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Abstract 

Remotely sensed information plays key role in detection and monitoring forest cover changes. 
While several advanced image analysis techniques are developed and described in the literature, 
remote sensing of forest cover changes often suffers from lack of accuracy and consistency of es-
timates. In this study a sequential combination of decision tree and machine learning algorithms 
has been applied to improve accuracies. Six Landsat images were acquired at approximately 5 
years intervals between years1986 and 2012. First, images were classified into vegetation and no- 
vegetation categories based on threshold value obtained from kernel density distribution of Nor-
malized Difference Vegetation Index (NDVI). Non-vegetated categories were classified into barren 
and other cover types applying a bareness index. Support Vector Machine (SVM) was used to fur-
ther classify forest into dense, medium and low canopy (>30%, 10% - 30% and <10% canopy) 
classes. Using this approach, minimum and maximum overall accuracy of 86.3% and 92.9%, and 
kappa coefficients of 0.82 and 0.90 were, respectively, achieved. Between years 1986 and 2012, 
annual losses of dense forest (canopy cover of >30%) was 1.1%. During the same time span, about 
14% net gain in dense forest was shown in steep sloping terrains. However, magnitude of losses, 
gains and persistence of forest cover varied in time and spaces. Results presented in this study are 
useful for planning and implementing locally appropriate management interventions and policy 
strategies in order to halt the rapid rate of forest destruction in Belete and other similar forest 
ecosystems. 
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1. Introduction 

Conversion of forest lands into other land uses often results in degradation of environmental conditions [1]. 

With increasing demand for forest products and land for food production, pressure on forest reserves is increas-

ing [2] [3] and this is of particular environmental concern in many tropical countries [2] [4]. Ethiopia has al-

ready experienced drastic deforestation and consequent land degradation and other undesirable environmental 

problems [5] [6]. Forest cover changes in tropical areas are often small-scale complex in patterns [7] [8]. While 

forest land conversion is a local process, it may result in global scale environmental changes such as enhanced 

greenhouse emissions [1] [9], and at the same time local communities who are heavily dependent on natural re-

sources are likely to be impacted by immediate local consequences such as soil and water degradation [10] [11]. 

Timely detection and monitoring of tropical forest cover changes are essential in halting global and local en-

vironmental challenges and enabling informed decision making processes [12] [13]. The Landsat data archive 

made available, free of change, by United States Geological Survey [14] and advances in geospatial technolo-

gies such as cloud computing [15] have created opportunities for high temporal resolution forest change moni-

toring [16]-[18]. A number of remote sensing techniques of detecting and monitoring changes in forest cover 

have been developed and discussed in the literature [13] [16] [17] [18]-[21].  

Despite the contribution of a number of studies in developing methods for assessment of global forest cover 

dynamics at high spatial resolution [22]-[25], methods that accurately detect small-scale forest cover changes in 

tropical environments is still lacking. Due to cloud contaminations [24] [26]-[28] and gaps in the Landsat arc-

hive [25] [29], detailed spatial information that enables long-term tracking of small-scale forest cover changes in 

tropical environments is still lacking [27]. In tropical areas such as sub-Saharan Africa, small-scale deforestation 

is a prominent forest change process [7] [8] and detection and monitoring systems for these processes are gener-

ally lacking [27]. Forest cover change estimates are generally inconsistent [4] [16] [30] [31], which may lead to 

large uncertainty of global and regional forest cover trend analysis [16] [32].  

In this paper, a sequential combination of index-based and machine learning algorithm were applied to ana-

lyze spatio-temporal dynamics of forest cover in Belete-Gera forest. The studied forest is part of an eco-region 

that serve as home of genetic diversity of Coffee arabica L. [33]. Despite its vital ecological and economic im-

portance as well as its global significance in serving as a gene pool of Coffee arabica L. [33], an accurate and 

timely tracking of changes in the forest is lacking. This study, therefore, aims at exploring techniques that enable 

accurate detection of small-scale changes over three decades and improving knowledge of the dynamics of a key 

forest ecosystem in Ethiopia using Landat imagery. Hence, the objectives of this study were: 1) developing 

analysis methods that are accurate in detecting small scale changes in a tropical forest environment; 2) demon-

strating magnitudes, direction and spatial patterns of changes. 

2. Methods  

2.1. Study Area 

Belete forest is part of Belete-Gera eco-region and is one of the national forest priority areas in Ethiopia. The 

forest is managed by Oromia Regional State and located in Jimma Zone, about 42 km Southwest of Jimma town 

(Figure 1). The forest is situated between lat-long of 36˚15'E and 36˚45'E, and latitudes 7˚30'N and 7˚45'N. Be-

lete forest is characterized by humid tropical climate and receives a mean annual rainfall ranging from 1800 mm 

to 2300 mm and the annual mean temperature of the area is 20˚C. Average altitude is 2100 m.a.s.l and the terrain 

is dominated by rugged and slopping surfaces. Belete-Gera national forest priority area is one of the Afromon-

tane biodiversity hotspots and constitutes one of the most threatened natural forest ecosystems in Ethiopia [34] 

[35]. The forest is a key eco-region for biodiversity conservation, including genetic diversity conservation of 

Coffee arabica. 
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Figure 1. Study area map.                                                                    

2.2. Data Sources and Pre-Processing 

Imagery acquired by sensors of Landsat Thematic Mapper and Enhanced Thematic Mapper Plus satellites (path 

170 and row 55) were used. The imagery were downloaded free of charge from United States Geological Survey 

(USGS) data portal [14]. All the imagery used were of low or no cloud cover and acquired during dry seasons of 

the years between 1986 and 2012, at approximately 5 years intervals. The selected months of the year were not 

only suitable for obtaining cloud-free images, but also assumed that confusion in spectral signatures of forest 

and non-forest green vegetation such as agricultural crops and grasslands could be minimized and the contrast 

between forest and non-forest land uses is maximized during dry seasons. Since the area is dominated by rain 

fed agriculture, spectral contrast between forest and agricultural lands is expected to be higher during dry sea-

sons. The path 170 and row 55 covers more than 90% of Belete forest, and the remaining part of the forest is 

covered by the adjacent scene. Due to lack of multi-temporal good quality images in the remaining portion of 

the forest, the study area was restricted to path 170 and row 55. The portion of the forest which is not covered by 

this study is shown in Figure 1. The major characteristics of Landsat images used in this study are summarized 

in Table 1.  

Atmospheric correction was applied to all images using the Quick Atmospheric Correction (QUAC) module 

in ENVI [36]. All images were rectified to Universal Transverse Mercator (UTM) zone 37 N, datum WGS-84 

and co-registered with less than 0.5 pixel mean square error for all images. Due to the instrument malfunction on 

May 31, 2003 (failure of the Scan Line Corrector), images acquired by Landsat 7 from this date onwards have 

stripes of data gaps and the gaps make up about 22% of the data on any given scene [37]. Therefore, Landsat 7 

ETM+ images used in this study were gap filled using two images from consecutive months by applying a 

gap-filling tool in ENVI v. 4.8 [36]. 

Reference data were collected through ground-based characterization of the existing land cover types in 

March 2012. Polygons and point reference data corresponding to 1181 Landsat pixels were collected during the 

field survey. Smaller areas were sampled as points by assuming a center of 30 m by 30 m square grid to match 

the pixel size of the Landsat reflective bands, while large homogenous areas were marked as polygons. Major 

land cover types of the area were characterized through discussion with local people and visual interpretations. 

Forest canopy cover was also estimated visually and with a densiometer. The time difference between image 

acquisition and ground surveying was about one month and no major land cover change was assumed to have 

occurred within this time difference. Initially seven land cover types were characterized during the field survey. 

The separability in spectral signature of the selected seven land cover types was tested applying Jeffries-Matu-  
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Table 1. Characteristics of lands images used in the study.                                                         

No. Acquisition date Product type Quality Cloud cover Path Row Sensor type* 

1 Apr. 2, 1986 L1T 9 0 170 055 Landsat 5 TM 

2 Jan. 12, 1995 L1T 7 5% 170 055 Landsat 5 TM 

3 Feb. 5, 2001 L1T 9 0 170 055 Landsat 5 TM 

4 Jan. 2, 2006 L1T 9 0 170 055 Landsat7 ETM+ 

5 Feb. 4, 2012 L1T 9 0 170 055 Landsat 7 ETM+ 

*
Landsat 5 TM and Landsat 7 ETM+, respectively, are Thematic Mapper and Enhanced Thematic Mapper Plus. 

 

sita index, which is a measure of statistical separation between different land cover categories [38]. Five classes 

with high separability were finally identified (Table 2). 

No ground survey data or other sources of reference data were available for classification and accuracy as-

sessment of historical images (2006 and earlier). Therefore, reference data were obtained from true color com-

posites of the images. The degree of agreement between image-based and ground survey-based reference data 

was tested: for each land cover type, 60 sample points were identified using true color composite of image of 

year 2012 and verified these points through ground observation using handheld GPS. Agreement between refer-

ence points identified from screen and ground-based surveying was high (Table 3). 

2.3. Classification, Accuracy Assessment and Change Analyses 

At initial stage of classification procedures, performances of Maximum Likelihood (ML), Decision Tree clas-

sifier (DT) and Support Vector Machine (SVM) were tested, and none of these algorithms achieved desired level 

of accuracy and consistency when used independently. Therefore, a combination of indices-based decision tree 

classification, and SVM was applied. Normalized Difference Vegetation Index (NDVI) (Equation (1)) and 

Normalized Difference Bareness Index (BDBaI) of Zhao and Chen [39] (Equation (2)) were used to classify 

pixels into broader land cover types: first, vegetated areas were identified using NDVI in a classification tree. 

Based on kernel density function (Figure 2), an NDVI threshold of ≥0.4 was used to distinguish vegetated areas 

from non-vegetated surfaces. The non-vegetated surfaces were classified into bare soil and other land cover 

types using the BDBaI. Detailed classification of vegetated surfaces into different canopy cover intensities and 

non-forest green surfaces applying SVM classifier, which is a non-parametric machine learning algorithm, par-

ticularly useful when training dataset are small [40] [41]. The underlying theory and mathematical explanations 

underlying machine learning algorithms have been documented in the literature [42]-[46]. Five major land cover 

types (Table 4) were identified. 

( ) ( )NDVI 4 3 4 3b b b b= − +                                   (1) 

( ) ( )BI 5 6 5 6b b b b= − +                                    (2) 

where, b3, b4, b5 and b6 are spectral bands of Landsat images. 

Land cover changes were analyzed applying various change detection techniques following recommendations 

by Lu, Mausel [47]. The authors suggest that good change detection research should provide information on: 1) 

area change and change rate; 2) spatial distribution of changed types; 3) change trajectories of land-cover types; 

and 4) accuracy assessment of change detection results. Accordingly, the magnitudes, rate and spatial patterns of 

forest cover changes were analyzed. Major contributors of changes in land cover types, with special emphasis to 

forest cover, were identified. The change analyses were undertaken in ranges of years: 1986-1995, 1995-2001, 

2001-2006, 2006-20012 and 1986-2012.  

Relationships between slope and magnitude of forest cover changes was examined by developing slope 

classes from a 30m resolution Digital Elevation Model v2 (GDEM) derived from Advanced Spaceborne Ther-

mal Emission and Reflection Radiometer (ASTER) and released jointly by METI/NASA [48]. Five slope classes 

were produced: 0% - 10%, 10% - 20%, 20% - 30%, 30% - 40% and >40% slope (Figure 3). Spatial zonal 

change analysis was undertaken to examine the nature of forest cover change within each of these slope catego-

ries. 
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Figure 2. Kernel density of NDVI values of different surfaces.                                                   

 
Table 2. Summary of separability index. Jeffries-Matusita separability index value in bold show highly separable pairs.         

Land cover type 

Jeffries-Matusita index value 

Coniferous 

plantation 

>30%  

Natural forest 

10% - 30% 

Natural forest 

Coffee 

forest 
Semi-green Soil 

Other non 

forest veg. 

Coniferous plantation - 1.66 1.92 1.69 1.91 2.00 2.00 

>30% natural forest 1.66 - 1.90 1.73 1.90 2.00 1.97 

10% - 30% natural forest 1.92 1.90 - 1.65 1.90 1.98 1.96 

Coffee forest 1.69 1.73 1.65 - 1.95 0.98 0.85 

Semi-green 1.91 1.90 1.90 1.95 - 1.98 1.96 

Soil 2.00 2.00 1.98 0.98 1.98 - 1.95 

Other non forest veg. 2.00 1.97 1.96 0.85 1.96 1.95 - 

 
Table 3. Matrix of agreement between image-based and field survey-based reference data. A = Forest (>30% canopy), B = 

Forest (10% - 30% canopy), C = Non-forest vegetation, D = Fallow agriculture and other non-vegetated surfaces, E = Bare 

soil.                                                                                                      

 LCT 
Reference data from image 

A B C D E 

Ground observation 

A 57 3 0 0 0 

B 3 56 1 0 0 

C 0 1 58 0 1 

D 0 0 4 60 2 

E 0 0 5 0 57 

Total 60 60 60 60 60 

Percent agreement 95 93.3 96.7 100 95 
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Figure 3. Slope classes of Belete forest.                                                                      

 
Table 4. Descriptions of land cover classes.                                                                  

Land cover type Description 

Forest (>30% canopy) 

Dense forest which include: 

Primary and secondary natural forest with principal species Aningeria adolffii fredricci,  

Polytius fulva, Olea hochistetere, Syzegium guuneens, Ficus sur); 

Coffee forest (principal species Coffee arabica, Alebizia spp., Melitia frugenia, Croton machrstachus); 

Plantation forest (Cupresses lustanica, Pinus patula and Eucalyptus spp.) 

Forest (10% - 30% canopy) 
Forest areas with generally similar characteristics as the dense forest described above,  

but with low canopy cover intensity and heavily degraded 

Non-forest vegetation Green areas such as grass lands with scattered shrubs or trees 

Fallow agriculture land, dry  

vegetation and other land covers 

Agricultural or fallow land with semi-green, dried field crop residue covering surfaces,  

dried grazing land, roads and other artificial surfaces such as settlement and road 

Bare soil 
Exposed dry organic and mineral soils. This land cover type is primarily agricultural lands which  

are either ploughed fields or exposed soils with no crop residue, or no other forms of vegetation 

 

Error matrices were used to assess classification accuracy [49]. User’s and producer’s accuracies, overall ac-

curacy and the Kappa statistic were calculated in ENVI v. 4.8 [36] for each of the classified images. Accuracy 

assessment of change maps was estimated by multiplying the individual classification map overall accuracies 

[50].  

3. Results 

3.1. Land Cover Classification and Accuracies 

Figure 4 shows producer’s and user’s accuracy for each land cover category and each of the classified images. 

Overall accuracy and kappa statistics were computed and summarized in Table 5. Minimum and maximum 

overall classification accuracy was 86.3% and 92.9%, respectively. The summary of change detection accuracy 

is also presented in Table 6. Visual interpretation of the classification outputs clearly show spatial extents and 

patterns of changes in forest areas are more evident in recent years (2006 and 2012). 
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Figure 4. Land cover classes of years 1986, 1995, 2001, 2006 and 2012.                                             

 
Table 5. Producer’s and user’s accuracy of classification by year (%).                                               

 1986 1995 2001 2006 2012 

Class Prod. User’s Prod. User’s Prod. User’s Prod. User’s Prod. User’s 

Fallow agri. 78 95 93 95 96 92 90 94 72 84 

Bare soil 93 95 88 96 91 98 96 97 98 93 

Forest (>30%) 94 91 92 88 94 97 100 91 98 86 

Forest (10% - 30%) 82 83 78 75 83 76 82 95 69 87 

Non-forest veg 89 61 79 75 87 85 81 72 72 73 

 
Table 6. Summary of accuracy measures.                                                                     

Year Overall accuracy (%) Kappa coefficient Period Change detection accuracy 

1986 86.9 0.83 1986-1995 76.2 

1995 87.7 0.84 1995-2001 80.3 

2001 91.6 0.89 2001-2006 85.1 

2006 92.9 0.90 2006-2012 80.2 

2012 86.3 0.82 1986-2012 75.0 
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Figure 5. Trends of changes in land cover types. Clear linear declining trend of high canopy cover forest rapid increase in 

bare soil are shown. Trends for other land cover types is not obvious.                                                 

 

 

Figure 6. Maps showing areas of gains (increase in extent), losses (reduction in extent) and persistence (areas with no 

change in extent) between 1986-2012 for: (a) high canopy forest (>30% canopy); (b) bare soil; (c) low canopy forest (10% - 

30% canopy); (d) agriculture and other land cover types.                                                          

3.2. Trends and Patterns of Changes in Land Cover Types 

Closed canopy cover forest category was shown to be consistently declining during the periods 1986 to 2012. 

Bare soil class followed rapid increase, while other categories of vegetated classes didn’t follow clear trends 

(Figure 5). Spatial patterns of gains, losses and persistence of the major land cover types is depicted in Figure 6. 

Net change in closed canopy cover forest (>30% canopy) is consistently negative across all pairs of compared 

periods and losses between year 1986 and 2012 was 28.6% (~1.1% loss per year). Fastest annual rate of decline 

(3.8%) in high canopy forest was shown between 1995 and 2001 Trend of changes in forest with <30% canopy 

cover was not clear, but compared to year 1986, forest in low canopy cover category showed slight positive 

trend. It should be noted that positive changes in low canopy cover forest is mainly due to large losses in high 

canopy cover forest (Figure 5 & Figure 6). 

(a) (b)

(c) (d)

Gain
Persistence
Losses

Meter

400
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As shown in Figure 7, the largest contributor for high forest loss was bare soil, followed by low intensity for-

est. Exchange between high forest and other land cover types are shown in. Though there were some areas 

where bare soil is converted to high forest, large amount of peripheral parts of the forest areas were converted 

from forest to bare (Figure 8). 

Spatial analysis of relationships between slope categories and magnitude of forest cover change shows that 

there is differential rate of changes among various slope classes. The maximum forest cover loss took place in 

lowest slope range of 0% - 10%, followed by slope category 10% - 20%. There was about 14% net gain in forest 

cover within steepest slope category (>40%). Figurer 9 shows spatial patterns of forest cover in different slope 

categories. Compared to year 1986, relatively more areas with high canopy cover are shown in steep sloping 

terrains in year 2012 (Figure 9). 

4. Discussion and Conclusion 

In an effort to contribute to accurate detection and monitoring of small-sale tropical forest changes, this paper 

presents a detailed investigation of dynamics of Belete forest cover in Southwest Ethiopia applying multi-tem- 

poral Landat imagery analyses. In this paper where combination of NDVI, NDBaI and SVM classifications were 

applied, minimum and maximum overall accuracy of 86.3% and 92.9%, respectively, were achieved. The me-

thod implemented in this paper is highly accurate, given that limited ground-based information is available in 

the studied area. The approach is relatively simple and particularly useful in conditions where historical spatial 

data are not available or insufficient. While accuracies could depend on multiple factors, classification method is 

one of the most important factor determining accuracies of remotely sensed information. DeVries, Verbesselt 

[27] have applied NDVI time series analysis for small-scale tropical forest change monitoring and achieved 

overall accuracy of 78%. 

This study showed a consistent decline in high canopy (>30%) forest category, and slight increasing trends in 

low canopy cover forest (<30% canopy). The annual declining rate of 1.1% is substantially larger than results 

from comparable studies. Two studies undertaken in similar ecosystems of Ethiopia showed about 0.4% annual 

forest loss [27] [51]. However, direct comparisons of these values could be difficult due to variation in time span 

and levels of details used in the change analyses. Several studies have shown wide range of forest cover change 

rates [22] [52] [53]. Accuracies and levels of details forest cover information also considerably vary across 

 

 

Figure 7. Transition from high forest (>30% canopy) to: (a) fallow agriculture 

and other non-vegetated land covers; (b) to low intensity forest (10% - 30% ca-

nopy cover); (c) bare soil; (d) non-forest vegetation.                         

(a) (b)

(c) (d)
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Figure 8. Exchange between high canopy cover forest and other land cover types (1986-2012).                 

 

 

Figure 9. Forest cover on different slope categories.                                                    

 

the studies.  

In this study, drastic decline in high canopy forest was observed between 1995 and 2001, which could be re-

lated to regime change that occurred in the country in 1991, that might have led to institutional weakening the-

reby exacerbating illegal selective logging [54] [55]. Not surprisingly, it is evident that the main contributor of 

high forest loss is conversion to agricultural lands. The loss of high forest cover to low intensity forest could al-

so be a good indication that the forest is not only declining in spatial extent but also the quality is considerably 

degrading. It is an interesting observation that steep sloping areas have experienced net gain of about 14% forest. 

This is, in some way, consistent with findings of, for instance, Armenteras, Rodríguez [56], Htun, Mizoue [57], 

and Robalino and Pfaff [58], who generally reported a negative relationship between slope and magnitude of 

deforestation. The net forest cover gain in steep slope areas detected in this study, however, may require further 

investigations.  

The findings imply that sustainability of this key ecosystem could be questionable. Persistent decline in the 

forest cover, particularly the loss of dense canopy forest could potentially lead to losses in a number of ecosys-

1986 2012
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tem services such as reduction in carbon sink potential [59], loss or reduction in its biodiversity conservation 

values [35], particularly the potentials of the forest in conservation of genetic diversity Coffee arabica L. [33] 

[60] [61], and other multiple benefits [62]. The forest destruction information shown in this study could support 

effective management and policy interventions that aim at sustaining the forest and its environmental services. 

The spatial and temporal details of forest dynamics provided through accurate extraction of remotely sensed in-

formation could benefit global conservation and management programs such as REDD+ (Reducing Emissions 

from Deforestation and Forest Degradation) and a deeper understanding of local human and biophysical va-

riables determining degrees and forms of forest cover changes could be instrumental for effective planning and 

policy measures at all levels.  

Therefore, this study is a contribution to efforts being made to better understand dynamics of tropical forests, 

which often occur at small scales. Further studies exploring the links between forest, local socioeconomics and 

policies could be useful in understanding the underlying drivers of the observed changes. Moreover, studies on 

operational usability of remotely sensed spatial information in local planning and decision making processes 

should focus on tropical areas where data are generally lacking or of low quality. Increasing availability of high 

quality and cost-free remotely sensed data and development of several image analysis algorithms are great op-

portunities that can enable near-real time monitoring and detection of changes in forest cover. 
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