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Abstract: The Altiplano-Puna Volcanic Complex (APVC) of the Central Andes is an arid region with
extensive volcanism, possessing various geological features comparable to those of other solar system
objects. The unique features of the APVC, e.g., hydrothermal fields and evaporite salars, have been
used as planetary analogs before, but the complexity of the APVC presents a wealth of opportunities
for more analog studies that have not been exploited previously. Motivated by the potential of using
the APVC as an analog of the volcanic terrains of solar system objects, we mapped the mineralogy and
silica content of the APVC up to ~100,000 km2 in northern Chile based on a combination of remote
sensing data resembling those of the Moon and Mars. The band ratio indices of Landsat 8 Operational
Land Imager multispectral images and mineral classifications based on spectral hourglass approach
using Earth Observing-1 Hyperion hyperspectral images (both in the visible to shortwave infrared
wavelengths) were used to map iron-bearing and alteration minerals. We also used Hyperion imagery
to detect feldspar spectral signatures and demonstrated that feldspar minerals can be detected on
non-anorthosites, which may influence interpretations of feldspar spectral signatures on Mars. From
the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Emissivity
Dataset, we derived the silica percentage of non-evaporite rocks within errors of approximately
2–3 wt.% SiO2 for those in the 60–70 wt.% range (about 8 wt.% errors for the 50–60 wt.% range).
Based on an integrated assessment of the three datasets, we highlighted three regions of particular
interest worthy of further field investigation. We also evaluated the benefits and limitations of all
three remote sensing methods for mapping key minerals and capturing rock diversity, based on
available samples and existing geological maps.

Keywords: spectroscopy; mineral mapping; Atacama; Altiplano-Puna; planetary analog; Landsat;
ASTER; Hyperion; iron; alteration; feldspar; silica; reflectance; emissivity

1. Introduction

Planetary analog studies are comparisons of properties of areas on Earth that have
similar characteristics as extraterrestrial bodies in order to gain insights about solar system
objects and beyond. Analogs on Earth are often the only opportunity for researchers to con-
duct rigorous investigations with a suite of advanced instruments, test models, and verify
remote sensing observations with ground-truth experiments; thus, planetary analog studies
have been one of the crucial methods for understanding extraterrestrial bodies. As new
missions to various solar system objects by multiple countries progress this decade [1–4],
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new questions that cannot be answered by spacecraft alone are expected to arise, and to
respond to them, planetary analog studies will continue to play an important role.

Many planetary analog studies with a variety of objectives have been conducted in-
various parts of the world since the beginning of the modern exploration of extraterrestrial
bodies. One of the most often-used terrain types for analog studies are volcanic fields,
as large proportions of lunar and Martian surfaces are volcanic in nature [5–7]. In recent
years, multi-institutional programs, such as NASA Desert Research and Technology Studies
(Desert RATS), Solar System Exploration Research Virtual Institute (SSERVI), and Planetary
Science and Technology from Analog Research (PSTAR), have made considerable progress
at volcanic analog sites including the Hawaiian Islands and lava fields in the western
United States (e.g., Craters of the Moon National Monument, Idaho) [8–12]. These large
programs used the analog sites for scientific investigations, technology developments, and
operations testing. Other analog studies focused on the geochemical aspects of volcanic
fields, mainly alterations in minerals and rocks. For example, at the Atacama Desert of
northern Chile, Ruff et al. [13] investigated the silica deposits of the El Tatio hydrother-
mal field, which closely resembled observations made by the Mars Exploration Rover.
Flahaut et al. [14] and Yant et al. [15] compared the Solfatara volcanic crater in central Italy
and Kilauea’s December 1974 Flow in Hawaii, respectively, to fumarolic alterations on Mars.
For astrobiology, alteration and other extreme environments are relevant for life-supporting
conditions on extraterrestrial bodies, and altered and evaporite areas such as those in the
Central Andes and Australia have been used for astrobiology analog studies [16,17]. The
cold environments found in Antarctica are also studied often for gully geomorphology
comparisons with their Martian counterparts [18].

The Altiplano-Puna Volcanic Complex (APVC) [19] of the Central Andes is one of
the volcanic analog sites that contains a variety of evaporite deposits, alteration minerals,
and a diverse range of mafic-to-silicic volcanic features suited for comparisons to the
surfaces of the Moon and Mars. Comparisons of the APVC to the Moon and Mars in
recent works (e.g., Ruff et al. [13], Aerts et al. [17], Flahaut et al. [20,21]) gave insights into
major questions of these bodies (e.g., silica deposits and salars on Mars, dome formation
on the Moon), and they have re-emphasized the strong potential of the APVC to better
understand the Moon and Mars. There is an interest in the use of the variety of features
available at the APVC for further analog studies; however, this region is still not fully
characterized and has unexplored areas due to harsh conditions for field expeditions. For
this reason, we used a set of orbital multispectral and hyperspectral images to map the
minerals of the APVC to survey areas of interest for ongoing and future analog studies and
field expeditions. We used Landsat 8 Operational Land Imager (OLI) visible near-infrared
(VNIR; 0.5–0.9 µm) and shortwave infrared (SWIR; 1.2–2.5 µm) bands, Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR;
8–15 µm) bands, and Earth Observing-1 (EO-1) Hyperion VNIR-SWIR bands to simulate a
set of instruments available on lunar and Martian orbiters. This set of instruments covers
wide ranges of wavelength, spectral resolution, spatial coverage, and spatial resolution,
and the instruments complement each other’s strengths and weaknesses.

The Altiplano-Puna Volcanic Complex

The Atacama Desert of northern Chile, the driest non-polar desert on Earth, is a natural
laboratory to study the diversity of volcanic geoforms. Given the relative scarcity of vegeta-
tion and clouds and the low atmospheric water content during the four seasons of the year,
it is very plausible to obtain detailed insights from orbit. The Atacama Desert has thus been
proposed as an excellent analog environment for some planetary bodies due to its com-
parable climate, volcanic structures, and lava flow morphologies (e.g., Flahaut et al. [20]).
A wide range of volcanic edifices has been found, particularly in the modern volcanic arc
of the Central Andes, including stratovolcanoes, calderas, monogenetic cones, and domes,
which are frequently very well-preserved due to the hyperarid climate of the region [22,23].
Remarkable compositional heterogeneity (from ca. 48 to 80 wt.% SiO2) defines Central
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Andean volcanism, with andesites and dacites being the most common erupted materials
at many volcanoes [24]. Basalts and basaltic andesites are rare and concentrated only in a
few areas of the main arc and the Altiplano-Puna back-arc [25]. Rhyolite lavas, on the other
hand, are unusual in stratovolcanoes, but ignimbrite deposits related to the APVC are com-
monly dacitic-to-rhyolitic in composition [26]. The APVC is one of the largest ignimbrite
provinces in the world, covering a surface area greater than 70,000 km2 [19]. Our study area
covers the western boundary of the APVC between 21◦30′S, 67◦00′W and 24◦30′S, 69◦00′W
(Figure A1a). Within this area, common volcanic centers include Miocene-to-Quaternary
andesitic-to-dacitic stratovolcanoes (e.g., Carcanal, San Pedro, Lascar), low-silica mono-
genetic edifices (e.g., La Poruña scoria cone; El Negrillar), and small-volume silicic domes
(e.g., Chanka) that overlie more voluminous Miocene rhyodacitic-to-rhyolitic ignimbrite
sheets. This area also includes closed basins infilled by groundwater (e.g., Lake Tuyajto)
and/or covered by non-consolidated-salts-to-hard-saline-crusts that may form extensive
evaporite deposits (e.g., Salar de Atacama).

Hubbard and Crowly [27] demonstrated a mineral mapping methodology using a
combination of EO-1 Advanced Land Imager (ALI), EO-1 Hyperion, and Terra ASTER
imageries in the VNIR and SWIR wavelengths at the APVC. This study succeeded in
qualitatively identifying and mapping the distribution of alteration and evaporite minerals
at Azufre Volcano (21◦47′S, 68◦13′W) and Salar de Ascotan (21◦34′S, 68◦16′W), although
it stopped shy of deriving quantitative abundances and analyzing outside of the two
example areas.

Motivated by this work, we used similar instruments to map the abundance and distri-
bution of minerals and bulk-rock properties of mainly volcanic surfaces useful for ongoing
volcanology field campaigns [28–30], analog studies of the Moon and Mars [21,31,32], and
future studies.

2. Materials and Methods
2.1. Landsat 8 Operational Land Imager (OLI)

Landsat 8 began operations in 2013 and is one of the latest satellites in the Landsat
series [33]. Its OLI sensor possesses 9 spectral bands in the VNIR-SWIR (0.4–2.5 µm;
Figure 1). The OLI operates in the push-broom imaging method and has a spatial resolution
of 30 m/pixel. Landsat 8 satellite flies in sequence with EO-1 (prior to decommission) and
Terra satellites, known as the morning constellation [34]. Further specifications of the OLI
can be found in Irons et al. [33].

We downloaded three Landsat 8 OLI level 2 reflectance data from the U.S. Geological
Survey (USGS) EarthExplorer (file names available in Table A1). Bands 1–7 are appropriate
bands for mineralogical analysis; Bands 8 and 9 are panchromatic and cirrus (cloud) sensors,
respectively, and not used in this study. Landsat 8 also possesses a thermal infrared sensor,
but it was not used in this study because it only contains two bands, which were mainly
intended to study surface temperatures. For analysis using TIR wavelengths, we use
ASTER data.

The three selected images were combined using the mosaic tool of the ENVI 5.6 soft-
ware from L3Harris Geospatial (https://www.l3harrisgeospatial.com/Software-Technology/
ENVI, accessed on 24 January 2022). To remove shadows and other dark areas from analysis,
pixels with reflectance less than 0.1 in all bands 1–7 were masked. Band ratio 1/6 was
computed to capture the high spectral contrast of snow and water, and pixels with values
greater than 1.0 were masked. The selected images were almost free of clouds; a small
cloud and its shadow found at 23◦67′S, 67◦47′W was manually masked. Pixels with Band
2 reflectance greater than 0.19 were also masked as they corresponded to salars, which are
not the focus of this study.

First, we applied the decorrelation stretch (DCS [35]) technique to obtain a gen-
eral idea of the variabilities within the scene (Figure A1c). Next, band ratios based on
Rockwell et al. [36] were computed to map iron-bearing and alteration mineral groups
(Table 1). Ferric iron 1 index captures the stronger absorption of blue/green light with
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respect to orange/red light that arises from charge transfer, and it is widely used to map
ferric iron minerals [37]. Ferric iron 2 index also captures blue/green absorption but also
crystal-field absorptions in the near-infrared. This index is more sensitive to minerals with
greater abundance of ferric iron than the ferric iron 1 index [37]. In the ferrous/coarse-ferric
iron index, the broad absorption characteristic of ferrous iron is captured. Additionally, oxi-
dizing basalts leaving behind hematite in volcanic flows and cinder cones are captured [37].
The clay-sulfate-mica index captures the diagnostic absorption bands in the SWIR of these
minerals. The band ratio 5/4 is an index of green vegetation, and this is subtracted from the
6/7 band ratio in order to reduce the effect of green vegetation (although green vegetation
is sparse at the APVC). Landsat 8 OLI has only one band in the 2.0–2.5 µm range; thus,
the distinction among clay, sulfate, and mica was not made; this was instead performed
with the more appropriate hyperspectral EO-1 Hyperion. The iron-sulfate mineral index
captured the strong absorption of light in Band 1 (0.43–0.45 µm) in comparison to Band
2 (0.45–0.51 µm), which is not a characteristic of other iron-bearing minerals (oxide and
hydroxide minerals [36]). As with index 4, the green vegetation band ratio was subtracted
from the 2/1 band ratio to further mitigate effects of vegetation.

Table 1. Landsat 8 OLI band ratios from Rockwell et al. [36] used to characterize iron-bearing and
alteration minerals.

Index Number Index Name Formula 1

1 Ferric iron 1 “redness” 4/2
2 Ferric iron 2 4/2 × (4 + 6)/5
3 Ferrous iron, coarse-grained ferric iron, fire ash 2 (3 + 6)/(4 + 5)
4 Clay, sulfate, mica, marble 2 6/7 − 5/4
5 Iron sulfate 2/1 − 5/4

1 Numbers correspond to Landsat 8 OLI band numbers (see Figure 1). 2 Fire ash and marble are rarely found at
the field site and, thus, omitted from interpretation.
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Figure 1. Overview of selected spectral bands of remote sensing instruments for the Earth, Moon,
and Mars mentioned in this work in VNIR-SWIR and TIR ranges. Blue, orange, and gray colors
correspond to instruments for the Earth, Mars, and the Moon, respectively. For the Earth component,
the atmospheric transmittance computed with MODerate resolution atmospheric TRANsmission
(MODTRAN) for one-way US standard 1976 model [38] is also shown. Band numbers for Landsat 8
OLI and Terra ASTER TIR are indicated at the bottom.

2.2. Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

ASTER, one of the five instruments of the satellite Terra, was built by Japan Ministry
of Economy, Trade, and Industry in collaboration with NASA and launched in 1999, mainly
for studying land surfaces [39]. ASTER has 15 spectral bands that span the 0.5–12 µm
wavelength range, covering the VNIR, SWIR, and TIR. Bands 10–14 (8.1–11.7 µm; Figure 1)
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are TIR and have a spatial resolution of 90 m/pixel [39]. We used the TIR bands to retrieve
a bulk-rock property, i.e., silica percentage, as a complement to mineralogy derived from
VNIR and SWIR data of Landsat 8 OLI and EO-1 Hyperion. The VNIR-SWIR bands of
ASTER were not used in this work because the mineralogical information that can be
derived from them is redundant to or, at least, less informative than the OLI+Hyperion
combination in terms of spectral resolution, wavelength coverage, spatial resolution, and
spatial coverage (one minor benefit is 15 m/pixel resolution, but only in bands 1–3; other
bands have 30 m/pixel resolution).

From USGS EarthExplorer, we downloaded ASTER Global Emissivity Dataset (GED;
files names available in Table A1). ASTER GED was released by NASA Jet Propulsion
Laboratory and is the most extensive and accurate emissivity product of the Earth’s land
surface to date [40]. Emissivity is derived from the mean of cloud-free ASTER observations
during the 2000–2008 period, and this dataset covers all land surfaces with spatial resolution
of 100 m/pixel (coarser resolution data are also available [40]).

First, we applied the DCS technique to obtain a general idea of the variabilities.
Surfaces of water and water-bearing minerals (e.g., gypsum) in salars appeared in green
color with this DCS band combination (R:14 G:12 B:10; Figure A1d), and they were masked
and removed from further analysis. Parts of salars that were not masked with this approach
were later captured using the Spectral Angle Mapper (SAM) tool [41] in ENVI, and these
pixels were also masked.

In the TIR, emissivity spectra of silicate minerals generally exhibit major absorption
features in the 8–13 µm wavelength range because vibrational frequencies of Si–O bond in
silicate mineral structures match the frequencies of electromagnetic energy in this wave-
length range [42–44]. These absorption bands are known as reststrahlen bands, and the
minima of reststrahlen bands occur at progressively longer wavelengths as the SiO2 con-
tent of a rock decreases [42–48]. This relationship allows the derivation of silica content
of rocks if the wavelength of the reststrahlen band minima can be retrieved from TIR
emissivity spectra.

We used the technique of Hook et al. [45], who determined a quantitative relationship
between silica percentage and minimum position of reststrahlen bands from the ASTER
spectral library [49,50], to determine the silica percentage. Minima of reststrahlen bands
were determined by fitting a four-term Gaussian function

f(λ) = A0 exp(−z2/2) + A3 (1)

to emissivity spectra, where λ is the wavelength, A0 is the amplitude, and A3 is the offset.
In the exponent, z is expressed as

z = (λ − A1)/A2 (2)

where A1 and A2 are the wavelength position of the minimum value and the area enclosed
by the function, respectively. For the ASTER dataset without ultramafics (which is appro-
priate for the APVC) the relationship between weight percent silica (y) and wavelength of
minimum of the Gaussian function (A1) is known as

y = −16.203 A1 + 213.97 (3)

with r2 of 0.7615 [45].
The computations involved in silica percentage derivation from ASTER GED were

accomplished with a Python routine implemented as part of the CRPG spectral processing
software, Mineral Recognizer [51]. Spectra with no distinguishable reststrahlen bands were
not processed.
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2.3. Earth Observing-1 (EO-1) Hyperion

Hyperion, which was decommissioned in 2017, contained 220 spectral bands in the
0.4–2.5 µm wavelength range (Figure 1), and it had a spatial resolution of 30 m/pixel [52].
Hyperion products are long, narrow strips of hyperspectral cubes with standard scene
width and length of 7.7 km and 42 km, respectively (the length can extend up to 185 km) [52].
This makes Hyperion complementary to Landsat 8 OLI, which has lower spectral resolution
but greater spatial coverage.

Six Hyperion radiance images available on USGS EarthExplorer were downloaded
(Table A1) and converted to reflectance using the ENVI FLASSH module [53–55]. The
selection of Hyperion images was first guided by areas of mineralogical interest determined
from the Landsat and ASTER maps and further constrained by the availability and quality
of images. The derived reflectance spectra were noisy with occasional spikes in spectra.
This was expected as Hyperion data have comparatively low signal-to-noise ratio (150:1
to 60:1 for Hyperion but above 200:1 for Landsat 8 OLI [33,52,56]). We used the Mineral
Recognizer denoising algorithm to eliminate spikes using a combination of percentile and
z-score techniques [51].

The selected Hyperion images were processed to retrieve mineral classes using the
spectral hourglass approach [57]. Data were first transformed using the Minimum Noise
Fraction (MNF) technique [58]. To separate useful signals from noise, the first 18 MNF
bands were kept for Inverse MNF and further processing, which is a consistent number
of bands with Hubbard and Crowley [27]. Next, Pixel Purity Index [59] was computed,
and pixels with potential endmember spectra were identified. Upon manual inspection,
obvious spectra of non-minerals (e.g., snow, image edges) were removed. For the re-
maining endmember spectra, Spectral Analyst Tool based on the USGS Spectral Library
version 7 Beckman group [60] was used with SAM and Spectral Feature Fitting (SFF) tech-
niques [41,61] to identify minerals or mineral groups. The Spectral Analyst tool is sensitive
to the input wavelength range; thus, we searched for consistent matches after applying it
to the 0.4–2.5 µm, 0.4–1.2 µm, and 2.0–2.5 µm ranges. Next, pixels in the scene matching
the selected endmember spectra were identified using the SAM technique with the default
threshold angle of 0.1. Similar or redundant SAM classes were merged based on geospatial
and spectral similarities and irrelevant SAM classes (e.g., shadows) were omitted upon
manual inspection.

Additionally, we specifically searched for feldspar minerals, as the geological inter-
pretation of remote sensing detection of feldspar minerals in the VNIR-SWIR on Mars is
a currently debated topic [31,32,62–65]; thus, a comparable detection of feldspars at the
APVC is eminently beneficial. The VNIR-SWIR reflectance spectra of feldspar minerals are
mostly featureless, however, for those containing minor amounts of iron, a broad absorp-
tion band center around 1.25 µm can be detected (e.g., Adams and Goulaud [66], Cheek
and Pieters [67]). Capturing this broad absorption feature requires Hyperion’s spectral
coverage and resolution. We computed the spectral index of feldspar minerals in a similar
way as for the index BD1300 in Viviano-Beck et al. [68] as

B = 1 − Rc/(a × Rs + b × Rl) (4)

where B is the feldspar band depth index, Rc, Rs, and Rl are the reflectance at the center, the
short wavelength edge, and the long wavelength edge of the band, respectively. Wavelength
parameters a and b are derived as

b = (λc − λs)/(λl − λs) (5)

a = 1 − b (6)

where λc, λs, and λl are the wavelength of the center, the short edge, and the long edge of
the band, respectively. For reflectances Rc, Rs, and Rl, means were taken from reflectances
at several wavelengths for each of λc, λs, and λl to reduce noise (exact wavelengths are
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indicated in Table A2). Useable Hyperion spectral bands were limited around the typical
feldspar band center (around 1.25 µm); therefore, we actually computed two values of B
for each spectrum using two different λc that together captured the feldspar band. We
then computed the mean of the two preceding B values to derive the final value for B.
In order to reduce false positives, first and second derivatives of the reflectances were
computed to eliminate spectra without distinguished concave shapes centered around
1.25 µm. Shadows and other dark materials with low spectral reflectance (<1.5) were
also removed from analysis. The computations of spectral indices were performed using
Mineral Recognizer.

3. Results

The main objective of this study was to conduct a mineralogical survey of the non-
evaporite surfaces of the APVC, to identify potential areas of interest to use as planetary
analogs, and to support geological field expeditions in subsequent works. We determined
three regions of interest that showed potential and had at least some availability of Hyperion
imagery. In this process, mineral and rock characterizations capitalize on the advantage of
synthesizing multiple datasets and techniques that are different and complementary to one
another (Section 2). The assessment of the utilization of multiple remote sensing datasets is
itself noteworthy, and it is discussed in Section 4.2.

3.1. Cerro Carcanal and Vicinity
3.1.1. Alteration Minerals

The first area of interest is Cerro Carcanal and its vicinity (Figure 2; 21◦57′36′ ′S,
68◦25′48′ ′W to 22◦7′48′ ′S, 68◦17′24′ ′W), which is a stratovolcano from the Miocene age [69].
Landsat index 4 showed elevated levels of the clay-sulfate-mica mineral group, and es-
pecially high index values were found at the summit of Carcanal volcano (Figure 3d).
The Hyperion hyperspectral analysis captured the various shapes of the spectral bands in
the 2.0–2.5 µm region and indicated that the summit contains argillic alteration minerals,
mainly montmorillonite, alunite, and kaolinite (Figure 4). Alunite and kaolinite miner-
als typically indicate advanced argillic alteration states more than montmorillonite [70];
thus, pixels with spectra closely matching alunite and kaolinite in the 2.0–2.5 µm region
were grouped as “High Alteration” to distinguish them from the other pixels matching
montmorillonite, which were classified as “Alteration.” The clay-sulfate-mica material
at the summit seems to have flown down the volcano slope, and the “High Alteration”
class became scarce further from the summit (Figure 3f). The flows continued beyond
the coverage of the Hyperion imagery and made particularly large deposits to the south
of the volcano (e.g., 68◦31′12′ ′S, 22◦11′60′ ′W; Figure 2d). Landsat index 5 showed that
moderate amounts of iron-sulfate minerals were also found at the summit (Figure 3e), but
the iron-sulfate index values were comparatively low in relation to those of the nearby
volcanoes (Figure 2e), such as Paniri (22◦3′34′ ′S, 68◦13′48′ ′W) and Cerro del Leon (22◦8′0′ ′S,
68◦6′36′ ′W).

3.1.2. Iron-Bearing Minerals

Especially high values of the Landsat ferrous/coarse-ferric iron mineral group were
found sparingly at the summit, slope, and base of Carcanal volcano (Figure 3c). The Hy-
perion analysis found that the spectra of these pixels highly matched hematite spectra
(Figures 3f and 4), and these pixels were classified as “High-Iron-Bearing” class. One of
these features, known as El Rojo III scoria cone (22◦0′35′ ′S, 68◦18′46′ ′W), has been geo-
chemically analyzed before and was identified as a deeply weathered and oxidized basaltic-
andesite deposit containing approximately 8.35 wt.% FeO [71]. This is consistent with
Hyperion’s spectrum-based identification as hematite and high Landsat ferrous/coarse-
ferric iron mineral index. Other pixels high in Landsat ferrous/coarse-ferric iron mineral
group and Hyperion “High-Iron-Bearing” class are expected to be of similar materials. In
particular, outside of the Hyperion imagery coverage, Landsat index 3 highlighted a large
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deposit of this material to the south of Carcanal volcano (22◦8′60′ ′S, 68◦24′36′ ′W; Figure 2c).
These features, however, were not highlighted by high values of ferric iron index 1 and 2
(Figure 3a,b).
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Figure 2. (a) Landsat index 1 “ferric iron 1 redness”. (b) Landsat index 2 “ferric iron 2”. (c) Landsat
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index 5 “iron sulfate”. (f) Estimated silica percentage from ASTER imagery. Three regions selected in
this study are indicated with rectangles. For Landsat index maps (a–e), pixels with negative values
were masked. For ASTER silica percentage map (f), pixels corresponding to salars were masked
(Section 2.2).
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Figure 3. Maps of Cerro Carcanal and vicinity (21◦57′36′ ′S, 68◦25′48′ ′W to 22◦7′48′ ′S, 68◦17′24′ ′W).
(a) Landsat 8 OLI ferric iron 1 “redness” band ratio index. (b) Landsat 8 OLI ferric iron 2 band
ratio index. (c) Landsat 8 OLI ferrous/coarse-ferric iron band ratio index. (d) Landsat 8 OLI clay-
sulfate-mica band ratio index. (e) Landsat 8 OLI iron-sulfate band ratio index. (f) EO-1 Hyperion
SAM classification result. “Alteration” and “High Alteration” groups are based on montmorillonite
and alunite/kaolinite minerals, respectively. “High-Iron-Bearing” group is based on high hematite
spectral signature. (g) Estimated silica percentage from ASTER imagery.

3.1.3. Silica Percentage

Overall, the ASTER silica percentage map (Figures 2f and 3g) indicated that Carcanal
volcano is enriched in silica compared to the volcanoes in its immediate surroundings,
San Pedro (21◦53′17′ ′S, 68◦23′32′ ′W), San Pablo (21◦52′41′ ′S, 68◦21′49′ ′W), and Paniri,
which suggests that Carcanal volcano experienced greater alteration (silicic and argillic)
than its neighbors. This is consistent with the fact that Carcanal is older (Miocene) than
others (Quaternary) [69] and thus has had more time for alteration to advance.

3.2. ALMA/Toconao Village Region
3.2.1. Alteration Minerals

The second region of interest lies in the area near Atacama Large Millimeter Array
(ALMA) and Toconao village (Figure 2; 22◦53′0′ ′S, 68◦0′0′ ′W to 23◦18′0′ ′S, 67◦39′0′ ′W).
Cerro Toco (22◦57′36′ ′S, 67◦46′12′ ′W) showed high Landsat clay-sulfate-mica and iron-
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sulfate mineral index values (Figure 5d,e). Hyperion analysis also indicated the presence of
the argillic alteration minerals, montmorillonite, kaolinite, and alunite (Figure 5f).
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Figure 4. Hyperion spectra of alunite, kaolinite, montmorillonite, and hematite found at Cerro
Carcanal and vicinity. The identification of minerals is the overall result of SAM and SFF methods
in ENVI Spectral Analyst tool. The entire 0.48–2.5 µm wavelength range was used for hematite
spectrum identification, and both 0.48–2.5 and 2.0–2.5 µm wavelength ranges were used for alu-
nite/kaolinite/montmorillonite spectrum identification.

3.2.2. Iron-Bearing Minerals

This region was characterized by large extents of moderately-high-to-very-high iron-
bearing minerals. The Landsat ferrous/coarse-ferric iron mineral index highlighted a few
volcanic centers (23◦5′24′ ′S, 67◦46′12′ ′W; 23◦10′12′ ′S, 67◦40′48′ ′W; 23◦14′24′ ′S, 67◦45′0′ ′W),
which were further found to possess hematite and hornblende with Hyperion hyperspectral
analysis and classified as “High-Iron-Bearing.” Similar to the iron-rich basaltic-andesite
features at the Cerro Carcanal area, these iron-bearing features are likely oxidized basaltic-
andesite volcanic deposits as well. The Landsat ferric iron 1 “redness” index (Figure 5a)
was not high. The geological map (Figure A1b) indicates that these features are Pliocene
volcanic centers with andesite, dacite, basalt, and basaltic-andesite composition, indicating
younger age compared to the similar features at Cerro Carcanal.

The Hyperion hyperspectral analysis also identified pixels with hematite spectra but
to a lower degree of agreement than the “High-Iron-Bearing” class, which were labeled
as “Iron-Bearing” (Figure 5f). The Iron-Bearing pixels corresponded to moderately high
Landsat ferrous/coarse-ferric iron index values (Figure 5c), and on the geological map,
these regions were indicated as ignimbrites and pyroclastic flow deposits (Figure A1b).
Furthermore, Landsat ferric iron index 1 and 2 also showed moderate-to-very-high values.
Not all parts of the ignimbrites and pyroclastic flow deposits exhibited overall high iron-
bearing mineral spectral signatures, however. The ignimbrites in the northern part of
this location (23◦0′36′ ′S,”67◦48′36′ ′W) showed low values of Landsat ferric iron 1 and 2
index and very low values of ferrous/coarse-ferric iron index, and hematite (and other
iron-bearing mineral) spectra were not identified with the Hyperion analysis.

3.2.3. Silica Percentage and Feldspar Minerals

The parts of ignimbrites and pyroclastic flow deposits that have high iron-bearing
mineral spectral signatures were mostly more consistent with higher silica percentages
than the parts with low iron-bearing mineral spectral signatures (Figure 5h). However,
“High-Iron-Bearing” basaltic-andesite volcanic deposits exhibited low silica percentages
(Figure 5h).

High values of Hyperion feldspar mineral index were found at Dacite Dome D of the
Purico Complex (22◦56′60′ ′S,”67◦43′12′ ′W; Figure 5g [71,72]). For this dome, the ASTER
silica percentage map indicated mostly average values (~62 wt.% SiO2) but sometimes
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ranged up to nearly 70 wt.% SiO2. Low feldspar index values were also found in the Purico
ignimbrite located to the south of El Cerrillo dome.
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Figure 5. Maps of the region surrounding ALMA and Toconao Village (22◦53′0′ ′S, 28◦0′0′ ′W to
23◦18′0′ ′S, 67◦39′0′ ′W). (a) Landsat 8 OLI ferric iron 1 “redness” band ratio index. (b) Landsat 8
OLI ferric iron 2 band ratio index. (c) Landsat 8 OLI ferrous/coarse-ferric iron band ratio index.
(d) Landsat 8 OLI clay-sulfate-mica band ratio index. (e) Landsat 8 OLI iron-sulfate band ratio index.
(f) EO-1 Hyperion SAM classification result. “Alteration” and “High Alteration” groups are based
on montmorillonite and alunite/kaolinite minerals, respectively. “Iron-Bearing” and “High-Iron-
Bearing” groups are based on moderate hematite and high hematite/hornblende spectral signatures,
respectively. (g) EO-1 Hyperion feldspar band depth index. (h) Estimated silica percentage from
ASTER imagery.

3.3. Lake Tuyajto/Salar de Talar Region
3.3.1. Alteration Minerals

The third area of interest covers the vicinity of Lake Tuyajto and Salar de Talar (Figure 2;
23◦48′36′ ′S, 67◦47′60′ ′W to 24◦13′12′ ′S, 67◦26′24′ ′W). A similar assemblage of mineral
groups to that seen at the previous two sites was found here. The volcanoes Incahuasi
Sur (24◦1′12′ ′S, 67◦31′12′ ′W), Tuyajto (23◦51′0′ ′S, 67◦35′60′ ′W), and Cordón Purichare
(24◦8′60′ ′S, 67◦49′48′ ′W) were highlighted by very high Landsat clay-sulfate-mica mineral
index values (Figure 6d). They also showed high iron-sulfate mineral index values (Fig-
ure 6e), which is similar to the ALMA/Toconao village area but different from the Cerro
Carcanal area. The flow deposits on the slopes and base of the volcanoes also showed high
clay-sulfate-mica and iron-sulfate index values. The Hyperion analysis indicated that these
areas contain montmorillonite, kaolinite, and alunite minerals. The flow materials of the
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Tuyajto volcano showed strong spectral signatures of alunite and kaolinite, suggesting
advanced argillic alteration to greater extents (Figure 6d,f).
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Figure 6. Maps of the region near Lake Tuyajto and Salar de Talar (67◦47′60′ ′S, 23◦48′36′ ′W to
67◦26′24′ ′S, 24◦13′12′ ′W). (a) Landsat 8 OLI ferric iron 1 “redness” band ratio index. (b) Landsat
8 OLI ferric iron 2 band ratio index. (c) Landsat 8 OLI ferrous/coarse-ferric iron band ratio index.
(d) Landsat 8 OLI clay-sulfate-mica band ratio index. (e) Landsat 8 OLI iron-sulfate band ratio index.
(f) EO-1 Hyperion SAM classification result. “Alteration” and “High Alteration” groups are based
on montmorillonite and alunite/kaolinite minerals, respectively. “Iron-Bearing” and “High-Iron-
Bearing” groups are based on moderate hematite and high hematite/hornblende spectral signatures,
respectively. (g) Estimated silica percentage from ASTER imagery.

3.3.2. Iron-Bearing Minerals

Volcanic deposits with very high Landsat ferrous/coarse-ferric iron indices and strong
Hyperion hematite spectral signatures interpreted as basaltic-andesite deposits at the
previous two locations were also present (“High-Iron-Bearing” class, e.g., 23◦58′48′ ′S,
67◦43′48′ ′W). The Hyperion analysis also determined a class with a moderate hematite
spectral signature (labeled “Iron-Bearing”). As observed in the ignimbrites and pyroclastic
flow deposits of the ALMA/Toconao village region, the “Iron-Bearing” class showed
moderate-to-very-high values of Landsat ferric iron 1 and 2 index values. On the geological
map, “High-Iron-Bearing” deposits corresponded to ignimbrites, volcanic centers, and
partially eroded volcanic centers Miocene to Pliocene in age (Figure A1b). The “Iron-
Bearing” class corresponded largely to ignimbrites and volcanic centers but also to partially
eroded volcanic centers and secondary sedimentary deposits (e.g., alluvial). As seen
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previously, the Landsat ferrous/coarse-ferric iron index did not highlight the “Iron-Bearing”
mineral class, but it was highlighted in the ferric iron 1 and 2 indices (Figure 6a–c).

4. Discussion
4.1. Evaluation of Mapping Results
4.1.1. Iron-Bearing and Alteration Minerals

The distribution of iron-bearing and alteration mineral groups highlighted by the
Landsat band ratio indices corresponded to the mineral maps made from the ALI-ASTER
fused images by Hubbard and Crowley [27] at the area around Azufre Volcano (21◦47′0′ ′S,
68◦13′0′ ′W). The argillic alteration minerals represented by Landsat index 4 (clay-sulfate-
mica) showed high abundance values at Azufre Volcano and the flow deposits surrounding
the volcano (Figure 2d). These areas also showed high abundance values of index 5,
iron sulfates. The ferric and ferrous iron mineral indices (index 1, 2, and 3; Figure 2a–c)
also highlighted areas indicated as hematite in Hubbard and Crowley [27]. A spectrum
of a sample of red scoria at El Rojo III (22◦0′5′ ′S, 68◦18′46′ ′W) showed consistency in
general shape and ferrous/coarse-ferric iron index with the Landsat spectrum from a pixel
containing these coordinates (Figure 7a), and Spectral Analyst confirmed the presence of
hematite. The geochemical analysis at CRPG of El Rojo III confirmed nearly 10 wt.% Fe2O3,
which was the highest iron oxide content among 155 APVC silicate rocks compiled from
published data and CRPG measurements (Supplementary Material).
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Figure 7. (a) Comparison of remote sensing spectra of El Rojo III location to a spectrum acquired in
the laboratory of El Rojo III red scoria sample. (b) Image of the sample used for spectral measurement.
(c) The view of El Rojo III scoria cone in the field (22◦0′5′ ′S, 68◦18′46′ ′W). Minor amounts of white
minerals in (c) are alteration minerals, which contributed to the discrepancy of spectra in (a), in which
the sample lacks this white mineral.

The Hyperion SAM classification map at Cerro Carcanal for iron-bearing and alteration
minerals also indicated consistency with the results of Hubbard and Crowley [27], who
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identified hematite, aluminous clays, and alunite (mixed). Despite the low signal-to-noise
ratio of Hyperion, the distinct absorption features of alunite, kaolinite, and montmoril-
lonite in the 2.0–2.5 µm wavelength region were captured (Figure 4) and allowed further
constraining of the mineral groups within the alteration mineral group, which was not
possible with the Landsat clay-sulfate-mica index. Within the alteration mineral group,
we distinguished between pixels dominated by montmorillonite and by alunite/kaolinite,
indicating argillic alteration or advanced argillic alteration, respectively. The spatial corre-
lation of the alteration minerals identified in the Hyperion analysis was in visually good
agreement with the Landsat clay-sulfate-mica index (Figures 3d,f, 5d,f and 6d,f). Simi-
larly, for iron-bearing minerals, the distinction between the strong and weak presence of
iron was possible with Hyperion; pixels with a strong hematite spectral signature were
classified as “High-Iron-Bearing” class (Figures 3f, 5f and 6f), and pixels with a weaker
hematite spectral signature were classified as “Iron-Bearing” class (Figures 5f and 6f). Both
of these iron-bearing mineral classes showed high spatial correlation with the Landsat
ferrous/coarse-ferric iron index (Figures 3c,f, 5c,f and 6c,f).

4.1.2. Silica Percentage

Overall, the silica percentages derived from the ASTER GED highlighted roughly
two main groups: secondary sedimentary deposits and primary volcanic deposits/centers
high and low in silica, respectively. The absolute error in ASTER GED is reported as
1.24% [40,73], and using this, we estimated that uncertainties in the weight percentage of
silica, calculated as in Section 2.3, were generally 0.5 wt.% SiO2 or lower for over 90% of
pixels in both categories (high and low silica content).

We gathered the published silica contents of samples of the APVC and also measured
the silica content of the available APVC rock samples at the CRPG geochemistry labo-
ratory for ground-truth comparison to the silica content derived from the ASTER GED
(Appendix D and the Supplementary Material). In total, the locations of 251 samples
corresponded to the ASTER silica content pixels, but four mafic samples with silica content
of 50% SiO2 or below were removed from further consideration (247 total). Assuming that
the samples are representative of the surface seen from orbit, the ASTER GED silica content
estimations were within a 6 wt.% SiO2 difference for about two-thirds of the samples and
within a 3 wt.% SiO2 difference for 40% of the samples (Table 2). We found that there
was a trend in the absolute differences as a function of silica content, according to which
samples above approximately 60 wt.% SiO2 had lower differences than those below 60 wt.%
SiO2 (Figure 8). Two groups, with high (group 1) and low (group 2) silica content, were
distinguished using the k-means clustering method. Group 1 had a center point at 63 wt.%
SiO2 with a 2.5 wt.% SiO2 difference and group 2 had a center point at 57 wt.% SiO4 with
an 8.1 wt.% SiO2 difference (Figure 8). Approximately 90% of the measurements in group
1 and group 2 were below 5 and 12 wt.% SiO2 difference, respectively. The silica content
derived from ASTER GED was lower than that of the samples (i.e., underestimation) for
15% of the samples, and furthermore, these underestimations only occurred in group 1,
which accounts for one-quarter of the group 1 samples.

Table 2. Summary of the differences in silica content derived from ASTER GED using Equation (3)
and measured in geochemical laboratories. Bold numbers highlight the percentage of best estimations.

SiO2 Abs. Diff. 0–3 3–6 6–9 9–12 +12

% of samples 40 28 18 10 3
no. samples at CRPG 5 3 2 1 2

Based on the ground-truth comparison, we believe that silica content estimation with
ASTER GED is reasonable for deriving the silica content of APVC rocks within roughly
2–3 wt.% SiO2 of the true value if they are above 60 wt.% SiO2 (group 1). For a study
dealing with rocks below 60 wt.% SiO2 (group 2) where an average difference of 8.1 wt.%
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SiO2 is not sufficient, we suggest a simple qualitative approach, e.g., high vs. low silica
content comparison, which can still be valuable for remote locations.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 26 
 

 

 

Figure 8. Absolute differences in silica content between ASTER and sample measurements as a func-

tion of silica content of the samples. Group 1 and group 2 from k-means clustering are indicated in 

red and blue boundaries, respectively. Center points of each group are shown in red circle and blue 

triangle for group 1 and group 2, respectively. 

Based on the ground-truth comparison, we believe that silica content estimation with 

ASTER GED is reasonable for deriving the silica content of APVC rocks within roughly 

2–3 wt.% SiO2 of the true value if they are above 60 wt.% SiO2 (group 1). For a study deal-

ing with rocks below 60 wt.% SiO2 (group 2) where an average difference of 8.1 wt.% SiO2 

is not sufficient, we suggest a simple qualitative approach, e.g., high vs. low silica content 

comparison, which can still be valuable for remote locations.  

We suspected that the larger deviations of the ASTER-derived silica content from 

those of the samples could be attributed to Equation (3), where we assumed the exclusion 

of ultramafic rocks. Thus, we derived the silica content from the ASTER GED using the 

four-term Gaussian parameters of Hook et al. [45] that includes ultramafic rocks as  

y = −10.548 A1 + 160.25 (7) 

where A1 is from Equation (2). The result did not yield a significant trend in ASTER vs. 

sample differences as a function of silica content, and the overall agreement was lower 

than Equation (3), which excluded ultramafics (Table A3). For this reason, estimations 

based on Equation (3) are preferred. Although beyond the scope of this study, measuring 

the thermal emissivity spectra of the APVC samples and deriving the APVC’s unique re-

lationship between the wavelength of the minimum of the reststrahlen bands and the sil-

ica content of the rocks instead of using Equation (3) could lead to improvements. Addi-

tionally, the samples should ideally come from spatially representative locations rather 

than spatially biased locations (Figure A1a); however, the conditions of the APVC did not 

easily permit this (i.e., the purpose of using remote sensing techniques). 

4.1.3. Feldspar Minerals  

The feldspar spectra detected with Hyperion near the Chanka dome (21°45′0″S, 

68°18′58″W) matched the spectra of a sample of feldspar-bearing rock collected at this lo-

cation (Figure 9a). A visual inspection of the sample and optical microscope observations 

of a thin section indicated the presence of optically visible feldspar grains with sizes ap-

proximately 3 cm and smaller (Figure 9b–d). Additionally, the space between distinguish-

ably large grains in the microscope image appeared to be composed of very small (roughly 

< 1 µm) feldspar and other mineral grains (Figure 9c,d). These observations give confi-

dence to feldspar detections based on the 1.3 µm spectral feature.  
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blue triangle for group 1 and group 2, respectively.

We suspected that the larger deviations of the ASTER-derived silica content from
those of the samples could be attributed to Equation (3), where we assumed the exclusion
of ultramafic rocks. Thus, we derived the silica content from the ASTER GED using the
four-term Gaussian parameters of Hook et al. [45] that includes ultramafic rocks as

y = −10.548 A1 + 160.25 (7)

where A1 is from Equation (2). The result did not yield a significant trend in ASTER vs.
sample differences as a function of silica content, and the overall agreement was lower than
Equation (3), which excluded ultramafics (Table A3). For this reason, estimations based on
Equation (3) are preferred. Although beyond the scope of this study, measuring the thermal
emissivity spectra of the APVC samples and deriving the APVC’s unique relationship
between the wavelength of the minimum of the reststrahlen bands and the silica content
of the rocks instead of using Equation (3) could lead to improvements. Additionally, the
samples should ideally come from spatially representative locations rather than spatially
biased locations (Figure A1a); however, the conditions of the APVC did not easily permit
this (i.e., the purpose of using remote sensing techniques).

4.1.3. Feldspar Minerals

The feldspar spectra detected with Hyperion near the Chanka dome (21◦45′0′ ′S,
68◦18′58′ ′W) matched the spectra of a sample of feldspar-bearing rock collected at this
location (Figure 9a). A visual inspection of the sample and optical microscope observa-
tions of a thin section indicated the presence of optically visible feldspar grains with sizes
approximately 3 cm and smaller (Figure 9b–d). Additionally, the space between distin-
guishably large grains in the microscope image appeared to be composed of very small
(roughly < 1 µm) feldspar and other mineral grains (Figure 9c,d). These observations give
confidence to feldspar detections based on the 1.3 µm spectral feature.

For Dacite Dome D, which showed strong feldspar spectral signatures in the ALMA/
Toconao village region (22◦56′0′ ′S, 67◦43′12′ ′W; Figure 5g), the computed feldspar index
values (>0.4) substantially exceeded the typical values for the Chanka dome (0.03). Samples



Remote Sens. 2022, 14, 2081 16 of 26

of Dacite Dome D analyzed by Schmitt et al. [72] indicated that plagioclase feldspars
accounted for 66–80% of the minerals (33–40% of the entire sample total when accounting
for the presence of glass). According to Schmitt et al. [72], dacite pumice from the Purico
ignimbrite surrounding Dacite Dome D closely resembles that of Dacite Dome D, with
similar abundances of plagioclase feldspars, but curiously, we observed that only a small
portion of the Purico ignimbrite to the South of El Cerrillo dome showed low feldspar
index values.
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Figure 9. (a) Comparison of an EO-1 Hyperion spectrum to a spectrum acquired in the laboratory of
feldspar-bearing rock from the Chanka dome (21◦45′0′ ′S, 68◦18′58′ ′W). (b) Image of the sample used
for the measurement. White grains are feldspar. (c) Microscope image of a thin section of the sample.
Feldspar grains are labeled. (d) Microscope image of a thin section of the sample in cross-polarized
light. Twinning typical of plagioclase feldspars can be observed on feldspar grains.

4.2. Assessment of Different Datasets and Mapping Techniques

First, the Landsat 8 OLI DCS map, which is not quantitative but is computationally
fast and suited for the initial evaluation of a large area, captured the diversity of the
volcanic features, namely, the relative differences between the ignimbrites, low-silica
volcanic centers, silicic domes, alteration areas, and sedimentary deposits (Figure A1c).
Compositional variations were also observed within volcanic centers (e.g., Carcanal volcano
versus the neighboring San Pedro and San Pablo volcanoes) or within ignimbrite bodies,
which may appear in tones of yellow, orange, green, or purple in the Landsat DCS image
(Figure A1c). Although the geological map did not distinguish them, possible differences
may have arisen from the iron content, iron oxidation level, weathering, and compactness
of the sediments.

After grasping the general pattern of the study site with the DCS technique, we
applied semi-quantitative techniques to measure the presence of selected minerals. The
band ratio indices for six mineral groups (Table 1) were computed with Landsat 8 OLI,
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which was fast and particularly effective at mapping a semi-quantitative distribution of key
mineral groups, thereby capturing evidence of volcanic activities, such as iron-bearing and
alteration minerals. A caveat of the band depth index approach, however, is that it targets
a known mineral with a known absorption feature, which may in fact vary depending
on its exact composition, structure, or environmental parameters. Therefore, the band
depth index approach is not suitable for finding unexpected/unknown minerals. However,
this limitation can be remedied to some extent by being aware of the variabilities shown
with the DCS map and other sources of information, such as the geologic map. Another
limitation is that the mineral groups were not precise enough, particularly for the clay-
sulfate-mica group. The low spectral resolution of the Landsat 8 OLI does not allow the
distinction among different minerals within each group. On the other hand, hyperspectral
images are able to capture narrow spectral features and are better suited for more precise
mineral characterizations; thus, we utilized EO-1 Hyperion hyperspectral imagery to obtain
more definitive mineral characterizations. The spectral hourglass technique was used to
derive mineral identification and distribution from the scene, and it distinguished alunite,
kaolinite, and montmorillonite spectra within the Landsat clay-sulfate-mica group. This is
a complementary approach to the spectral indices used with the Landsat dataset, and it
is a means to achieve more precise mineral characterizations and cross-check the results
from the Landsat analysis. In spite of that, precise distinctions were still not easy, since the
minerals had overlapping or close spectral features, and spectral features were masked
by other minerals. For this reason, we did not attempt to map alunite, kaolinite, and
montmorillonite separately but rather distinguished only between alunite and a group of
kaolinite and montmorillonite.

Band-depth indices can also be computed from Hyperion. This was necessary for
the feldspar identification, where the diagnostic spectral feature is weak, and the spectral
feature range is not adequately captured by Landsat 8 OLI (or other multispectral datasets).
For weak spectral features such as those of feldspars, masking and inadequate absorption
depth are especially problematic, even for hyperspectral datasets. We detected high feldspar
index values from Dacite Dome D, but the Chanka dome had much lower index values
and the felsic ignimbrites did not have significant values at all, even though they were
expected to have feldspars. The spectral signature of feldspars is influenced by multiple
parameters, including the mineral assemblage, the mineral’s composition, its grain size,
and the rock texture [64,66,67]. Spectral unmixing methods could resolve at least some of
these problems.

Hyperion and other hyperspectral imaging techniques are usually spatially limited,
only covering a fraction of Landsat 8 OLI imagery, with considerable spatial gaps among
available images. For this reason, Hyperion is better suited to the study of small regions of
interest already identified with Landsat or other datasets.

The ASTER GED in the TIR was highly complementary to the mineral analysis per-
formed with the Landsat and Hyperion dataset in the VNIR-SWIR. Initially, the ASTER
DCS map (Figure A1d) qualitatively revealed the relative distribution of high silica content
(red), low silica content (blue), and non-silicates (green). Next, the quantitative silica per-
centages derived from the wavelengths of the minimum of reststrahlen bands followed the
general spatial pattern seen in the ASTER DCS map and showed reasonable, albeit variable,
errors when compared to the ground-truth samples. The mapping of the silica percentage
of the silicate rocks at the APVC in the order of 10,000 s to 100,000 km2 spatial extents
is beneficial for volcanological studies of the APVC, and for our future work, it could
define the lithological contexts of minerals and mineral groups identified with VNIR-SWIR
spectra, especially feldspars.

4.3. Re-Emphasis of the APVC for Planetary Analog Use

Previously, water-related features, such as salars and hydrothermal fields, have been
popular targets for planetary analog studies at the APVC. However, the remote sensing
survey conducted in this study revealed other geological features, to large spatial extents,
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relevant for comparisons to those on other solar system bodies. Notably, the detection of
the feldspar spectral signatures of non-anorthosite rocks with Hyperion could impact on
the direction of research in Mars volcanism, in which recent works (e.g., Barthez et al. [31],
Flahaut et al. [32]) have demonstrated alternative views to the hypothesis that feldspar
spectral signature detections are likely anorthosites (which is the hypothesis of Carter
and Poulet [62] and others). The detection of strong feldspar spectral signatures at Dacite
Dome D in the ALMA/Toconao village region offers the potential for deeper insights
into this problem, and it also is relevant for comparisons to silicic domes on the Moon
(e.g., Flahaut et al. [21], Glotch et al. [74]). Questions remain over this dome as the ASTER
silica percentage estimation yielded a range of 62–69 wt.% SiO2 and the majority of nearby
Purico ignimbrite did not show high feldspar spectral index values, despite it being min-
eralogically and chemically similar to Dacite Dome D. Often, the preferred approach for
identifying feldspars or other silicate minerals is to detect the diagnostic reststrahlen bands
in high-spectral-resolution TIR spectra (e.g., Lyon [42]); however, for both the Earth and
Mars, orbital TIR hyperspectral imagery with sufficiently high spatial resolution (10′s of
m/pixel) does not currently exist. The combination of feldspar detections with the 1.3 µm
spectral feature in hyperspectral VNIR-SWIR imagery and the silica percentages derived
from multispectral TIR imagery is currently viewed as a robust approach (e.g., Rogers
and Nekvasil [64]). The outcome of the preferred interpretations of feldspar detections
on Mars has a major impact on our understanding of Martian geological history; thus,
follow-up investigations of the feldspar detections demonstrated in this work are crucial.
We plan to send a geological field expedition to the Dacite Dome D area to gather further
ground-truth data.

Ignimbrites in the ALMA/Toconao village region are another feature worthy of more
detailed investigations. Parts of ignimbrites were highlighted by high silica percentages
(~70%) according to ASTER, and the ignimbrite samples contained feldspar grains; however,
although we did not find feldspar spectral signatures with Hyperion, we found moderate
iron spectral signatures. In addition, the detection of high-iron-bearing mineral deposits
at all three presented regions that were interpreted as basaltic-andesites is remarkable for
research on mafic volcanism in the APVC [30,71,75].

Abundant alteration minerals were identified at the APVC, particularly in the Cerro
Carcanal and Lake Tuyajto/Salar de Talar regions. Alteration analog studies have been im-
portant for understanding alterations on other planetary bodies (e.g., Mars; Carter et al. [76],
Murchie et al. [77]), and they have also been conducted at other volcanic regions on Earth
(e.g., Hawaii, Italy). The Landsat clay-sulfate-mica index and Hyperion alteration mineral
maps contribute to this large-scale effort and will be useful for continued analog studies of
alterations; moreover, they could play a major role in mineral resource assessments at the
APVC, as argillic alterations are often associated with economically valuable minerals.

The methodology adopted in this work is commonly used in Earth and planetary
remote sensing studies. We first used Landsat and ASTER, which are multispectral in-
struments and have large spatial coverage but low spectral resolution, to identify smaller
regions of interest. Next, the minerals within those smaller regions were further analyzed
with Hyperion hyperspectral imagery. Although it is not new, we emphasize that the
dataset and mapping approach adopted in this work resemble those available for the Moon
and Mars, and thus, our work is transferable to the analysis of the analogous terrains of
these planetary bodies. The three satellite imagery datasets of the Earth, Landsat 8 OLI,
Terra ASTER, and EO-1 Hyperion, are comparable to the Mars Odyssey (MO) Thermal
Emission Imaging System (THEMIS) VNIR bands [78], the Mars Reconnaissance Orbiter
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) [79], and MO THEMIS
TIR bands [78]. For the Moon, they are comparable to Clementine multispectral imag-
ing cameras (ultraviolet/visible camera, near-infrared camera) [80], the SELENE/Kaguya
Multiband Imager [81], the Chandrayaan-1 Moon Mineralogy Mapper (M3) [82], and the
Lunar Reconnaissance Orbiter (LRO) Diviner [83]. Figure 1 shows the comparison of the
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instruments. Future orbiter missions, such as the Lunar Trailblazer [84], will carry similar
but enhanced spectral instruments operating in both the VNIR-SWIR and TIR ranges.

Some limitations to this methodology, which is mainly based on the Earth’s differences
to other planetary bodies, must be understood. The atmosphere is a major factor in
orbital remote sensing, and the Earth’s atmosphere has strong absorptions arising from
water, which is a dominant molecule on Earth, but not in other solar system bodies. This
substantially impacts the usable wavelengths on Earth in both VNIR-SWIR and TIR and
limits the constraining of some minerals, such as the clay-sulfate-mica group. Although
Hyperion captured important spectral features in the 2.0–2.5 µm region, other major bands
in the 1.0–2.0 µm would have helped with further constraining. On the other hand, the lack
of atmosphere on some planetary bodies leads to spectral effects from space weathering in
VNIR-SWIR [85] and thermal gradient in the TIR [86,87], which lead to difficulties in the
interpretation of spectra. Additionally, the designs of existing instruments were intended
for accomplishing the specific scientific objectives of a mission; thus, different instruments
have different caveats, even if equivalent geological information can be retrieved. For
instance, the LRO Diviner can retrieve silica content, but this is achieved by using the
Christiansen feature of TIR spectra rather than reststrahlen bands, which was the case in
this work [74,88,89].

5. Conclusions

The remote sensing data from various instruments (ASTER, Hyperion, Landsat) were
used to map the mineral groups of mainly volcanic and secondary volcanic surfaces of the
Altiplano-Puna Volcanic Complex, which are sound analogs of these types of surface on
the Moon and Mars. Although mineral maps covering 10,000 s to 100,000 km2 scales of
the APVC are some of the fundamental resources used to conduct geological field work
and planetary analog studies, they have not been created before. Using a combination
of Earth observation instruments with comparable characteristics to lunar and Martian
orbital instruments, we characterized, with different techniques, the alteration minerals,
iron-bearing minerals, feldspar minerals, and silica percentages of bulk rocks. Three areas
of particular interest for planetary analog studies were highlighted in this work, although
other areas not mentioned in detail were also noteworthy for further investigations. The
results of our maps were consistent with existing geological maps and a previous study
performed locally at the Azufre volcano, and they also showed consistency, to varying
degrees, with the geochemical analysis of samples compiled from past studies and mea-
surements performed at CRPG. The benefits and limitations of each dataset and method
were evaluated, and we observed that synthetically analyzing remote sensing datasets with
different characteristics (e.g., wavelength range, spatial extent, spectral resolution) leads
to more confident qualitative and quantitative interpretations of minerals and rocks over
large areas.

One immediate impact of this work on the current state of planetary analog studies
is the detection of feldspar spectral signatures on non-anorthositic rocks. Our feldspar
detections at Chanka dome and Dacite Dome D influenced on-going efforts to refine the
spectral detection of feldspar minerals on rocks other than anorthosites through laboratory
measurements [31] and Mars CRISM hyperspectral imagery [32]. A laboratory analysis,
by Barthez et al. [31], of entire feldspathic rocks of varied nature indicated that volcanic,
plutonic, and metamorphic feldspathic rocks all show the spectral signature of plagioclase
feldspars. Our observation of feldspar spectral signatures at Chanka dome (dacitic volcanic
rock) and its sample analysis is consistent with their study. This supports the detection of
the feldspar spectral signatures of non-anorthositic rocks on Mars by Flahaut et al. [32].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092081/s1.
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Appendix A

Table A1. Summary of remote sensing-data used in this work.

Instrument Data Type ID 1 Map

Landsat 8 OLI

Level 1 Radiance

LC08_L1TP_001075_20200727_20200807_01_T1

Background imagery

LC08_L1TP_001076_20200727_20200807_01_T1
LC08_L1TP_001077_20200727_20200807_01_T1
LC08_L1TP_233075_20200618_20200625_01_T1
LC08_L1TP_232076_20200729_20200807_01_T1
LC08_L1TP_233076_20200805_20200821_01_T1
LC08_L1TP_232077_20200729_20200807_01_T1
LC08_L1TP_233077_20200805_20200821_01_T1

Level 2 Reflectance
LC08_L2SP_233075_20141125_20200910_02_T1

Iron-bearing minerals,
alteration minerals

LC08_L2SP_233076_20141109_20200910_02_T1
LC08_L2SP_233077_20141109_20200910_02_T1

EO-1 Hyperion Level 1 Radiance

EO1H2320772002361111PP

Iron-bearing minerals,
alteration minerals,
feldspar minerals

EO1H2330752011245110KF
EO1H2330762008075110P2
EO1H2330762012034110KF
EO1H2330762016250110PF
EO1H2330762016269110PF

Terra ASTER GED AG 100

AG100.v003.-21.-068.0001.h5

Silica percentage

AG100.v003.-21.-069.0001.h5
AG100.v003.-22.-068.0001.h5
AG100.v003.-22.-069.0001.h5
AG100.v003.-23.-068.0001.h5
AG100.v003.-23.-069.0001.h5
AG100.v003.-24.-068.0001.h5
AG100.v003.-24.-069.0001.h5

1 “Landsat Product Identifier”, “Entity ID”, and “Local Granule ID” for Landsat 8 OLI, EO-1 Hyperion, and Terra
ASTER data, respectively.

https://earthexplorer.usgs.gov/
https://www.sshade.eu/db/mirabelle
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Appendix B

Table A2. Wavelengths used for computing the feldspar band-depth index with EO-1 Hyperion. The
last row shows the mean.

λs λc λl

0.783 1.003 1.225 1.548
0.793 1.013 1.235 1.558
0.803 1.023 1.245 1.568
0.813 1.033 1.255 1.578
0.824 1.044 1.266 1.588
0.844 1.064 1.286 1.609
0.854 1.074 1.296 1.619
0.864 1.084 1.629
0.875 1.639
0.884 1.649

1.659
1.669
1.679
1.689
1.699
1.709

0.834 1.043 1.261 1.629

Appendix C

Table A3. Summary of the differences in silica content derived from ASTER GED using Equation (7)
and measured in geochemical laboratories.

SiO2 Abs. Diff. 0–5 5–10 10–15 15–20 +20

% of samples 38 25 22 5 10
no. samples at CRPG 0 4 1 0 2

Appendix D

Rock samples from previous field campaigns were ground in an agate mortar. Major
element analyses were performed by ICP-OES at the Service d’Analyse des Roches et des
Minéraux (SARM) facility in Nancy, France (https://sarm.cnrs.fr/index.html, (accessed on
24 January 2022)). Data can be found in the Supplementary Material.

https://sarm.cnrs.fr/index.html
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Figure A1. (a) Landsat 8 OLI radiance true color imagery of the APVC. Sampling locations used for
comparison to ASTER silica content map are shown and grouped by source reference. The group
“Godoy references” includes Godoy [90] and Godoy et al. [28,71,91]. The group “Multiple references”
includes Francis et al. [92], Freymuth et al. [93], Mamani et al. [94], and Rogers and Hawkesworth [95].
(b) Geological map of Chile from Servicio Nacional de Geología y Minería [69]. Some geological units
and features mentioned in the main text are indicated. Red triangles indicate volcanoes: 1 Azufre
and Chanka, 2 San Pedro-San Pablo and La Poruña, 3 Lascar, 4 El Negrillar. Full descriptions of the
geological units are extensive, and the reader is referred to [69]. (c) Landsat 8 OLI reflectance DCS
using bands 7, 6, and 4 as red, green, and blue, respectively. (d) ASTER DCS using bands 14, 12, and
10 as red, green, and blue, respectively. On all four maps, three regions selected in this study are
indicated by rectangles, and the approximate APVC boundary is shown.
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