis 1. Statistilise metsainventuuri proovitükkide klastrite paiknemine (2014–2018).

Figure 2. Number of measured permanent (P), temporary (T), and new permanent (NP) sample plots 
per year.

Joonis 2. Aastas mõõdetav alaliste (P), ajutiste (T) ja uute alaliste (NP) proovitükkide arv.
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cutting volume. The main initial objective 
of the NFI was the estimation of major 
characteristics of forest stands. At present, 
however, the NFI has a wider scope, re-
porting also such data as the distribution of 
land by land-use categories and the affor-
estation and growing stock of non-forest 
land. The smallest target unit for reporting 
is the individual county.

Methodologically, the NFI is designed 
as an annual research effort, which, using 
optimal methods, must ensure continuous 
updating of its assembled information, 
including the forest database. Since 2014, 
sampling has been conducted with in-
creased frequency, on a network of sample 
plots covering the entire country (Figure 
1). Under this procedure, in each given 
year approximately 375 clusters (i.e. 20%) 
from the entire ensemble of sample plots, is 
measured (Figure 2). This ensures re-meas-
urement of permanent plots once in every 
5 years. Point estimates of parameters are 
calculated with data from the sample plots, 
as a basis for inferences to the entire pop-
ulation.

The Estonian NFI is designed as a sys-

Figure 3. Estonian NFI cluster design and sample 
plot arrangement.

Joonis 3. Eesti statistilise metsainventuuri 
proovitükkide paiknemine klastris.

tematic sample without pre-stratification. 
The sampling grid is established to meet 
accuracy requirements at the national level. 
About 5,500 sample plots are measured per 
year, with the sampling intensity the same 
throughout the country. The sample (clus-
ter) distribution is based on the national 
5×5  km quadrangle grid, determined by 
the Estonian base-map coordinates system 
(EPSG:3301). 

The observation unit is the individu-
al field plot, determined by its centre co-
ordinates. The method of sampling with 
partial replacement is used. The sample 
plot area is subdivided if its area overlaps 
with different types of forest stands or par-
cels with different land cover. To enhance 
the efficiency of the survey, sample plots 
are concentrated into clusters, defined as 
800×800 m squares (Figure 3). Some sam-
ple-plot clusters are deemed permanent, 
others temporary. The radius of a given 
sample plot depends on the variables se-
lected for assessment, and additional-
ly on variable values (with, e.g., smaller 
sample plots used for lower or regrowth 
layers). The radii of the principal sample 
plots are 10 m and 7 m. For land-use cat-
egory determination, plots of other radii 
are taken, although without modification 
in the scheme for selecting centre coordi-
nates. For the construction of models for 
stand height and wood volume, we used 
the sample plots in which a tree layer was 
present and which were located entirely 
inside a forest stand.

Remote-sensing data and other spatial 
data
The remote-sensing support system of the 
Estonian NFI is based on data from the 
European Union Copernicus programme, 
from the NASA/USGS Landsat pro-
gramme, and from the airborne photogra-
phy and laser scanning programme of the 
Estonian Land Board. The medium spatial 
resolution (10–30 m) multispectral images 
from Sentinel-2 MSI (ESA, 2015) and Land-
sat-8 OLI (USGS, 2019) sensors and SAR 
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images from Sentinel-1 (ESA, 2020) are 
used for the prediction of tree species com-
position and for the detection of changes. 
The data are available from the regional 
data centre ESTHub (2016).

Aerial photography and airborne laser 
scanning are conducted by the Estonian 
Land Board under a repetition schema that 
provides, for any given location, either 
summer or springtime data in each second 
year, and additionally produces measure-
ments from each similar growth season af-
ter every four years (Figure 4) (Maa-amet, 
2020). The point density of the archived 
ALS data ranges from 0.15 m-2 to 2 m-2. The 
ALS pulse footprint diameter at canopy 
level is about 0.5 m, with a scanning angle 
that does not exceed 30° from nadir. Data 
are distributed according to a 1 km2 map 
sheet system (Maa-amet, 2019). Before the 
year 2017, the Estonian Land Board used 
the Leica ALS50-II airborne scanning sys-
tem. From 2017 onward, measurements 
have instead been taken with the Riegl 
VQ-1560i. In the Estonian NFI, orthopho-

Figure 4.  Location of target areas for fi tting for-
est height and standing-wood volume 
models, corresponding to the Esto-
nian Land Board ALS measurement 
schema. The areas are partially over-
lapping.

Joonis 4.  Maa-ameti aerofotomõõdistuse ob-
jektid, mille piires lähendatakse 
puistu kõrguse ja tüvemahu prog-
noosmudelid. Alad on mõningase 
ülekattega. 

tos (in the RGB + NIR bands) are current-
ly used only for visual interpretation, in 
the estimation of land cover type during 
the preparation of fi eldwork. In the re-
mote-sensing module offered in this paper 
for the Estonian NFI, ALS data are used for 
the prediction of forest height and wood 
volume. Ancillary data sources for our of-
fered module are a 1:10,000 base map and 
soil map of Estonia, the FMI database with 
its stand-level forest-management invento-
ry data, and a digital terrain module (DTM) 
provided by the Estonian Land Board. 

Data processing and models
The fi rst two variables to be predicted are 
basal-area-weighted forest height (Lo-
rey’s mean height) H and wood volume 
M. The prediction of H and M is based on 
ALS data. The data processing system is 
designed in such a way that the user can 
develop and apply any models that take 
as their inputs ALS point-cloud metrics 
in combination with ancillary variables. 
However, for Estonian forests a simple lin-
ear regression model can be used with suf-
fi cient predictive power (Lang et al., 2012) 
for forest height:𝐻𝐻��� = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐻𝐻�� + 𝜖𝜖. (1)

Here a and b are model parameters, HPx, is 
one of the upper percentiles of the point-
cloud height distribution, and ε is the 
model residual error. In the calculation 
of point-cloud height distribution percen-
tiles, points near the ground are excluded. 
Wood volume M can be predicted with a 
model that is based on a relationship in-
volving basal area G, forest height H, and 
stand form factor F (M = G·H·F):𝑀𝑀��� = �𝑎𝑎 ⋅ 𝐻𝐻���� + 𝑐𝑐 ⋅ 𝐻𝐻���� ⋅ 𝐾𝐾� + 𝜖𝜖, (2)

where a, b, c, and d are the model param-
eters; HP80 is the 80th percentile; HP25 is the 
lower quartile of the point-cloud height 
distribution; and K = C

above
/C is a proxy 

for canopy cover calculated using the ALS 
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pulse return count C
above

 above a height 
threshold (1–2 m from the ground)

 
and 

total count of returns C per target pixel or 
sample plot (Lang et al., 2012). In calculat-
ing the height percentiles of point clouds, 
returns from near the ground are exclud-
ed, and K is calculated using all returns 
recorded for each emitted pulse. The FU-
SION toolbox (McGaughey, 2018) is used 
for ALS data processing in this study, with 
ALS metrics calculated for 10 m target pix-
els. Point clouds for sample plots were ex-
tracted using a circle with a radius of 15 m.

The parameters for height and wood 
volume models are estimated using NFI 
sample-plot field measurement data for 
each particular flight campaign, with each 
campaign covering roughly one-quarter of 
Estonia’s area (Figure 4). No correction is 
currently made for springtime phenology 
and the consequent increased gap frac-
tion in the canopy, and tree species are 
not currently distinguished for H and M 
models. The current species-independent 
modelling also ignores differences in the 
interaction of laser pulse with tree canopy 
which may arise from variations in scan-
ner settings and from variations in the 
summertime structure of the canopy. The 
species-independent model was selected 
because it was considered that the number 
of field measurements would become in-
sufficient if the set of field measurements 
were partitioned into subsets according to 
dominant species. In the current study, the 
wood volume corresponds to the upper 
canopy layer.

Prediction of tree species composition 
for target units with a size of 10–30 m is a 
challenging task, since most forests in Es-
tonia are of mixed composition, since the 
spectral signatures of broadleaf deciduous 
trees are quite similar to each other, and 
since variables that are related to stand 
age and structure have a substantial influ-
ence on forest spectral signature (Nilson & 
Peterson, 1994) as calculated from Land-
sat-8 OLI and Sentinel-2 MSI images. The 
proposed solution for the Estonian NFI is 

based on machine learning, using a large 
number of samples from the FMI database 
and data from a 1:10,000 soil map. Lang et 
al. (2018) found the random forest algorithm 
implementation in the GRASS GIS to be 
suitable for the construction of tree-species 
composition maps.

The machine-learning procedure starts 
with the selection of a potential training 
set of stands from the FMI database. The 
next step after the cloud masking of image 
data is the removal of outliers, based on re-
lationships of spectral radiance with forest 
age and wood volume in red, near infrared, 
and shortwave infrared bands (Lang et al., 
2016). Additional pairwise comparison of 
images is applied to remove stands with 
detectable disturbances that may have oc-
curred during the period covered by the 
selection of satellite images. Experience 
has shown that this winnowing procedure 
yields a final set of about 100,000 samples, 
appropriate for machine learning for the 
whole of Estonia. The target area is divided 
into 8 overlapping subareas, to account for 
regional characteristics of forests in Estonia 
and to exclude training samples which have 
been measured over a long distance (Lang 
et al., 2018). Predictions for each subarea are 
made using either single images or combi-
nations of images that cover more than half 
of the subarea, with a maximum of 3 images 
allowed in any one combination.

The model fitting on empirical data 
starts with the selection of informative 
features. The next step is model hyper-pa-
rameter optimization. Finally, a prediction 
map is constructed. Although the variable 
being predicted is the dominant species 
code, additional useful information is ob-
tained from the entire vector of class prob-
abilities (Lang et al., 2018) for each target 
pixel. Finally, the predicted class probabili-
ties (where each class corresponds either to 
one of the possible dominant forest species 
or to a classification as non-forest) are aver-
aged for each pixel, and dominant species 
information is extracted according to the 
estimated proportions.
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For the construction of a tree species 
composition map, we used Landsat-8 OLI 
and Sentinel-2 images from April 2018 to 
September 2018. The images were resam-
pled to 25 m spatial resolution and con-
verted to the EPSG:3301 coordinate sys-
tem. The methods for image processing 
and data analysis resemble those recently 
described by Lang et al. (2018).

Software and implementation
The data processing system is imple-
mented with existing software, but with 
the addition of a calling script written in 
Python. Each task (e.g. the prediction of 
forest height, of wood volume, or of tree 
species composition; or the detection of 
changes; or the appraisal of predictions) is 
structured as a sequence of specific steps 
(e.g. a preparation phase, the extraction 
of features from remote sensing data, the 
fitting of a model, the application of the 
selected model, and validation). The user 
edits the script template of a specific step, 
inserts proper parameter values, and ex-
ecutes the script. Each processing execu-
tion is assigned a unique ID, which is then 
used in a file-storage folder structure. The 
scripts produce an execution history log 
as a directed acyclic graph (DAG). Ver-
sion control, the generated data-folder 
structure, and the generated DAG jointly 
ensure traceability and repeatability of the 
data-processing steps. In considering alter-
natives to this scheme, we evaluated some 
formal workflow tools (Airflow, Luigi, 
Jenkins), but found that they failed to add 
sufficient value. The principal software 
tools used in our scheme are QGIS, GRASS 
GIS, Python, GDAL, ESA SNAP, the Or-
feo Toolbox (OTB), LAStools, FUSION, R, 
RStudio, and Git.

During execution, all intermediate re-
sults are stored in the local computer. In 
addition, the intermediate and final results 
are copied to a backup file server. Interme-
diate results are stored for 2 years (this be-
ing the longest interval between successive 
measurement updates). Final results are 

stored for some longer period, as decided 
by the system administrator. The hard-
ware configuration comprises an 8-core 
workstation CPU, 24 GB of RAM, and 6 TB 
of workstation disk storage, with addition-
ally 2.3 TB of backup storage. All hardware 
is virtualized.

Model statistics and assessment of 
predicted values
For characterization of forest height and 
wood volume models, the mean residual 
squared error

𝑅𝑅𝑅𝑅𝑅𝑅 = �∑�𝑌𝑌� − 𝑌𝑌��𝑁𝑁  (3)

and mean residual error

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑�𝑌𝑌� − 𝑌𝑌�𝑁𝑁  (4)

were calculated, with N the number of ob-
servations, Ŷ the predicted value for each 
sample plot in the sum, and Y the corre-
sponding measured value.

For the assessment of forest height and 
wood volume predictions, we used a set of 
forest stands from the overlap area of the 
NE and NW blocks, and additionally a set 
of forest stands from the overlap area of 
the SE and SW blocks (Figure 4). We ap-
plied the following selection criteria: the 
stand polygon area was required to lie in 
the range of 1.2–8.0 ha; the count of 10 m 
pixels within the stand polygon was re-
quired to be > 100; the number of pixels 
within the stand polygon without value 
(i.e. with NoData label) was required to 
be < 10 in the corresponding comparison 
maps; and the proportion of evergreen tree 
species in the stand was required to be ei-
ther ≥ 75% or ≤ 25%. The last of these fil-
ters (the disjunctive criterion regarding the 
proportion of evergreens) was applied to 
select contrasting sets of stands according 
to tree species. On the overlap area of NW 
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and NE blocks were 1,157 evergreen and 
605 deciduous stands. On the overlap area 
of SW and SE blocks were 644 evergreen 
and 1,275 deciduous stands. For each 
stand, the mean value of pixels was calcu-
lated from forest-height and wood-volume 
prediction maps.

The tree species composition was val-
idated on NFI sample plots, because we 
used FMI data for the prediction model, 
and the NFI and FMI datasets are inde-
pendent. Two selection criteria were used: 
it was required that the sample plot be de-
scribed as forest in the NFI, and the prob-
ability of the plot being non-forest was re-
quired to be < 25% according to predicted 
pixel values in the tree species map. This 
pair of filters helped to remove disturbed 
areas and validation points in which the 
spectral signature is mainly influenced by 
objects other than forest trees. We analyz-
ed the prediction for dominant tree species 
and the prediction for the proportion of 
evergreen coniferous trees in the species 
composition.

Results

The forest-height prediction models de-
scribed 89.5–94.8% of the variability in 
the empirical data (Table 1). The residu-
al standard error of the models remained 
below 2.4 m. The comparison of predicted 
forest height  on ALS dataset overlap areas 
revealed a small systematic difference, de-
pendent on the dominant species (Figure 
5). With models fitted for each ALS data-
set individually, the predicted values for 
forests dominated by broadleaf deciduous 
trees tended to be greater when a midsum-
mer ALS dataset was used. For evergreen 
coniferous trees, with the midsummer ALS 
dataset, the species-independent predic-
tion model yielded an indication of  under-
estimation (Table 4).

Figure 5. Predicted forest height on the overlap 
area of ALS data: (a) blocks SW and 
SE, (b) blocks NW and NE. The blocks 
correspond to lidar data from summer 
(SU) and springtime (SP).

Joonis 5. Lidarmõõtmise alade ülekatetel asu-
vatele puistutele prognoositud kõr-
gus: (a) plokid SW ja SE, (b) plokid NW 
ja NE. Plokid vastavad suvistele (SU) 
ja kevadistele (SP) lidarandmetele. 
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Table 1.  Parameters for the forest-height H (dm) prediction model (1). ALS data are from spring 
(SP) and summer (SU), with RSE the model residual standard error, R2 the coefficient of 
determination, and DF the number of degrees of freedom. Insignificant values (p > 0.05) 
are in italics.

Tabel 1.  Metsa kõrguse H (dm) prognoosmudeli (1) parameetrid. Eristatud on suvised (SU) ja keva-
dised (SP) laserskaneerimise lennud. RSE on mudeli jääkhälve, R 2 on determinatsiooni-
kordaja ja DF on vabadusastmete arv. Mitteolulised väärtused (p > 0,05) on kursiivis.

ALS flight
ALS lend

Block
Ala

Model parameters* / Mudeli parameetrid*
a b RSE (dm) R2 % DF

SP 2017 SW 9.05 11.86 24 89.5 292

SU 2017 SE 6.09 11.58 21 94.7 281

SP 2018 NE 13.80 11.47 17 94.8 313

SU 2018 NW 3.94 12.07 21 91.8 312
*Height percentiles are in metres. / Punktipilve kõrgusprotsentiilid on meetrites.

Table 2.  Parameters for the standing-wood volume M (m3 ha-1) prediction model (2) for the upper 
layer. ALS data are from springtime (SP) and summer (SU). RSE is the model residual stan-
dard error, R2 the coefficient of determination, and DF the number of degrees of freedom. 
Insignificant values (p > 0.05) are in italics.

Tabel 2.  Esimese rinde tüvemahu M (m3 ha-1) prognoosmudeli (2) parameetrid. Eristatud on su-
vised (SU) ja kevadised (SP) laserskaneerimise lennud. RSE on mudeli jääkhälve, R2 on 
determinatsioonikordaja ja DF on vabadusastmete arv. Mitteolulised väärtused (p > 0.05) 
on kursiivis.

ALS flight
ALS lend

Model parameters* / Mudeli parameetrid*
a b c d RSE (m3 ha-1) R2 DF

SP 2017 1.438 1.264 0.200 0.416 78.6 84.2 287

SU 2017 0.083 1.452 0.121 0.861 97.0 85.2 276

SP 2018 1.277 1.233 0.308 0.454 65.7 91.7 308

SU 2018 0.298 1.492 0.003 0.598 76.3 85.1 304
*Height percentiles are in metres, and canopy cover values within the range of 0–100. / Punktipilve kõrgusprotsentiilid on meetrites 
ja katvuse väärtus on vahemikus 0–100.

The fitted models for standing-wood vol-
ume prediction described 84.2–91.7% of 
the variability in the empirical data (Ta-
ble 2, Figure 6). The residual standard er-
ror of the models remained in the range 
of 66–97 m3 ha-1. Model (2) is construct-
ed with regard to the prevalence of mul-
ti-layer canopies in Estonia. In the current 
exploratory study, on the other hand, the 
variable predicted is wood volume for the 
dominant tree layer. We consider this to 

be the reason why the parameter c for the 
lower quartile of the point-cloud height 
distribution was not significant (Table 2). 
The model analysis indicated that predict-
ed values may be dependent on dominant 
tree species (Table 3, Figure 5), as the mean 
residual error (MRE) had values in the 
range of (–51)–54 m3 ha-1 when calculated 
for sample plots with dominance of a par-
ticular tree species.
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Figure 6.  Measured and predicted wood volume for NFI sample plots. Dominant species codes:  
HB = European aspen; KS = silver birch; KU = Norway spruce; LM = black alder; LV = grey 
alder; MA = Scots pine; XK = other.

Joonis 6.  Mõõdetud ja prognoositud tüvemaht SMI proovitükkidel. Enamuspuuliikide koodid on 
metsakorralduse juhendi järgi.
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Table 3.  Standing-wood volume M (m3 ha-1) prediction errors under model (2), by dominant tree 
species, with ALS data distinguished according to spring (SP) and summer (SU).

Tabel 3.  Esimese rinde tüvemahu M (m3 ha-1) prognoosmudeli (2) vead peapuuliikide järgi. Erista-
tud on suvised (SU) ja kevadised (SP) laserskaneerimise lennud.

ALS data
ALS andmed

Target area
Piirkond

Variable*
Tunnus*

Dominant species**/ Enamuspuuliik**

HB KS KU LM LV MA XK

SP 2017 SW M 190 161 179 263 152 250 233

SP 2017 SW RSE 77 67 70 116 96 83 81

SP 2017 SW MRE –37 11 18 –45 25 –1 –59

SP 2017 SW N 22 93 43 13 7 106 7

SU 2017 SE M 265 190 287 331 199 302 87

SU 2017 SE RSE 102 92 106 90 76 98 73

SU 2017 SE MRE –3 37 –13 –51 22 –26 57

SU 2017 SE N 18 83 57 8 18 92 4

SP 2018 NE M 157 197 235 188 145 237 166

SP 2018 NE RSE 95 60 73 78 53 56 30

SP 2018 NE MRE –37 –3 6 –26 –9 10 –26

SP 2018 NE N 19 59 66 10 31 120 3

SU 2018 NW M 239 162 248 314 158 211 235

SU 2018 NW RSE 104 59 91 125 59 72 144

SU 2018 NW MRE 54 31 –29 –17 12 –24 144

SU 2018 NW N 9 99 54 16 36 93 1
* M  = mean of measured values (m3 ha-1); N = number of observations; RSE = residual standard error (m3 ha-1); MRE = mean 
residual error (m3 ha-1). ** Species codes: HB = European aspen; KS = silver birch; KU = Norway spruce; LM = black alder;  
LV = grey alder; MA = Scots pine; XK = other. / * M : vaatluste aritmeetiline keskmine (m3 ha-1), N: vaatluste arv, RSE: keskmine ruut-
viga (m3 ha-1), MRE: keskmine viga (m3 ha-1).** Puuliikide koodid on metsakorralduse juhendi järgi.

The wood volume prediction for evergreen 
stands was greater when estimated from 
springtime ALS maps (Table 4, Figure 7). 
The opposite was observed for deciduous 
stands. The apparent change in predicted 
values for evergreen forests is the result of 
using a prediction model that does not ac-
count for a change in the leaf area index. A 
second factor may also be relevant: canopy 
cover estimates based on Riegl VQ-1650i 
laser-scanner data may be expected to be 
sensitive to the contribution from ever-
green coniferous and deciduous broadleaf 
trees due to their morphological differen-
ces in the shoot and crown structure.

Table 4.  The average difference between pre-
dicted forest height Ĥ (m) and stand-
ing-wood volume  M̂ (m3 ha-1) in the 
case of both evergreen (EGR) and 
deciduous (DEC) stands, upon com-
paring ALS springtime (SP) against 
summer (SU) data. 

Tabel 4.  Prognoositud kõrguse Ĥ (m) ja esime-
se rinde tüvemahu   ̂M (m3 ha-1) keskmi-
ne erinevus okaspuupuistutes (EGR) 
ja lehtpuupuistutes (DEC) kasutades 
suvised (SU) ja kevadisi (SP) laser-
skaneerimise andmeid.

Block 
SP

Ala SP

Block 
SU

Ala SU

(ĤSP – ĤSU), m ( M̂SP –  M̂SU), m3 ha-1

EGR DEC EGR DEC

SW SE 0.53 –0.90 34.5 –46.5
NE NW 0.13 –0.71 40.4 –38.0
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Figure 7. Predicted standing-wood volume on 
the overlap area of ALS data: (a) 
blocks SW and SE, (b) blocks NW and 
NE. The blocks correspond to lidar 
data from summer (SU) and spring-
time (SP).

Joonis 7. Prognoositud puistu tüvemaht lidar-
mõõtmise alade ülekatetel: (a) plokid 
SW ja SE, (b) plokid NW ja NE.

The tree species composition prediction 
was first compared to a dataset published 
by Lang et al. (2018), using 6,239 pixels 
drawn according to NFI sample-plot loca-
tion coordinates. The Cohen’s kappa val-
ue 95% confidence interval for dominant 
species was 0.69–0.72. When the prediction 
for dominant tree species was compared to 
the NFI sample-plot data (Table 5), the Co-
hen’s kappa value 95% confidence interval 
was 0.51–0.54. The somewhat small kappa 

value can be well explained by the fact that 
the validation dataset contained both pure 
and mixed stands. The NFI sample plot 
coordinates typically have a positioning 
error of 5–10 m, and, in addition, the sam-
ple plots are small (7–10 m in radius). Con-
sequently, the validation dataset itself has 
some uncertainties: a small sample plot de-
scribes a particular point in the given forest 
which may or may not be representative of 
the surrounding forest stand, even though 
the surrounding stand contributes to the 
spectral signature in the corresponding sat-
ellite-image pixel. The second validation 
was done using the predicted proportion 
of evergreen coniferous tree species (tak-
en as pine and spruce summed), and was 
based on the 5,011 NFI sample plots with 
forests aged over 24 years. Although there 
was substantial scatter at the single-pixel 
level, the predictions were consistent (Fig-
ure 8), and, on average, the increased pro-
portion of evergreen coniferous species on 
NFI sample plots was found to be present 
on corresponding pixels of the tree species 
composition map.

Figure 8.  Predicted proportion (%) of ever-
green conifers for 5,011 NFI sample 
plots with stands older than 24 years.

Joonis 8.  Prognoositud okaspuude osakaal 
5011 SMI proovitükil, kus kasvab 
24-aastane või vanem puistu.
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Table 5. Predicted dominant species and field observations on 6,239 NFI sample plots.

Tabel 5. Prognoositud enamuspuuliik võrrelduna 6239 SMI proovitüki andmetega.

NFI /
SMI

Predicted dominant species* / Prognoositud enamuspuuliik*

KS KU MA LV LM HB XK

KS 1,110 186 114 153 137 106 16

KU 201 694 162 47 12 37 6

MA 173 211 1,532 4 8 15 2

LV 93 25 3 334 14 23 7

LM 67 10 7 25 123 20 4

HB 81 34 5 65 23 108 13

XK 47 13 15 72 30 35 17
*Species codes: HB = European aspen; KS = silver birch; KU = Norway spruce; LM = black alder; LV = grey alder; MA = Scots 

pine; XK = other. / Puuliikide koodid on metsakorralduse juhendi järgi.

Discussion

Forest height, standing-wood volume, 
and tree species composition
The NFI is based on contact measurements 
of trees on a set of small sample plots. 
For spatial units smaller than the indi-
vidual county, feature variables from re-
mote-sensing data can be used to construct 
maps of forest-inventory variables. As in 
the case of many other countries, Estonia 
has a national programme of springtime 
aerial photography and ALS for topo-
graphic mapping, with special flights ad-
ditionally performed at higher altitudes in 
the summertime for forest-inventory pur-
poses.

To construct maps of forest height based 
on the 3-dimensional ALS point clouds and 
NFI sample-plot measurements, it suffices 
to apply a linear model that takes as argu-
ment an upper percentile of the point-cloud 
height distribution. Upon taking a model 
independent of tree species and comparing 
forest height predictions based on spring-
time against predictions based on summer 
ALS data, we found a slight bias in the pre-
dicted forest height, dependent on the pro-
portion of evergreen coniferous species in 
the subject forests. The difference proved 
more pronounced in deciduous forests, 
where greater heights were predicted when 
summer ALS data were used.

Lidar pulse returns are rarely recorded 
from tree stems during airborne measure-
ments. The prediction of standing-wood 
volume therefore requires a model that 
accounts for tree height and forest den-
sity (defined as the number of trees per 
unit area). With detection of single trees 
not reliable from sparse point clouds with 
about 1 point per m2, canopy cover can be 
taken as a proxy for forest density. How-
ever, the interaction of laser pulse with for-
est canopy, including the degree of pulse 
penetration to the ground, is substantially 
dependent on the amount of foliage, in ad-
dition to suffering dependence on flight 
parameters and scanner settings. There 
are two options for incorporating canopy 
cover information into the standing-wood 
volume model. The first option is to use a 
variable that predicts canopy cover. The 
second option is to calculate forest height 
metrics from point clouds which include 
near-to-ground points. The former option 
has been adopted for Estonian forests, 
while jurisdictions adopting the second 
option include Finland (Kotivuori et al., 
2016). Arumäe and Lang (2018) analyzed 
ALS-based canopy cover (CC

ALS
) estima-

tion errors using digital hemispherical im-
ages and found the random variability of 
CC

ALS
 to be about 10–12% for sample plots 

30 m in radius. In view of the random var-
iability in CC

ALS
, the combined effect of lo-
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cation errors and small sample-plot sizes, 
and the failure of tree stems to exert direct 
influence on the sparse ALS point clouds, 
the fitted for wood volume prediction are 
reliable for practical use for Estonian for-
ests. The relative residual error of the mod-
els remained in the range of 30–38% of the 
mean measured value. A further decrease 
of random errors in predicted values, al-
though possible, is difficult to achieve at 
pixel level (Arumäe & Lang, 2016).

A bias similar to the result encountered 
with evergreen coniferous-dominated 
forest height prediction was found in the 
standing-wood volume prediction , with 
the common model yielding an  smaller 
by about 40 m3 ha-1 for summer than for 
springtime ALS data. On the other hand, a 
systematically greater , with a discrepancy 
of the same order of magnitude, was found 
for forests dominated by deciduous trees 
for summer as compared against spring-
time ALS data. The problem could be ad-
dressed by dividing the empirical data 
into subsets according to the dominant 
tree species and fitting model parameters 
for each subset. However, in this approach 
the number of observations decreases and 
it becomes necessary to know the tree spe-
cies distribution with high accuracy before 
the model can be applied. The number of 
observations for model fitting can be in-
creased by including sample-plot measure-
ments from several years. If information 
about forest disturbances is reliable, then 
forest height or wood-volume data for the 
sample plots measured a few years before 
the collection of ALS data can be updated 
with a forest growth model.

Tree species composition prediction 
was tested in this study for 25 m target 
pixels. Although the uncertainty in spe-
cies was substantial at the pixel level, the 
proportion of aggregated evergreen co-
niferous species in the composition was 
predicted reliably, and therefore could in 
future versions of the system be used for 
correcting phenology effects.

Options for annual updating of forest 
inventory data
The NFI is intended to provide timely 
forest data for the whole country and to 
furnish published maps of the main varia-
bles, namely forest height, standing-wood 
volume, tree species composition, forest 
age, basal area, relative density, and loca-
tion of disturbances. However, even for a 
small country, such as Estonia it is not eco-
nomically feasible to carry out ALS meas-
urements every year for the whole area, 
making it necessary in the case of many 
Estonian locations to update the data by 
other means. With a geographically com-
prehensive prediction of tree species com-
position, it becomes possible to use forest 
growth modelling to update forest height 
and wood-volume predictions for those 
areas lacking current-year ALS measure-
ments. The current Estonian Land Board 
flight schedule makes it necessary to ap-
ply the modelling over a period of up to 
two years. For the determination of forest 
height, an algebraic difference model is 
used to simulate the growth of Estonian 
forests (Kiviste, 1997):

𝐻𝐻���,������� = 𝑓𝑓(𝐴𝐴�, 𝐻𝐻�, 𝐴𝐴, 𝑂𝑂𝐻𝐻𝑂𝑂𝑂𝑂, 𝑃𝑃𝑃𝑃, 𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃). (5)

Here HALS,updated, the updated height for a 
forest of some specified age A, is calculat-
ed from the known value of height H

1
 at 

age A
1
, the known soil organogenic layer 

thickness OHOR (in cm), and the known 
stand origin TEKE (given as natural or 
cultivated) for a known dominant species 
PE. A model similar to (5) is available for 
wood volume. For areas without current 
FMI data, forest age can be calculated from 
a site fertility-index model used in Estonia, 
based, in turn, on forest height and stand 
age (Forestinv, 2017).

The remaining two variables to be pre-
dicted for forest management planning are 
stand basal area G and relative density T. 
For forest inventory, the relative density is 
calculated as the ratio of stand basal area 
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to a reference (a normal stand in the given 
place). It is, in principle, possible to pre-
dict G and T from ALS data. However, we 
propose to use the relationship M = G·H·F 
where wood volume is the value predicted 
from ALS data, and where the stand form 
factor height H·F is predicted with a forest-
height-based model taken from forest in-
ventory regulations (Forestinv, 2017). For 
each target pixel, the forest height is then 
predicted from ALS data with model (1).

As an essential part of our remote-sens-
ing-based prediction system for forest 
variables, we designed a module for the 
estimation of prediction errors. This er-
ror-budget module is based on the k-NN 
method and on the assumption that NFI 
sample-plot field measurement data pro-
vide ‘true’ values for the forest variables. 
According to the proposed method, the 
prediction error of a forest variable for a 
given pixel is calculated from known er-
rors of similar pixels (found by the k-NN 
algorithm) in the NFI data. The validation 
of prediction models is still based on sim-
ple validation datasets. Nevertheless, for 
practical use, the described method makes 
it possible to construct uncertainty maps of 
predicted values for the entire target area.

Outlook

In this paper, we have presented a fully 
functional remote-sensing support module 
for the Estonian NFI, supporting the con-
struction of maps of forest height, stand-
ing-wood volume, and tree species compo-
sition. Our study has, however, revealed 
the need for correction of phenology ef-
fects in the ALS data. This can be achieved 
by increasing the accuracy of tree species 
composition estimates, using longer time 
series of multispectral satellite data and 
dense time series of Sentinel-1 SAR data as 
proposed by Dostálová et al. (2018).

When the system becomes fully opera-
tional, it will be possible to determine also 
forest age at high accuracy, by using time 
series of multi-temporal satellite images 
for the detection of forest regeneration fell-

ings (Peterson et al., 2004; Liira et al., 2006). 
Weak disturbances, such as normal thin-
nings, can also be detected from bi-tem-
poral multispectral satellite image pairs 
(Uiga et al., 2003), as well as from sparse 
point clouds obtained through repeated 
ALS measurements (Arumäe, et al., 2020). 
With the combination of these various re-
finements in technique, Estonian forestry 
is entering an era in which data for forests 
at every point of the country are updated 
yearly and can be used for sustainable for-
est-management planning, on the basis of 
10–30 m spatial units.

Conclusions

The remote-sensing support module of-
fered in this paper for the Estonian NFI 
accepts open-source data. Our models 
for sparse ALS point clouds yield coeffi-
cients of determination in the ranges of 
89.5–94.8% for height and 84.2–91.7% for 
wood volume. However, validation of the 
common model prediction results has re-
vealed systematic bias, upon comparing 
predictions from summer against predic-
tions from springtime ALS data. The bias 
problem could be addressed by including 
the share of evergreen tree species in the 
model for springtime ALS data. At the 
pixel level, the prediction of dominant 
tree species, from a set of six possible op-
tions, has been found to give a Cohen’s 
kappa value of 95% for the confidence in-
terval 0.51–0.54 when validated on small 
NFI sample plots, with the determination 
of the share of aggregated evergreen tree 
species in forests found to be reliable. Fur-
ther studies are required to better account 
for phenology effects influencing ALS data 
and to increase the precision of tree species 
composition predictions. Already, howev-
er, our proposed solution indicates a path 
forward for Estonian forestry, offering the 
prospect of annually updated forest-inven-
tory data for all Estonian forest at 10–30 m 
spatial resolution, to support sustainable 
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forest-management planning.
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Kokkuvõte

Eestis on metsade sihipärase takseerimise-
ga (Krigul, 1972; Vaus, 2005) tegeletud juba 
peaaegu 150 aastat (Meikar, 1998). Metsa-
taksaatori kohapeal koostatud puistute 
kirjeldused on küll piisavalt hea andmestik 
konkreetse metsaosa majandusotsuste ka-
vandamiseks ning on varasemalt olnud ai-
nuke allikas üleriigilise metsafondi iseloo-
mustamiseks (Aru & Okas, 1959; Aru et al. , 
1975; Tappo, 1982; Polli & Viilup 1989; Vii-
lup, 1995), aga tavaliselt on kümneaastane 
või pikem kordusmõõtmise periood, tööde 
kõrge hind, mittemajandatavate metsa-
de alakaetus ja omandist sõltuv andmete 
uuendamise strateegia põhjused, miks ka 
Eestis on võetud kasutusele instrumen-
taalselt mõõdetavate proovitükkide vali-
mil põhinev statistiline metsainventuur 
(SMI) (NFIEUROPE, 1997; Kohava, 1998; 
Adermann, 2010; Tomppo et al., 2010). SMI 
vaatluste arv aastas võimaldab saada met-
saressursi hinnanguid kuni maakonna ta-
semeni. Siinse töö eesmärgiks oli luua Eesti 
SMI jaoks metoodika ja tarkvaraline lahen-
dus kaugseireandmete (multispektraalsed 
satelliidipildid, satelliitradari pildid ja ae-
rolaserskaneerimise andmed) abil puistute 
kõrguse, tüvemahu ja liigilise koosseisu 
prognooskaartide koostamiseks. Sarna-
seid lisasid statistilisele metsainventuurile 
leidub paljudes riikides (Poso et al., 1990; 
McRoberts & Tomppo, 2007; Barrett et al., 
2016).

Maapealse mõõtmisandmestiku moo-
dustavad SMI proovitükid, mis paikne-
vad kobaratena üle Eesti (joonis 1). Igal 
aastal mõõdetakse umbes 5000 proovi-
tükki (joonis 2), mille raadius on 7 või 10 

meetrit. Proovitükkide klastrid on maas-
tikul 800×800 meetri suurused ruudud  
(joonis 3), mille külgedel paiknevad mõõt-
miskohad.

Eesti Maa-ameti tehtav lidarmõõdistus 
(joonis 4) võimaldab saada metsa struktuu-
ri kajastava kolmemõõtmelise andmestiku, 
mille meetrikutele (punktipilvi kirjeldavad 
statistikud) tuginedes saab luua mudelid 
puistute kõrguse (1) ja tüvemahu (2) prog-
noosimiseks SMI proovitükkide suurusega 
võrreldavatele pinnaühikutele (10–30 m 
pikslid). Kõrguse ja tüvemahu mudelid ei 
ole praegu puistu enamuspuuliigist sõltu-
vad. Puistute koosseisu prognoosimiseks 
kasutakse multispektraalseid satelliidipil-
te ja metsaregistri andmeid (vt Lang et al., 
2018). Kõrguse H ja tüvemahu M mudelite 
iseloomustamiseks kasutati töös keskmist 
ruutviga (RSE) (3) ja keskmist viga (MRE) 
(4) ning prognoose analüüsiti ka lidarmõõ-
distuse objektide ülekattealadel (joonis 4), 
mis võimaldab saada tagasisidet kevadise 
ja suvise lidarandmestiku kasutamise tõttu 
tekkivatest nihetest prognoosides. Puistute 
liigilise koosseisu prognoosi täpsust näitab 
kappa indeks ning okaspuude osakaalu 
kokkulangevus valideerimisandmetega, 
mis saadi SMI proovitükkidelt.

Puistute kõrguse prognoosmudel (1) 
kirjeldas rohkem kui 89% empiirilise and-
mestiku variatsioonist (tabel 1). Kevadis-
te ja suviste lidarmõõdistusalade üleka-
tetel asuvatele puistutele prognoositud 
kõrguste võrdlemisel ilmnes mõningane 
süstemaatiline nihe sõltuvalt puistu ena-
muspuuliigist (tabel 4, joonis 5). Puistute 
tüvemahu prognoosmudel kirjeldas üle 
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82% empiirilise andmestiku variatsioonist 
(tabel 2). Kuigi mõõdetud ja prognoositud 
tüvemahus enamuspuuliigist sõltuvust 
visuaalselt ei paista (joonis 6), siis puulii-
kide järgi rühmitatud empiirilise andmes-
tiku korral sõltub mudeli keskmine viga 
siiski enamuspuuliigist (tabel 3). Puuliigi 
mõju ilmneb selgelt kevadiste ja suviste 
lidarmõõdistusalade ülekatetel kasvava-
tele puistutele prognoositud tüvemahtude 
võrdlemisel (tabel 4, joonis 7). Prognooside 
täpsustamiseks tuleb edaspidi uurida või-
malusi puuliigist sõltuvate mudelite ka-
sutamiseks, kuigi oluliseks takistuseks on 
siin väike SMI proovitükkide arv. Puistu 
liigilise koosseisu prognoosi võrreldi ena-
muspuuliigi järgi Lang et al. (2018) saadud 
tulemustega kasutades 6239 SMI proovi-
tüki asukohalt võetud piksleid ning saa-
di Coheni kappa 95%-lised usalduspiirid 
0,69–0,72. SMI proovitükkide takseerkirjel-

dustes oleva enamuspuuliigiga oli kokku-
langevus (tabel 5) veidi väiksem ja Coheni 
kappa 95%-lised usalduspiirid olid 0,51–
0,54. Selline tulemus on igati aktsepteeri-
tav arvestades prognoositud puuliikide 
arvu ja võimalikke segusid Eestis ning SMI 
proovitükkide väiksust ja asukohatäpsust 
ning satelliidipildi pikslite spektraalse-
te signatuuride kujunemist mõjutavate 
tegurite suurt arvu. Seda näitas ka prog-
noositud okaspuude osakaalu keskmine 
kokkulangevus 5011 SMI proovitükil, kus 
kasvas 25-aastane või vanem puistu (joonis 
8). Kokkuvõtteks tuleb nentida, et käesole-
va rakendusuuringu tulemusena on Eestis 
jõutud tasemele, kus säästliku metsama-
janduse kavandamiseks on metsakorral-
duses nüüd võimalik kasutada üle riigi 
10–30 meetrise ruumilahutusega andmeid, 
mille vanus pole rohkem kui üks kuni kaks 
aastat.
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