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Abstract 
Mangroves, important components of the world’s coastal ecosystems, are 
threatened by the expansion of human settlements, the boom in 
commercial aquaculture, the impact of tidal waves and storm surges, etc. 
Such threats are leading to the increasing demand for detailed mangrove 
maps for the purpose of measuring the extent of the decline of mangrove 
ecosystems. Detailed mangrove maps at the community or species level 
are, however, not easy to produce, mainly because mangrove forests are 
very difficult to access. Without doubt, remote sensing is a serious 
alternative to traditional field-based methods for mangrove mapping, as it 
allows information to be gathered from the forbidding environment of 
mangrove forests, which otherwise, logistically and practically speaking, 
would be extremely difficult to survey. Remote sensing applications for 
mangrove mapping at the fundamental level are already well established 
but, surprisingly, a number of advanced remote sensing applications have 
remained unexplored for the purpose of mangrove mapping at a finer 
level. Consequently, the aim of this thesis is to unveil the potential of 
some of the unexplored remote sensing techniques for mangrove studies. 
Specifically, this thesis focuses on improving class separability between 
mangrove species or community types. It is based on two important 
ingredients: 
(i) the use of narrow-band hyperspectral data, and 
(ii) the integration of ecological knowledge of mangrove-

environment relationships into the mapping process. 
 
Overall, the results of this study reveal the potential of both ingredients. 
They show that delicate spectral details of hyperspectral data and the 
spatial relationships between mangroves and their surrounding 
environment help to improve mangrove class separability at the species 
level. Despite the optimism generated by the overall results, it was found 
that appropriate data treatments and analysis techniques such as spectral 
band selection and noise reduction were still required to harness essential 
information from both hyperspectral and ecological data. Thus, some 
aspects of these data treatments and analysis techniques are also 
presented in this thesis. Finally, it is hoped that the methodology 
presented in this thesis will prove useful and will be followed for 
producing mangrove maps at a finer level. 
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Samenvatting 
Mangrove, een belangrijk onderdeel van ecosystemen in (tropische) 
kustgebieden wereldwijd, wordt bedreigd door de uitbreiding van 
woongebieden, de groei van commerciële aquacultuur, de invloed van 
getijden en stormvloeden, enzovoorts. Zulke bedreigingen leiden tot een 
toenemende vraag naar gedetailleerde mangrovekaarten om de mate 
waarin mangrove-ecosystemen afnemen te kwantificeren. Omdat 
mangrovebossen erg moeilijk toegankelijk zijn, is het moeilijk aan de 
vraag naar mangrovekaarten op gedetailleerd niveau of op soortniveau te 
voldoen. Remote sensing is een alternatief voor het in kaart brengen van 
mangrove met de traditionele veld-surveymethode in gebieden die 
logistiek lastig zijn te onderzoeken. 

Het toepassen van remote sensing voor het in kaart brengen van 
mangrove is op kleinschalig niveau al in gebruik, maar het is 
verbazingwekkend dat een aantal meer geavanceerde remote sensing-
technieken om mangrove in kaart te brengen op een grootschaliger 
niveau niet zijn uitgeprobeerd. Dit proefschrift laat zien wat de 
mogelijkheden zijn van enige nog niet toegepaste technieken voor de 
bestudering/kartering van mangrove. Dit proefschrift concentreert zich 
op het verbeteren van het onderscheid tussen mangrovesoorten of 
plantengemeenschapstypen. Twee belangrijke bestanddelen vormen de 
basis: 

(i) het gebruik van hyperspectrale data, en (ii) het integreren van 
ecologische kennis van mangrove-milieu relaties bij het proces van het in 
kaart brengen van mangrovegebieden. 

De resultaten van deze studie tonen de mogelijkheden van beide 
ingrediënten. De samenhang van subtiele spectrale details en ruimtelijke 
relaties tussen mangrove en de omgeving versterken de mogelijkheid 
mangrove op soortniveau te onderscheiden. Ondanks deze positieve 
uitkomst blijkt het nodig te blijven de juiste datatransformaties en 
analysetechnieken toe te passen. Bijvoorbeeld bandselectie en noise-
reductie zijn nog steeds nodig om onontbeerlijke informatie uit 
hyperspectrale en ecologische data af te leiden. Enige aspecten van deze 
technieken kunnen daarom niet achterwege blijven in dit proefschrift. 

Tenslotte bestaat de hoop dat de methodologie die in dit proefschrift 
wordt beschreven bruikbaar blijkt te zijn en zal worden toegepast bij het 
karteren van mangrove op een gedetailleerder niveau. 
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1.1 Remote sensing for mangrove studies 

Mangroves are reported to have covered up to 75% of the world’s 
tropical coastlines (Spalding et al., 1997). The ecological value of these 
tropical mangroves is acknowledged in many respects, for example, in (i) 
protecting the coastline from tidal waves and storm surges, (ii) acting as 
biological filters in polluted coastal areas, (iii) supporting aquatic food 
chains, and (iv) shielding a large number of juvenile aquatic organisms 
(Lugo and Snedaker, 1974; Hogarth, 1999; Linneweber and de Lacerda, 
2002; Barbier and Sathiratai, 2004). Unfortunately, mangroves in general 
are in serious decline owing to the expansion of human settlements, the 
boom in commercial aquaculture, the impact of tidal waves and storm 
surges, etc. (Linneweber and de Lacerda, 2002; Barbier and Sathiratai, 
2004). International organizations and government agencies in several 
countries are, for this reason, urgently implementing mapping and 
monitoring programmes to measure the extent of the decline of these 
important ecosystems (Ramsar Convention, 1971; Green et al., 2000; 
Linneweber and de Lacerda, 2002; Barbier and Sathiratai, 2004). 
Without doubt, remote sensing is a serious alternative to the traditional 
field monitoring for large-scale tropical mangrove management (Blasco 
et al., 1998). This is mainly because remote sensing technology allows 
information to be gathered from the environment of mangrove forests, 
which otherwise, logistically and practically speaking, would be very 
difficult to survey. Remote sensing applications in mangrove 
management come in three categories and are used for three main 
purposes: (i) resource inventory, (ii) change detection, and (iii) the 
selection and inventory of aquaculture sites (Green et al., 2000). These 
applications are based on a number of instruments on both aeroplane and 
satellite platforms, including visible and infrared photographic cameras 
(Sulong et al., 2002; Verheyden et al., 2002), video recorders (Everett et 
al., 1996), synthetic aperture radar (Aschbacher et al., 1995; Held et al., 
2003), and multispectral and hyperspectral sensors (Ramsey III and 
Jensen, 1996; Gao, 1999; Green et al., 2000; Demuro and Chisholm, 
2003; Held et al., 2003). 
 

1.2 Hyperspectral remote sensing for mangrove 
discrimination 

Hyperspectral data are a form of spectral records that contain 100 bands 
or more throughout the visible, near-infrared, mid-infrared, and thermal 
infrared portions of the spectrum. Each band possesses a 10 nm, or 
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narrower, bandwidth. Hyperspectral sensors can be used for 
discriminating among earth surface features that have distinct diagnostic 
absorption and reflection characteristics over narrow wavelength 
intervals and which are lost within the relatively coarse bandwidths of 
conventional multispectral sensors (Lillesand and Kiefer, 2000). 
 
Hyperspectral technology has already been successfully established in 
the field of vegetation research (Green et al., 1998; Asner et al., 2000; 
Cochrane, 2000; Green et al., 2000; Kruse et al., 2000; Curran et al., 
2001; Soukupová et al., 2002; Goel et al., 2003; Hirano et al., 2003; 
Mutanga et al., 2003; Schmidt and Skidmore, 2003; Schuerger et al., 
2003; Zarco-Tejada et al., 2004). This is because hyperspectral data 
contain information that is linked to important biochemical properties of 
plants (Gates et al., 1965; Hoffer, 1978; Peterson and Hubbard, 1992; 
Kokaly, 2001; McDonald, 2003). The study of the quality of tropical 
pastures for animal grazing (Mutanga et al., 2003), the use of 
hyperspectral sensors for detecting zinc stress in plants (Schuerger et al., 
2003), a revised method for lignin detection (Soukupová et al., 2002), 
and the extraction of crop biophysical parameters (Goel et al., 2003) are 
just a few examples highlighting the recent application of hyperspectral 
technology. More importantly, recent reports confirm that hyperspectral 
data can be used for investigating vegetation dynamics and the ecology 
of species, as the data have the potential for discriminating terrestrial 
plants at the species level (Cochrane, 2000; Schmidt and Skidmore, 
2003). 
 
Although hyperspectral remote sensing looks promising in the arena of 
vegetation applications, including species-level discrimination, the 
hyperspectral research on mangroves published to date (Green et al., 
2000; Demuro and Chisholm, 2003; Held et al., 2003; Hirano et al., 
2003) is inconclusive as to whether the hyperspectral technology could 
be used for studying tropical mangroves in finer detail, particularly at the 
species level. A most unfortunate case is the multi-sensor study carried 
out by Held et al. (2003). These authors should have been the first to 
ascertain whether an on-board hyperspectral sensor could be used for 
classifying mangrove species, but the hyperspectral images used were 
distorted by a high percentage of cloud cover. Furthermore, the other 
researchers (Green et al., 2000; Demuro and Chisholm, 2003; Hirano et 
al., 2003) could not explore thoroughly the capability of hyperspectral 
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data for discriminating mangroves at the species level because their study 
sites were dominated by a few mangrove species only.  
 
As a result, the first goal of this thesis is to investigate further the 
potential of hyperspectral technology for discriminating mangroves at the 
species level. A laboratory experiment is set up to test whether 
hyperspectral data contain adequate information for mapping mangroves 
at the species level. This laboratory study is intended to be a prerequisite 
for the future application of airborne and satellite hyperspectral sensors. 

1.3 Burdens of hyperspectral data 

1.3.1 Dimensionality problems 

Even though the application of hyperspectral remote sensing in 
vegetation studies is popular (Green et al., 1998; Asner et al., 2000; 
Cochrane, 2000; Green et al., 2000; Kruse et al., 2000; Curran et al., 
2001; Soukupová et al., 2002; Goel et al., 2003; Hirano et al., 2003; 
Mutanga et al., 2003; Zarco-Tejada et al., 2004), extracting, analysing or 
classifying hyperspectral information effectively without appropriate 
image processing algorithms is not straightforward, owing to high 
dimensionality. With respect to image classification, high-dimensional 
data trigger the phenomenon known as “the curse of dimensionality”. 
This means that the complexity caused by high dimensionality 
undermines the precision of the estimates of class distribution (e.g., mean 
and covariance) in the feature space. The imprecise class estimates then 
result in low output accuracy (Bellman, 1961; Hughes, 1968). 
Furthermore, this phenomenon results in the need for more training 
samples in order to construct better estimates of class models, thereby 
dramatically increasing the cost of the field survey. Thus, sophisticated 
methods, either feature extraction or feature selection, are inevitably 
required to handle the problems of hyper-dimensionality before 
performing image classification. 

 
A number of feature extraction techniques have already been employed 
to ease the problems of high dimensionality. For example, Fisher’s linear 
discriminant analysis (Duda and Hart, 1973), principal component 
analysis (PCA) (Anderson, 1984), canonical analysis (Richards, 1986), 
decision boundary feature extraction (Lee and Landgrebe, 1993), 
orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994), and 
linear constrained distance-based discriminant analysis (LCDA) (Du and 
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Chang, 2001) are typical data extraction methods that aim to transform 
original hyperspectral data into a smaller feature space. Despite their 
three common weaknesses ‒ (i) the loss of information during extraction, 
(ii) the requirement for a number of field samples to avoid singularity 
problems of covariance matrix inversion, and (iii) the assumption of data 
distribution ‒ it has been proved that these techniques help to gain an 
acceptable level of classification accuracy by increasing the precision of 
class distribution estimates of the transformed data (Lee and Landgrebe, 
1993; Harsanyi and Chang, 1994; Wu and Linders, 2000; Du and Chang, 
2001; Flink et al., 2001; Gong et al., 2002; Metternicht and Zinck, 2003). 
 
With respect to feature selection, it is possible to reduce significantly the 
number of data dimensions (spectral bands) in an ad hoc fashion when 
prior knowledge of specific spectral properties of the objects under study 
is explicit (Schmidt and Skidmore, 2003; van Niel et al., 2003). In this 
case, experienced analysts manually select a combination of useful bands 
that contain most of the relevant spectral information and leave out the 
rest. In many other cases, however, the spectral characteristics are not 
known beforehand. The analysts then have to select the best combination 
of bands by using separability indices as selection criteria (Kailath, 1967; 
Swain and King, 1973; Swain and Davis, 1978; Mausel et al., 1990; 
Bruzzone and Serpico, 2000). Specifically, the separability index is 
calculated for every possible band combination, and then the band 
combination that possesses the highest index score is selected. Thus, this 
method involves tedious and exhaustive, if not impossible, search efforts 
to find the best band combination. In practice, the quality of selection 
results is usually compromised by the adoption of sub-optimal (less 
exhaustive) search methods that reduce calculation time (Kavzoglu and 
Mather, 2002; Pekkarinen, 2002; Yu et al., 2002; Ulfarsson et al., 2003; 
Mutanga and Skidmore, 2004). Popular sub-optimal search schemes that 
are regularly used in remote sensing applications include (i) sequential 
forward selection algorithms (Pudil et al., 1994), (ii) branch and bound 
search (Narendra and Fukunaga, 1997), and (iii) genetic search 
algorithms (Holland, 1975; Goldberg, 1989).  

 
With respect to the use of genetic search algorithms (GA), it has already 
been proved that GA-based band selectors perform better than many 
other popular band selection algorithms (e.g., exhaustive search, branch 
and bound search, and sequential forward selection) (Siedlecki and 
Sklansky, 1989). Rigorous comparison has been made, using a synthetic 
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error model instead of real remotely sensed data so as to eliminate the 
variables (e.g., sample size, the number of spectral bands, the number of 
classes of interest) that could bias the outcome. In addition, mounting 
evidence of the success of GA-based band selectors in real-life remote 
sensing applications can be found in recent literature with regard to (i) 
selecting a subset of multiple sensor/date data for image classification 
(Lofy and Sklansky, 2001; Kavzoglu and Mather, 2002; Ulfarsson et al., 
2003), (ii) selecting spectral bands that relate to physio-chemical 
characteristics of plants and soils (Fang et al., 2003; Kooistra et al., 2003; 
Cogdill et al., 2004), and (iii) selecting a spectral subset of hyperspectral 
data for image classification (Yu et al., 2002). 
 
Nevertheless, the class information used in the above studies (Lofy and 
Sklansky, 2001; Kavzoglu and Mather, 2002; Yu et al., 2002; Ulfarsson 
et al., 2003) for testing the performance of the GA-based band selector is 
broad (i.e., USGS level I or II (Anderson et al., 1976)). This means that 
each class possesses distinct spectral characteristics, and it is relatively 
easy for GA to find spectral bands that maintain high spectral separability 
between classes. In none of these studies has the band selector been 
tested on class information that possesses very similar spectral 
characteristics (e.g., species-level data). The question of whether GA can 
deal with such complexity therefore remains. As a result, the second goal 
of this thesis is to test whether the GA-based band selector can be used 
for selecting a meaningful subset of spectral bands that maintains spectral 
separability between species classes. The test data used consist of 
spectrometer records of very high dimensionality, comprising 2151 bands 
of leaf spectra of 16 tropical mangrove species. 

1.3.2 Noise levels 

Another important problem that arises when using hyperspectral data, 
and one which is treated in this thesis, is low signal-to-noise ratios. It is 
normally found that the noise level in hyperspectral data is high. This is 
because their narrow bandwidth can capture only very little energy and 
this is sometimes overcome by the self-generated noise inside the 
sensors. Physical disturbances such as the fluctuation of light 
illumination and atmospheric states can make the situation even worse, as 
the disturbances decrease the precision of spectral signals recorded by the 
sensor (Landgrebe, 1997; Lillesand and Kiefer, 2000). 
Spectral smoothing and aggregating techniques, including both linear and 
non-linear methods, are the tools most popularly applied, mainly for 
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removing noise, in a large number of modern hyperspectral remote 
sensing studies (Tsai and Philpot, 1998; Gong et al., 2001; Ben-Dor et 
al., 2002; Strachan et al., 2002; Andréfouët et al., 2003; Hochberg and 
Atkinson, 2003; Schmidt and Skidmore, 2003; Vaughan et al., 2003; 
Yamano et al., 2003; Zarco-Tejada et al., 2003; Castro-Esau et al., 2004; 
Foody et al., 2004; Imanishi et al., 2004; le Maire et al., 2004; Meroni et 
al., 2004; Rees et al., 2004; Schmidt and Skidmore, 2004; Smith et al., 
2004; Thenkabail et al., 2004; Whiting et al., 2004). All these studies, 
however, use subjective ad hoc inspections as their measure for selecting 
appropriate smoothing methods. In other words, they do not use any strict 
optimizing criteria for selecting suitable smoothing filters in their studies. 
 
As a result, it is hypothesized that the subjective measure is not the most 
appropriate way of selecting smoothing criteria because it causes changes 
to some statistical properties (e.g., mean) of the original data, which 
could possibly affect the results of subsequent parametric analyses that 
utilize statistical properties of the data (e.g., Jeffries-Matusita distance, 
maximum likelihood classification). Instead, a more objective approach 
should be used as a measure for selecting an appropriate smoothing 
method in order to minimize the disturbance. As a result, the third goal of 
this study is to find a more appropriate approach to replace the ad hoc 
measure. 

1.4 Utilizing mangrove-environment relationships 

Although remote sensing applications for mangrove mapping at the 
fundamental level (e.g., regional areas) are well established (Aschbacher 
et al., 1995; Ramsey III and Jensen, 1996; Gao, 1999; Green et al., 2000; 
Sulong et al., 2002; Verheyden et al., 2002; Demuro and Chisholm, 
2003; Held et al., 2003), there is an increasing demand for mangrove 
maps at a finer level. For example, detailed mangrove maps at the 
community or species level are needed for studying mangrove 
ecosystems and their diversity.  
 
A number of advanced remote sensing techniques, however, remain 
unexplored for the purpose of mangrove mapping at a finer level. The use 
of ancillary data for mapping vegetation (Skidmore et al., 1997a; 
Skidmore et al., 1997b; Lehmann and Lenz, 1998; Berberoglu et al., 
2004; Comber et al., 2004; Schmidt et al., 2004) is one such technique 
that has been successfully employed to map other plants but has never 
been tested on mangroves. In most cases, ancillary data are extracted 
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from plant-environment relationships, and then incorporated with 
remotely sensed data into the mapping model in order to improve the 
quality of the final map. Ancillary data can be incorporated at three 
different stages: before (pre-classification), during, and after (post-
classification) the mapping process (Lillesand and Kiefer, 2000). Two of 
the most popular models used for integrating extra plant-environment 
information into the mapping process are the non-parametric model of 
artificial neural networks (Skidmore et al., 1997a; Lehmann and Lenz, 
1998; Berberoglu et al., 2004) and the inference engine of expert systems 
(Skidmore et al., 1997b; Comber et al., 2004; Schmidt et al., 2004). 
 
Similar to many other plants, mangroves have strong relationships with 
the surrounding environment. The occurrence of mangrove species at a 
certain location is related to surrounding ecological gradients such as 
elevation, tidal inundation, water salinity and soil pH (Macnae, 1968; 
Clough, 1982; Semeniuk, 1983; Tomlinson, 1994; Hogarth, 1999). In 
other words, mangrove species are likely to grow within their own 
niches. In many cases, this phenomenon causes strip-like patterns (i.e., 
mangrove zonations) parallel to the tide lines that are usually found in 
tropical mangrove forests (Tomlinson, 1994; Hogarth, 1999; Vilarrubia, 
2000; Satyanarayana et al., 2002). Thus, it is hypothesized that these 
quantifiable spatial relationships between mangroves and the 
environment can be exploited for mangrove mapping at a finer level. 
Consequently, the fourth and final goal of this thesis is to test this 
hypothesis.  

1.5. Objectives of the study 

The main objective of this study is to unveil the potential of some of the 
unexplored techniques of remote sensing for mangrove studies. 
Specifically, this thesis focuses on improving the class separability 
between mangroves, based on two important ingredients: (i) the use of 
narrow-band hyperspectral data, and (ii) the integration of ecological 
knowledge of mangrove-environment relationships into the mapping 
process. The main objective can be divided into four sub-objectives: 
 
(1) to demonstrate the potential of hyperspectral technology for 

discriminating mangroves at the species level 
(2) to test whether a form of genetic algorithms can be used for selecting 

a meaningful subset of spectral bands that maintains spectral 
separability between mangrove species 
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(3) to investigate one of the most popular methods of reducing noise 
levels in hyperspectral data (i.e., spectral smoothing), as well as 
propose a technique for selecting an appropriate smoothing filter for 
the data at hand 

(4) to test whether mangrove-environment relationships can be exploited 
in order to improve mapping accuracy. 

1.6. Outline of the thesis 

This thesis is composed mainly of two conference papers and five journal 
manuscripts. One of the manuscripts has already been published in an 
international peer-reviewed journal; two more have been accepted 
pending minor revisions; the last two are under review. The conference 
papers and manuscripts are organized into four separate chapters 
(Chapters 2 to 5), each of which stands alone and deals with one research 
objective. These four chapters, the core of the thesis, are accompanied by 
an introduction (Chapter 1) and a synthesis (Chapter 6). This format best 
suits the content of this thesis as each core chapter takes on one different 
aspect branching off from the main goal. Although some overlapping 
with regard to method description and illustrations is inevitable, this is 
considered justifiable as each chapter can be read individually without 
losing the context. 
 
In Chapter 2, the study demonstrates the potential of hyperspectral 
technology for discriminating mangroves at the species level. This is a 
laboratory investigation to see whether hyperspectral data contain 
adequate spectral information for discriminating mangroves at the 
species level. This laboratory study is intended to be a prerequisite for the 
future application of airborne and satellite hyperspectral sensors. 

 
Subsequently, in the next two chapters, two major technical concerns 
with respect to the use of hyperspectral data are addressed. Chapter 3 
demonstrates the possibility of using genetic algorithms for selecting 
spectral band subsets of species-level data of very high dimensionality. 
Chapter 4 investigates the application of spectral smoothing techniques in 
existing hyperspectral remote sensing studies, which has normally been 
conducted in an ad hoc fashion. An alternative to the ad hoc approaches 
is then proposed. 
 
Chapter 5 explores one of the techniques, an expert system, that has been 
successfully employed to map other vegetation but has never been tested 
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on mangroves. Specifically, a Bayesian expert system is used as a post-
classifier to exploit spatial relationships between mangroves and 
environmental gradients in order to improve mapping accuracy. 
 
Chapter 6 summarizes and synthesizes the main ideas of the thesis, and 
recommends some further studies. 
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Chapter 2* 
 

Hyperspectral Data for Mangrove 
Discrimination 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
* Vaiphasa, C., Ongsomwang, S., Vaiphasa, T., Skidmore, A.K. (2005). Tropical 
mangrove species discrimination using hyperspectral data: a laboratory study. Estuarine, 
Coastal, and Shelf Science 65, 371-379. 
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Abstract 
The aim of this study is to test whether canopy leaves spectra of various 
tropical mangrove species measured under laboratory conditions contain 
sufficient spectral information for discriminating mangroves at the 
species level. This laboratory-level study is one of the most important 
prerequisites for the future use of airborne and satellite hyperspectral 
sensors for mangrove studies. First, spectral responses of 16 Thai tropical 
mangrove species (2151 spectral bands between 350 nm and 2500 nm) 
were recorded from the leaves, using a spectrometer under laboratory 
conditions. Next, the mangrove spectra were statistically tested using 
one-way ANOVA to see whether they significantly differ at every 
spectral location. Finally, the spectral separability between each pair of 
mangrove species was quantified using the Jeffries-Matusita (J-M) 
distance measure. It turned out that the 16 mangrove species under study 
were statistically different at most spectral locations, with a 95% 
confidence level (p-value < 0.05). The total number of spectral bands that 
had p-values less than 0.05 was 1941, of which 477 bands had a 99% 
confidence level (p-value < 0.01). Moreover, the J-M distance indices 
calculated for all pairs of the mangrove species illustrated that the 
mangroves were spectrally separable except the pairs that comprised the 
members of Rhizophoraceae. Although the difficulties in discriminating 
the members of Rhizophoraceae are expected, the overall result 
encourages further investigations into the use of on-board hyperspectral 
sensors to see whether mangrove species can be separated when the 
difficulties of the field conditions are taken into account. 
 
Keywords: data reduction; mangroves; signal processing; spectroscopic 
techniques; spectral discriminant analysis; Thailand, Chumporn, Sawi 
bay 
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2.1 Introduction 

Remote sensing technology is a potentially fast and efficient approach to 
mangrove management, with many wetlands covering vast, mostly 
inaccessible areas, and where ground measurements become difficult and 
expensive (Held et al., 2003). This statement is strongly supported by a 
large number of successful applications of remote sensing for mangrove 
studies, particularly in mangrove resource inventory and change 
detection (see the review of Green et al., 2000). To highlight just a few, 
these applications include (i) mapping and monitoring mangroves by 
using multispectral and hyperspectral sensors (Rasolofoharinoro et al., 
1998; Gao, 1999; Demuro and Chisholm, 2003; Held et al., 2003; Hirano 
et al., 2003), (ii) deriving principal foliage parameters such as Leaf Area 
Index (LAI) from the correlations between mangroves and spectral bands 
(Ramsey III and Jensen, 1996; Kovacs et al., 2005), and (iii) detecting 
change of mangrove ecosystems (Berlanga-Robles and Ruiz-Luna, 2002; 
Manson et al., 2003). 
 
Multispectral sensors boarded on satellite platforms, including synthetic 
aperture radar (SAR), Landsat TM, and SPOT XS, are most popularly 
used for the abovementioned mangrove applications because of their 
cost-effective advantages (Aschbacher et al., 1995; Green et al., 2000; 
Held et al., 2003). Nevertheless, owing to their relatively coarse spatial 
and spectral resolutions, such satellite sensors are limitedly used at the 
regional scale. New types of sensors that provide higher spatial and 
spectral details are therefore needed for the study of mangroves at a finer 
level (Gao, 1999; Green et al., 2000; Sulong et al., 2002). 
 
With respect to the lack of spectral details of multispectral sensors, the 
limited number of spectral bands of Landsat TM (7 bands in total), in 
which each band only covers a broad wavelength region of several tens 
of nanometres, offers a clear example of how opportunities to exploit 
spectral responses linked to the physico-chemical properties of plants are 
lost. The broad spectral information of Landsat TM cannot be used to 
resolve several key absorption pits as well as reflectance characteristics 
including the red edge (the unique feature of plant spectral responses 
between the wavelength of 690 nm and 720 nm that can be used for 
extracting important physico-chemical characteristics of plants including 
chlorophyll contents) (Elvidge, 1987; Himmelsbach et al., 1988; Curran, 
1989; Elvidge, 1990; Kumar et al., 2001; Williams and Norris, 2001). In 
contrast, the report of Demuro and Chisholm (2003) demonstrates an 
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example of how more delicate tools such as the satellite-mounted 
HYPERION sensor (USGS EROS Data Centre (EDC), USA) that 
possesses 220 bands between 400 nm and 2500 nm handles the task of 
discriminating 8-class mangrove communities (i.e., broad mangrove 
classes) in Australia - a task considered difficult for any multispectral 
sensor (Green et al., 2000). Similarly, the 224-band Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor with 
approximate 9.6 nm band width ranging between 400 nm and 2450 nm 
performs just as well in mapping the mangrove communities of the 
Everglades, Florida (Hirano et al., 2003). Since both HYPERION and 
AVIRIS sensors collect a contiguous range of narrow-band spectral data, 
they are technically termed “hyperspectral sensors”. 
 
Scientists in the field of vegetation research at large acknowledge that the 
narrow spectral bands of hyperspectral sensors are advantageous for their 
studies. Such information gathered from the relationships between plants 
and their spectral responses can be used for gauging biochemical 
contents inside the plants (Gates et al., 1965; Hoffer, 1978; Peterson and 
Hubbard, 1992; Kokaly, 2001, McDonald, 2003). The exploitation of 
these relationships are found in a large number of vegetation research 
(Green et al., 1998; Asner et al., 2000; Curran et al., 2001; Soukupová et 
al., 2002; Goel et al., 2003; Hirano et al., 2003; Mutanga et al., 2003; 
Schuerger et al., 2003; Zarco-Tejada et al., 2004), particularly in the area 
of plant species discrimination studies (Cochrane, 2000; Schmidt and 
Skidmore, 2003; Ramsey III et al, 2005; Clark et al., 2005). Nonetheless, 
the capability of hyperspectral technology for discriminating mangroves 
at the species level is still unconfirmed (Green et al., 2000; Demuro and 
Chisholm, 2003; Held et al., 2003; Hirano et al., 2003).  
 
Consequently, this study is intended to move one step closer to the 
conclusion whether hyperspectral technology can be used for tropical 
mangrove species discrimination. Specifically, laboratory spectra of top 
canopy leaves of 16 tropical mangrove species are used for the spectral 
separability analysis to see whether they adequately contain useful 
spectral information for discriminating mangroves at the species level. 
Using laboratory data that leave out the difficulties of field conditions 
(e.g., the fluctuation of light source energy, the change of daily 
atmospheric states, the effect of canopy formations, the cost of 
accessibility, the coarser spatial and spectral resolutions of on-board 
hyperspectral sensors, the effect of seasonal changes, the effect of 
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background soils and water, the difference between the energy of 
artificial lamps used in the laboratory  and the sun) means that the result 
of this study cannot be used to make any conclusion whether real-life 
hyperspectral sensors (e.g., HYPERION, AVIRIS, etc.) can be used for 
discriminating tropical mangrove species. Instead, this laboratory study is 
intended to be a cost-effective test to focus only on one of the most 
important prerequisites for the future application of on-board 
hyperspectral sensors: if the laboratory spectra of the mangrove species 
contain insufficient spectral information for discriminating mangroves at 
the species level, it is then not worthwhile to invest a lot of time and 
money to investigate further into the potential of the on-board 
hyperspectral sensors. 

2.2 Methods 

2.2.1 Acquisition of hyperspectral data 

2.2.1.1 Mangrove leaf preparation 

In the morning of February, 6, 2001, top tree canopies of 16 tropical 
mangrove species (Table 2.1) were collected using a line-transect method 
in the natural mangrove forest of Ao Sawi (Sawi Bay), the province of 
Chumporn, the south of Thailand (10˚ 15'N, 99˚ 7'E) (Figure 2.1). 
Species identification was carried out by the staffs of Royal Thai Forestry 
Department; taxonomy follows Tomlinson (1994) and Teeratanatorn 
(2000). There were ten transects randomly placed throughout the area so 
as to collect tree samples from every mangrove zone (e.g., pioneer, 
intermediate, upper zones). Only the trees that are higher than 2.5 m were 
considered for the sampling campaign. The canopies of the sampled trees 
were cut off and transported to the laboratory where leaves were picked 
off for the spectral measurement. The whole process was done within 
four hours so as to preserve the quality of the leaves. 
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Figure 2.1: Sawi Bay, Chumporn, Thailand (10˚ 15'N, 99˚ 7'E) 
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Table 2.1: Sixteen tropical mangrove species of different mangrove zones 

collected from Sawi Bay, Chumporn, Thailand used for the laboratory 

reflectance measurement (See also: Appendix II for spectral representations of 

these mangroves) 

 
Mangrove species Species 

code 
Avicennia alba AVA 
Acrostichum aureum ACA 
Bruguiera cylindrica BC 
Bruguiera gymnorrhiza BG 
Bruguiera parviflora BP 
Ceriops tagal CT 
Excoecaria agallocha EA 
Heritiera littoralis HL 
Lumnitzera littorea LL 
Lumnitzera racemosa LR 
Nypa fruticans NF 
Pluchea indica PI 
Rhizophora apiculata RA 
Rhizophora mucronata RM 
Sonneratia ovata SO 
Xylocarpus granatum XG 

2.2.1.2 Leaf spectral measurements 

Freshly-picked leaves were randomly divided into 30 piles of the same 
size (20 to 30 leaves) per mangrove species. First, each pile of leaves (top 
side up) was spread on top of a black metal plate painted with ultra-flat 
black paint until the background metal plate could not be seen. Second, 
the spectral response of each leaf plate was recorded 20 times. Each plate 
was rotated 45˚ horizontally after every fifth record in order to correct for 
the bi-directional reflectance distribution function (BRDF). Third, the 20 
records were averaged to construct a radiance curve. Fourth, the radiance 
was converted to a reflectance curve, using a Spectralon reference panel 
as well as the correction of the spectrometer internal current (dark 
current). The steps above were repeated for all the leaf plates. As a result, 
30 reflectance curves were constructed for each mangrove species (Table 
2.1). Please note that the whole operation was conducted under 
laboratory conditions (i.e., dark room, 25˚C) in order to avoid ambient 
light sources unrelated to the true spectral signal of the leaves. 
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The whole process was conducted using a spectroradiometer (FieldSpec 
Pro FR, Analytical Spectral Device, Inc.). This spectroradiometer was 
equipped with three spectrometers (i.e., VNIR, SWIR1, and SWIR2), 
covering 350 nm to 2500 nm, with sampling intervals of 1.4 nm between 
350 nm and 1000 nm, and 2 nm between 1000 nm and 2500 nm. The 
spectral resolution of the spectrometers was 3 nm for the wavelength 
interval 350 nm to 1000 nm, and 10 nm for the wavelength interval 1000 
nm to 2500 nm. The sensor, equipped with a field of view of 25˚, was 
mounted on a tripod and positioned 0.5 m above the leaf plate at the nadir 
position.  
 
Since this laboratory study was intended to be a prerequisite for the 
future use of real hyperspectral sensors, the energy source in use should 
at least provide the same energy range that real hyperspectral sensors 
capture. In this study, a halogen lamp was selected to provide stable 
electro-magnetic energy between 400 nm and 1800 nm. This energy 
range was reconciled with most of the hyperspectral sensors (Lillesand 
and Kiefer, 2000). As a result, a halogen lamp fixed on the tripod at the 
same position as the sensor of the spectrometer was used to illuminate 
the sample plate. 

2.2.2 Data treatments 

2.2.2.1 Statistical test 

A statistical test was used to compare between the spectral responses of 
the 16 individual tropical mangrove species (Table 2.1) whether at least 
one pair of them were statistically different at every spectral band, that is 
to say, the null hypothesis Ho: µ1=µ2=…=µ16 versus the alternative 
hypothesis Ha: µ1≠µ2≠…≠µ16, where µi was the mean reflectance value of 
the ith species (i = 1, 2,…, 16). Before conducting the test, the distribution 
of the spectral responses at every spectral band was assumed to be 
normal under the central limit theorem (N spectra≥30) as well as the 
equality of statistical variances (homoscedasticity) was verified for every 
spectral location. Then, the hypothesis test was carried out using one-way 
ANOVA at every spectral location between 350 nm and 2500 nm (a total 
of 2151 spectral bands) with 95% and 99% confidence limits (α=0.05 and 
0.01). 
 
The aim of the ANOVA test was mainly to visualise the spectral 
differences between the 16 mangrove species. The test was chosen as a 
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replacement for the direct graphical presentation of the mangrove 
spectral responses because the direct visualization was not an effective 
visualization tool for comparing as many as 16 mangrove species. In 
other words, the spectral variations within an individual species (i.e., 
intra-species spectral variations) caused spectral overlaps that made it 
very difficult to spot the spectral differences between the 16 mangrove 
species (i.e., inter-species variations) with the naked eye. The reader is 
recommended to find more details on the direct visualization versus 
spectral variations in Landgrebe (1997, p.8). Unlike the direct display, 
applying the ANOVA test helped highlight poor spectral locations at 
which p-values were greater than α (e.g., α=0.05 or α=0.01). P-values 
higher than α at some spectral locations indicated that the spectra of 
different mangrove species were very similar, as none of them was 
statistically separable from the group. On the other hand, the p-value less 
than the α threshold indicated that there was at least one pair of 
mangrove spectra that was statistically different. The ANOVA test was 
therefore a rapid way of visualising spectral differences. It helped 
demonstrate that separating spectral responses of 16 different mangrove 
species was likely at certain spectral positions. 

2.2.2.2 Spectral separability 

Even though the ANOVA test was a practical data exploration tool, the 
result of the test may not be independently interpreted without additional 
treatments. One of the major reasons was the increasing chance of the 
TYPE I error that usually happened when conducting multiple hypothesis 
testing (Hsu, 1996; Rothman, 1990; Perneger, 1998; Feise, 2002). In this 
case, the TYPE I error could lead the reader to feel too positive about the 
capability of hyperspectral technology for separating mangroves at the 
species level. As a result, the spectral separability index of every 
mangrove pair needed to be calculated to guarantee the actual differences 
between the mangrove spectra. The quantification of spectral separability 
indices for every mangrove pair was not only minimise the chance of the 
TYPE I error found in the ANOVA test, but it also was the main 
contribution of this study (i.e., proving whether the laboratory spectra 
adequately contain useful spectral information for discriminating 
mangroves at the species level).  
 
The separability index used in this study was the square of Jeffries-
Matusita (J-M) distance analysis. The J-M distance method delivers a 
value between 0 and √2 (≈ 1.414), so the squared distance gives a 
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number between 0 and 2. We follow the common practice in remote 
sensing (Thomas et al., 2003; ENVI software’s user guide, RSI Inc.) of 
using a squared J-M distance threshold of ≥ 1.90 to indicate whether any 
two mangrove species were spectrally separable. The calculation of the J-
M distance in this study was based on the following equation (Eq.1). The 
reader was recommended to consult (Richards, 1993) for further details 
in separability analyses. 
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Note:  i and j are the spectral responses of two mangrove species being 
compared. C is the covariance matrix of the spectral response. μ is the 
mean vector of the spectral response. ln is the natural logarithm function. 
T is the transposition function. |C| is the determinant of C. 
 
Because the J-M distance measure in use was a parametric method, it was 
necessary to reduce the number of spectral features (bands) prior to the 
calculation. In other words, it was not possible to calculate the J-M 
distance by using all 2151 bands because of the singularity problem of 
matrix inversion (i.e., the number of spectral samples per mangrove 
species was too small). A wrapper feature selection approach (Siedlecki 
and Sklansky, 1989; John et al., 1994; Kohavi and John, 1997; Kavzoglu 
and Mather, 2002; Yu et al., 2002; Vaiphasa, 2003) was therefore applied 
in this study to reduce the number of spectral features. The wrapper 
approach is generally a kind of feature selection algorithms that 
combines the strength of a traditional search algorithm (e.g., sequential 
forward selection, branch and bound technique, genetic search) with the 
capability of a classifier (e.g., nearest neighbour classifier, maximum 
likelihood classifier). In this case study, the search mechanism of the 
wrapper tool was based on a genetic algorithm, and its classifier was a 
nearest neighbour classifier. The algorithm was applied to select the best 
band combination out of the total of 2151 bands. The algorithm was 
initialised with the following genetic search parameters: crossover rate = 
50%; mutation rate = 1%; and the maximum number of iterations = 1000. 
The estimated classification accuracy was chosen at an 80% level as an 
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optimising criterion. Following the USGS guideline (Anderson et al., 
1976), the optimising criterion chosen at the 80% level was adequate for 
the difficulties in discriminating mangroves at the species level (i.e., 
Level III or IV of the USGS classification standard). 

2.3 Results 

2.3.1 ANOVA test 

The results of 2151 ANOVA tests (p-values) for all spectral bands were 
plotted in Figure 2.2. A reflectance of Rhizophora apiculata measured in 
the laboratory was also drawn in the figure to give an impression of the 
actual mangrove spectral continuum collected by the spectrometer. The 
16 mangrove species under study were statistically different at most 
spectral locations, with a 95% confidence level (p-value < 0.05). The 
total number of spectral bands that had p-values less than 0.05 was 1941, 
of which 477 bands had a 99% confidence level (p-value < 0.01). The 
exceptions were at the ultraviolet region (350-400 nm) and shortwave 
infrared region (1800-2500 nm) where the halogen lamp did not radiate 
strong energy.  
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Figure 2.2: The plot of p-values of the ANOVA test (black line) shown against a 

laboratory reflectance of Rhizophora apiculata (grey line) 
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2.3.2 Wrapper feature selection 

The feature selection algorithm was applied to search for the sub-optimal 
spectral band combination out of the total of 2151 bands. The best 
combination found by the wrapper tool comprised four spectral members 
at 720 nm, 1277 nm, 1415 nm, and 1644 nm. These four spectral bands 
guaranteed an 80% level of estimated classification accuracy. In Figure 
2.3, the selected bands were shown against a reflectance of R. apiculata. 
These four selected bands were then used for the calculation of J-M 
distances in the next section. 
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Figure 2.3: Four locations of spectral bands selected by the feature selection 

tool at 720 nm, 1277 nm, 1415 nm, and 1644 nm, respectively. 

2.3.3 J-M distance 

The J-M distance measure was applied to reveal the spectral separability 
between each pair of mangrove species (Table 2.2), using the four 
spectral bands selected in section 3.2. Please note that the mangrove 
species of Table 2.2 were grouped by their family name. The overall 
spectral separability between the pairs of mangrove species was high, 
since most of them acquired levels of separability higher than the 
selected threshold (namely, 1.90). Only ten instances where the J-M 
distances were lower than 1.90 were found. These instances were 
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highlighted in Table 2.2. One should, however, note that the members of 
the Rhizophoraceae family (B. cylindrica, B. Gymnorrhiza, B. parviflora, 
C. tagal, R. apiculata, and R. mucronata) were spectrally similar. Five 
out of ten highlighted instances were found among them. Moreover, the 
Rhizophoraceae family was also similar to other mangrove families, as 
each of the other 5 highlighted pairs contained at least one mangrove 
species of Rhizophoraceae. 
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Table 2.2: The J–M distances between all pairs of 16 mangrove species (120 

pairs in total). The species names are coded in Table 1. The pairs that possess 

lower than 1.90 separability levels are highlighted in grey colour. Mangrove 

species were grouped by their family names 
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2.4 Discussion & conclusion 

A laboratory-scale test of spectral separability between various tropical 
mangrove species, which is one of the most important prerequisites for 
the future use of airborne and satellite hyperspectral sensors, has been 
completed in this study. Overall, the results confirm that discriminating 
spectral responses of different tropical mangroves at the species level is 
possible in the laboratory. First, the result of the ANOVA test in Figure 
2.2 helps visualise the possibility of separating the mangrove species at 
many spectral locations. Then, the report on pair-wise spectral 
separability between the 16 mangrove species in Table 2.2 guarantees the 
result of the ANOVA test, as most mangrove pairs possess high 
separability indices (≈2.00). The results therefore encourage further 
investigation into the capability of using airborne and satellite 
hyperspectral sensors for mapping mangrove species when taking field 
conditions into account (e.g., the fluctuation of solar energy, the change 
of daily atmospheric states, the effect of canopy formations, the cost of 
accessibility, the coarser spatial and spectral resolutions of on-board 
hyperspectral sensors, the effect of seasonal changes, the effect of 
background soils and water, the difference between the energy of 
artificial lamps used in the laboratory and the sun). 
 
Despite the optimism of the overall outcome, one should not ignore the 
minority (10 instances) of Table 2.2 where the separability indices are 
lower than 1.90. The locations of these instances on the table imply that 
the members of the Rhizophoraceae family are probably the most 
problematic: the members of this mangrove family are spectrally similar 
to the other mangroves as well as among themselves. Such results reflect 
the similarity between their spectral responses; hence the closeness 
between the leaf physico-chemical properties of these mangroves. Since 
the mangroves of Rhizophoraceae dominate the study area, the 
difficulties in discriminating these mangroves are expected when 
implementing the on-board hyperspectral sensors. This statement could 
also be true for other areas that shared similar floristic conditions (i.e., 
dominated by the Rhizophoraceae family). 
 
Lastly, the result of the wrapper tool may not be overlooked. Even if the 
four bands selected by the wrapper tool guarantee an 80% level of 
estimate classification accuracy (i.e., complied with the USGS standard 
(Anderson et al., 1976)), only one out of four is reconciled with the 
locations of the spectral responses of mangrove leaf pigments (e.g., 
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chlorophylls, carotenoids) between 380 nm and 750 nm (Menon and 
Neelakantan, 1992; Basak et al., 1996; Das et al., 2002). This could lead 
us to hypothesise that the spectral responses of mangrove pigments may 
contain less important spectral information for mangrove species 
discrimination than the information from the spectral responses of the 
other leaf components that interacts with electro-magnetic energy at 
longer wavelengths. This may be because mangroves generally possessed 
similar amounts of pigment substances across the species but the 
differences in other leaf components (salt, sugar, water, protein, oil, 
lignin, starch, cellulose, and leaf structure) that normally interact with 
energy at longer wavelengths are more marked. Even if a number of 
studies on the physico-chemical properties of leaves of different 
mangrove species are available (Menon and Neelakantan, 1992; 
Tomlinson, 1994; Basak et al., 1996; Das et al., 2002), it is unfortunate 
that they can not be readily compared in order to draw any conclusion. 
This is because these studies are not standardised (i.e., the mangrove 
leaves used in different reports were collected from different field 
conditions). A non-bias comparative study is therefore recommended so 
as to confirm this part of the findings. Then, the four spectral locations 
selected by the wrapper tool could be seen as a guideline for selecting 
appropriate spectral locations for the future use of the on-board 
hyperspectral sensor.  
 
In summary, one of the most important prerequisites for the future 
investment of the airborne and satellite hyperspectral sensors for 
mangrove studies was investigated in this study. Laboratory spectra of 
top canopy leaves of 16 tropical mangrove species were analyzed to see 
whether they adequately contained useful spectral information for 
discriminating mangroves at the species level. Overall, the results from 
the statistical test and the spectral distance analysis provide optimistic 
evidence that encourages a full-scale investigation into the capability of 
on-board hyperspectral sensors for mangrove species discrimination, but 
the doubt of discriminating some members of the Rhizophoraceae family 
still remains. 
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Chapter 3ab 
 

Dimensionality Problems 
 

 

                                                 
a Vaiphasa, C., van Oosten, H., Skidmore, A.K., de Boer, W.F. (in review). A genetic 
algorithm for hyperspectral feature selection. Photogrammetric Engineering and Remote 
Sensing. 
b Vaiphasa, C. (in review). A hyperspectral band selector for plant species 
discrimination. Photogrammetric Engineering and Remote Sensing. 
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Abstract 
Using genetic search algorithms (GA) as spectral band selectors is 
popular in the field of remote sensing. Nevertheless, class information 
used in the existing research for testing the performance of the GA-based 
band selector is broad (i.e., Anderson’s level I or II). This means that 
each class possesses distinct spectral characteristics, and it is relatively 
easy for the band selector to find spectral bands that maintain high 
spectral separability between classes. None of the existing studies has 
tested the band selector on class information that possesses very similar 
spectral characteristics (e.g., species-level data). The question therefore 
remains if the band selector can deal with such complexity. As a result, 
the key hypothesis of this research is that the GA-based band selector can 
be used for selecting a meaningful subset of spectral bands that maintains 
spectral separability between species classes. The test data in use are 
spectrometer records of high dimensionality, comprising 2151 bands of 
leaf spectra of 16 tropical mangrove species. Overall, it turned out that 
the GA-based band selector was able to cope with spectral similarity at 
the species level. It selected spectral bands that related to principal 
physico-chemical properties of plants, and, simultaneously, maintained 
the separability between species classes at a high level. 
 
Keywords: Artificial Intelligence; Classification; Hyper spectral; Remote 
sensing; Vegetation 
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3.1 Introduction 

Since the first introduction by Holland (1975), many forms of genetic 
algorithms (GA) have been developed for remote sensing applications, 
for example, (i) image segmentation and classification (Tseng and Lai, 
1999; Pal et al., 2001; Harvey et al., 2002; Liu et al., 2004; 
Bandyopadhyay, 2005), (ii) sub-pixel classification (Mertens et al., 
2003), (iii) model optimization (Jin and Wang, 2001; Chen, 2003; Fang 
et al., 2003), (iv) image registration (Jones et al., 2000; Chalermwat et 
al., 2001); (v) pixel aggregation (Lu and Eriksson, 2000), and (vi) image 
band selection (Siedlecki and Sklansky, 1989; Lofy and Sklansky, 2001; 
Kavzoglu and Mather, 2002; Yu et al., 2002; Fang et al., 2003; Kooistra 
et al., 2003; Luo et al., 2003; Ulfarsson et al., 2003; Cogdill et al., 2004).  
Ranking by the number of publications, the use of GA as band selectors 
is the most popular. 
 
In general, band selectors alleviate the problem of high-dimensional 
complexity (Bellman, 1961; Kendall, 1961; Hughes, 1968; Fukunaga, 
1990; Shahshahani and Landgrebe, 1994) that usually affects the 
outcome of analysing multiple band data (e.g., multi-sensors, multi-
temporal, or hyperspectral images). In most cases, a large number of 
image bands (i.e., > 20 bands) are too complex for familiar parametric 
tools (e.g., Jeffries-Matusita distance, Bhattacharyya distance, maximum 
likelihood classifier). Mathematically, the complexity when using such a 
large number of bands does not only undermine the precision of 
parametric model estimation (Bellman, 1961; Hughes, 1968), but it also 
causes the singularity of covariance matrix inversion (Fukunaga, 1990). 
Furthermore, this high-dimensional complexity also leads to an excessive 
demand for field samples, which is not feasible in practice owing to the 
time and budget limitations (Shahshahani and Landgrebe, 1994). 
 
The superiority of the GA-based band selectors over the other popular 
band selection algorithms (e.g., branch and bound search, exhaustive 
search, sequential forward selection) is acknowledged (Siedlecki and 
Sklansky, 1989). For example, the successful applications include (i) 
selecting a subset of multiple sensor/date data for image classification 
(Lofy and Sklansky, 2001; Kavzoglu and Mather, 2002; Ulfarsson et al., 
2003), (ii) selecting spectral bands that relate to physico-chemical 
characteristics of plants and soils (Fang et al., 2003; Kooistra et al., 2003, 
Cogdill et al., 2004, and (iii) selecting a spectral subset of hyperspectral 
data for image classification (Yu et al., 2002). 



 32 

Nonetheless, the existing GA-based band selectors (Lofy and Sklansky, 
2001; Kavzoglu and Mather, 2002; Yu et al., 2002; Ulfarsson et al., 
2003) have only been tested on broad class information at the USGS 
level I or II (Anderson et al., 1976). In other words, it is relatively easy 
for GA to select spectral bands from these broad class data and maintain 
high spectral separability between classes. Therefore, it is still unclear 
whether GA can deal with higher spectral complexity. In this study, we 
then hypothesise that the GA-based band selector can be used for 
selecting a meaningful spectral subset from complex test data that 
maintains spectral separability. The test data in use are spectrometer 
records of high dimensional complexity that comprise 2151 bands of leaf 
spectra of 16 tropical mangrove species. 

3.2 Data & Methods 

3.2.1 Species-level hyperspectral data 

3.2.1.1 Mangrove leaf preparation 

Top-level canopies of 16 tropical mangrove species (Table 3.1) were 
collected using a line-transect method in the natural mangrove forest of 
Ao Sawi (Sawi Bay), the province of Chumporn, the south of Thailand 
(10˚ 15'N, 99˚ 7'E) on February, 6, 2001. This line-transect method 
enabled us to collect the mangrove canopies from pioneer, intermediate, 
and landward zones. The canopies were only sampled from fully-grown 
trees (i.e., > 2.5 m tall). During the sampling campaign, species 
identification was carried out by the staffs of Royal Thai Forestry 
Department; taxonomy follows Tomlinson (1994) and Teeratanatorn 
(2000). At the laboratory, the leaves were then picked off the canopies 
for the spectral measurement.  
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Table 3.1: Thirty spectra of mangrove leaves were collected per mangrove 

species, using a 2151-band spectroradiometer 

Mangrove species Species 
code 

Number 
of spectra  

Avicennia alba 1 30 
Acrostichum aureum 2 30 
Bruguiera cylindrica 3 30 
Bruguiera gymnorrhiza 4 30 
Bruguiera parviflora 5 30 
Ceriops tagal 6 30 
Excoecaria agallocha 7 30 
Heritiera littoralis 8 30 
Lumnitzera littorea 9 30 
Lumnitzera racemosa 10 30 
Nypa fruticans 11 30 
Pluchea indica 12 30 
Rhizophora apiculata 13 30 
Rhizophora mucronata 14 30 
Sonneratia ovata 15 30 
Xylocarpus granatum 16 30 

3.2.1.2 Leaf spectral measurements 

The leaves were randomly shuffled and separated evenly into 30 piles per 
mangrove species. Each pile of leaves (top side up) was placed on top of 
a black metal plate painted with ultra-flat black paint until the 
background metal plate could not be seen. Next, the spectral response of 
each leaf plate was recorded 20 times. Each plate was rotated 45˚ 
horizontally after every fifth record to compensate for the bi-directional 
reflectance distribution function (BRDF). Then, the mean of the 20 
records were calculated to construct a radiance curve. Finally, the 
radiance was converted to a reflectance curve by using a reference panel 
as well as the correction of the spectrometer internal current (dark 
current). The steps above were followed for all other leaf plates. As a 
result, we have 30 reflectance curves per each mangrove species (Table 
3.1).  
 
The spectral measurement was conducted under laboratory conditions by 
using a spectroradiometer (FieldSpec Pro FR, Analytical Spectral 
Device, Inc.). This spectroradiometer was equipped with three 
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spectrometers (i.e., VNIR, SWIR1, and SWIR2), covering 350 nm to 
2500 nm, with sampling intervals of 1.4 nm between 350 nm and 1000 
nm, and 2 nm between 1000 nm and 2500 nm. The spectral resolution of 
the spectrometers was 3 nm for the wavelength interval 350 nm to 1000 
nm, and 10 nm for the wavelength interval 1000 nm to 2500 nm. The 
sensor, equipped with a field of view of 25˚, was mounted on a tripod 
and positioned 0.5 m above the leaf plate at the nadir position. A halogen 
lamp fixed on the tripod at the same position as the sensor of the 
spectrometer was used to illuminate the sample plate. The room was 
conditioned to be dark with 25˚C in order to avoid unwanted external 
energy sources. 

3.2.2 Genetic search algorithms (GA) 

The theory of GA was first introduced by Holland (1975). The 
elaboration of its practical side including a basic computer source code 
can be found in Goldberg (1989). In this chapter, guidelines of Goldberg 
(1989) are strictly followed. More details of the algorithm are added in 
Appendix I. Only three major connections between the concept of GA 
and remote sensing applications are emphasised in this chapter (i.e., gene 
encoding scheme, reproduction mechanism, and fitness criterion). 
Additionally, the code of GA used in this study has been developed in the 
IDL language at the International Institute for Geo-Information Science 
and Earth Observation (ITC) (Vaiphasa, 2003). 

3.2.2.1 Gene encoding 

The gene encoding scheme in use is a direct method instead of binary 
encoding that is popularly used in related studies (Siedlecki and 
Sklansky, 1989; Kavzoglu and Mather, 2002; Yu et al., 2002). The key 
reasons for choosing direct encoding are that it is transparent for tracking 
the process of evolution as well as straightforward for reproducing the 
population (i.e., crossover and mutation) (Vaiphasa, 2003). 
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Figure 3.1: (a) Two parent chromosomes, (b) Two offspring chromosomes, and 

(c) An example of random mutation 

 
Figure 3.1a illustrates an example of two chromosomes (e.g., 
chromosome size = 6). Following the direct encoding scheme, the 1st 
chromosome comprises 6 different genes flagged by the letter A to F, and 
the 2nd one comprises gene G to L. Each gene can be assigned with a 
band label. For example, the 1st chromosome, {A, B, C, D, E, F}, in 
Figure 3.1a can be assigned with an array of band names, {Band 2, Band 
8, Band 37, Band 59, Band 97, Band 99}, and, similarly, the {G, H, I, J, 
K, L} can be set to {Band 3, Band 5, Band 38, Band 55, Band 83, Band 
100}. 

3.2.2.2 Reproduction mechanism 

The mechanism of cross over and mutation is illustrated in Figure 3.1. By 
mating the two chromosomes in Figure 3.1a, the offspring that they 
produce share, in this example, half the characters of the first parent and 
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the other half from the second parent. The two offspring are shown in 
Figure 3.1b. 
 
Occasionally, some of the genes in any newly produced chromosome are 
randomly altered by mutation. This phenomenon causes a change in the 
character of the offspring, independent from the chromosome 
composition of the parents. The illustration of the mutation effect is 
shown in Figure 3.1c. The “J” gene is mutated to the “X” gene through 
random mutation. In remote sensing context, this is equal to a random 
flip of a band label inside a chromosome. 

3.2.2.3 Fitness criterion 

The fitness function in use is a well-known spectral angle mapper based 
nearest neighbour classifier (SAM) (see Kruse et al. (1993) and Keshava 
(2004) for full details). This means that the evolution is guided by the 
classification accuracy reported by SAM. Chromosomes (i.e., a subset of 
spectral bands) that possess higher classification accuracy are likely to 
have more chance to “mate” and produce “young” than chromosomes 
that possess lower classification accuracy (Goldberg, 1989). 

3.3 Experiments & Results 

3.3.1 Initialising the genetic search algorithm 

GA was initialised with the following parameters: population size = 
1000, crossover rate = 100%, and mutation rate = 1%. The maximum 
number of generations was 500. The fitness function (i.e., SAM) was 
trained with half of the mangrove spectra of Table 3.1 (15 spectra per 
class), and the other half was used for calculating on-line fitness 
progress.  

3.3.2 Choosing an appropriate chromosome size 

Since the genetic algorithm in use was an unconstrained combinatorial 
optimization search (i.e., search without any constraint or penalty on the 
size of a chromosome), preliminary runs of GA had to be carried out to 
look for an appropriate chromosome size (i.e., chromosome size = the 
number of genes in a chromosome) that maintained high class 
separability. In this study, the 80% level of classification accuracy was 
chosen as the target, as it was appropriate for separating very similar 
spectra of 16 mangrove species (USGS level III or IV (Anderson et al., 
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1976)). As a result, it was found that a minimum chromosome size that 
maintained class separability above the chosen threshold was four. A 
comparison between the performance of three different chromosome 
sizes (i.e., chromosome size=2, 3, and 4) is shown in Figure 3.2. 

3.3.3 Running the genetic search algorithm 

GA with chromosome size four was repeatedly run 30 times to check the 
consistency of the results. The spectra were randomly rotated at the start 
of every run (i.e., data rotation) to avoid the bias. The real-time progress 
was plotted for each run in Figure 3.3. The highest fitness score of each 
run was marked with a cross. Overall, the genetic algorithm quickly 
reached an averaged fitness score level of 80% at about the 100th 
generation.  
 
An example of the evolution process of a single run is shown in Figure 
3.4 to give an impression of how GA worked. The horizontal axis 
represented band labels (or genes) from B1 to B2151. The vertical axis 
showed the number of genes. In general, the gene distribution pattern 
converged from originally 2151 types of genes at the 1st generation 
(Figure 3.4a) to only a few kinds of genes at the 500th generation (Figure 
3.4f). The convergence quickly happened as early as the 100th generation 
(Figure 3.4b) where most genes were already extinct. This convergent 
evolution from Figure 3.4a to 4b directly connected to Figure 3.3 where 
the majority of the progress lines levelled off at the 100th generation, as 
the convergence happened. Genes that dominated the evolution were 
individually labelled in the plots. In this example, at the last generation 
(the 500th generation), the gene pool was dominated by the following 
genes: B369, B915, B1050, B1262, and B1297. 
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Figure 3.2: A comparison between the performances of three different 

chromosome sizes 

 

 
Figure 3.3: The real-time progress of 30 runs (grey lines) with their peaks 

(crosses), mean (black line), and standard deviation limits (dashed lines) 
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Figure 3.4: An example of the convergence of gene distribution patterns from 

(a) the 1st generation to (f) the 500th generation 

 
The winning chromosomes from every run were reported in Table 3.2 
along with their fitness scores (i.e., SAM classification accuracy). The 
best of all were chromosome No.2 and No.10. Both possessed an 86% 
level of classification accuracy. Then, all the genes of the 30 winning 
chromosomes (i.e., 120 genes in total) are grouped by minimising their 
variance. The results were illustrated in a plot against a hypothetical 
mangrove reflectance (Figure 3.5). It was found that the genes (spectral 
bands) can be grouped at 6 different spectral positions (mean ± standard 
deviation): visible area (21 genes at 513±19nm); red edge (15 genes at 
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717±16nm); near-infrared region (9 genes at 1263±23nm); infrared slope 
(44 genes at 1385±27nm); mid-infrared absorption pitch (5 genes at 
1489±21nm), and mid-infrared peak (26 genes at 1669±25nm). 
 
Table 3.2: Thirty winning chromosomes with their encapsulated genes 
Chromosome No. Genes (nanometre) Fitness Scores (%) 

1 523 1358 1385 1710 83 
2 518 1381 1393 1685 86 
3 517 708 1436 1639 82 
4 523 1372 1418 1671 81 
5 524 1375 1496 1681 82 
6 521 1378 1398 1665 79 
7 549 1333 1390 1681 81 
8 679 1316 1389 1673 79 
9 535 1384 1506 1667 85 

10 716 1246 1409 1607 86 
11 722 758 1392 1436 80 
12 534 1364 1385 1685 84 
13 528 1363 1408 1661 81 
14 725 1264 1402 1682 79 
15 533 1369 1507 1660 79 
16 548 1335 1458 1644 80 
17 546 714 1403 1626 82 
18 515 1380 1409 1674 78 
19 593 1388 1480 1667 80 
20 711 1234 1381 1699 83 
21 536 717 1230 1397 85 
22 526 725 1253 1395 83 
23 495 705 1355 1398 81 
24 726 1282 1381 1692 83 
25 532 1350 1435 1676 79 
26 523 1368 1418 1671 85 
27 717 1290 1389 1668 80 
28 717 1276 1405 1721 82 
29 713 1289 1393 1658 78 
30 528 1337 1386 1628 81 
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Figure 3.5: Six averaged spectral positions of the winning chromosomes 

 

Table 3.3: A statistical comparison between the class separability of band 

combinations selected by the genetic algorithm and the class separability of 

band combinations selected by chance (please see Table 3.1 for the class 

information): (a) genetic search results; (b) random search results; and (c) p-

values 

(a) 
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1                 

2 2.00                

3 2.00 2.00               

4 1.99 1.74 2.00              

5 1.98 2.00 2.00 1.87             

6 2.00 2.00 2.00 2.00 1.84            

7 1.98 2.00 2.00 1.98 2.00 2.00           

8 2.00 1.95 2.00 1.90 2.00 2.00 1.99          

9 2.00 2.00 2.00 2.00 2.00 1.99 2.00 2.00         

10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00        

11 2.00 1.97 2.00 1.87 1.95 2.00 1.97 1.99 2.00 2.00       

12 2.00 2.00 1.99 2.00 2.00 1.99 2.00 2.00 2.00 2.00 2.00      

13 1.97 2.00 1.94 2.00 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00     

14 1.99 2.00 1.96 2.00 1.97 1.96 2.00 2.00 2.00 2.00 2.00 1.98 1.97    

15 1.98 2.00 2.00 1.99 1.82 1.97 2.00 2.00 2.00 2.00 1.98 2.00 1.97 1.98   

16 1.91 2.00 2.00 1.96 1.99 2.00 1.98 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.98  
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(b) 
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1                 

2 1.99                

3 1.84 2.00               

4 1.89 1.41 1.98              

5 1.73 1.98 1.97 1.77             

6 1.56 1.99 1.91 1.95 1.59            

7 1.88 1.86 1.99 1.55 1.64 1.88           

8 1.99 1.64 2.00 1.73 1.98 1.98 1.88          

9 1.96 1.99 1.98 1.96 1.95 1.92 1.98 1.97         

10 1.95 2.00 1.95 1.99 1.98 1.98 1.98 2.00 1.94        

11 1.81 1.97 1.97 1.68 1.67 1.92 1.67 1.98 1.95 1.96       

12 1.82 1.98 1.95 1.91 1.90 1.82 1.88 1.97 1.92 1.92 1.86      

13 1.75 2.00 1.22 1.98 1.97 1.83 1.99 2.00 1.97 1.94 1.96 1.96     

14 1.51 1.99 1.68 1.97 1.79 1.46 1.93 2.00 1.94 1.91 1.93 1.81 1.55    

15 1.79 2.00 1.98 1.94 1.75 1.77 1.97 2.00 1.93 1.99 1.81 1.86 1.96 1.82   

16 1.58 1.82 1.95 1.36 1.47 1.78 1.38 1.90 1.97 1.97 1.51 1.77 1.94 1.83 1.77  

 
(c) 

3.3.4 Testing the key hypothesis 

The key hypothesis of this study was tested to see whether the results of 
band selection carried out by GA were meaningful (i.e., maintaining 
spectral separability between mangroves). Specifically, the results of GA 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1                 

2 0.01                

3 0.00 0.11               

4 0.00 0.00 0.05              

5 0.00 0.03 0.03 0.02             

6 0.00 0.06 0.00 0.02 0.00            

7 0.00 0.00 0.02 0.00 0.00 0.00           

8 0.06 0.00 0.16 0.00 0.12 0.13 0.01          

9 0.00 0.07 0.03 0.05 0.05 0.01 0.10 0.04         

10 0.04 0.10 0.04 0.06 0.08 0.02 0.10 0.15 0.01        

11 0.00 0.50 0.03 0.00 0.00 0.00 0.00 0.06 0.02 0.06       

12 0.00 0.09 0.02 0.04 0.02 0.00 0.01 0.14 0.00 0.01 0.01      

13 0.00 0.07 0.00 0.05 0.03 0.00 0.04 0.08 0.10 0.02 0.02 0.04     

14 0.00 0.11 0.00 0.02 0.00 0.00 0.02 0.13 0.00 0.02 0.00 0.00 0.00    

15 0.00 0.03 0.02 0.01 0.12 0.00 0.01 0.03 0.01 0.12 0.00 0.00 0.22 0.00   

16 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.00 0.00  
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were statistically compared against the results of random selection using 
t-tests. The Jeffries-Matusita (J-M) distance was chosen as an evaluation 
tool. For each of the 30 winning chromosomes in Table 3.2, its 4 
encapsulated spectral bands were used for calculating J-M distances 
between all mangrove classes. The averaged J-M distances of the 30 
winning chromosomes were demonstrated in Table 3.3a. Next, the J-M 
distances were calculated for 30 sets of randomly generated band 
combinations, and their averaged J-M distances were reported in Table 
3.3b. Subsequently, the t-test results between the two cases were 
demonstrated in Table 3.3c in terms of p-values. It was clear that the 
class separability of band combinations selected by the genetic algorithm 
was significantly higher than the class separability of randomly selected 
band combinations with a 95% level of confidence (α=0.05), as most of 
the p-values (94/120 ≈ 78%) in Table 3.3c were < 0.05. 

3.4 Discussion & Conclusion 

In this study, a form of GA-based band selectors was challenged to select 
spectral subsets of very high-dimensional, species-level data. Unlike the 
broad-level data (i.e., Anderson’s level I or II (Anderson et al., 1976)) 
used in the existing studies (Lofy and Sklansky, 2001; Kavzoglu and 
Mather, 2002; Yu et al., 2002; Ulfarsson et al., 2003), spectral profiles of 
the species-level data were very similar. In other words, spectral profiles 
of one species were overlapped with the others at most wavelengths 
(Figure 3.6). The results in Table 3.2 and Figure 3.3 demonstrated that 
the GA-based band selector overcame such spectral similarity of the 
species-level data. The band selector was able to select spectral subsets 
that maintained class separability at an acceptable level (i.e., ≈ an 80% 
level of classification accuracy). 
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Figure 3.6: (a) A min-max plot between A. alba (black line) and R. apiculata 

(grey line) and (b) A min-max plot between R. apiculata (black line) and R. 

mucronata (grey line)  

 
Additionally, the results of hypothesis testing in Table 3.3 also confirmed 
that band selection carried out by the GA-based band selector was 
significantly better than by random selection. By majority, spectral 
separability between 16 mangrove species when the spectral bands were 
selected by chance was significantly lower than when the spectral bands 
were selected by the GA-based band selector (i.e., with a 95% level of 
confidence). 
 
The success of the GA-based band selector can be explained by the 
chosen spectral locations (Figure 3.5), as each location directly relates to 
principal physico-chemical properties of plants that helps distinguish 
between the species. The details of the relationships between these 
spectral locations and plants can be found in the literature (Elvidge, 
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1987; Himmelsbach et al., 1988; Curran, 1989; Elvidge, 1990; Menon 
and Neelakantan, 1992; Tomlinson, 1994; Basak et al., 1996; Kumar et 
al., 2001; Williams and Norris, 2001; Das et al., 2002). In brief, the band 
selected from the visible area is needed for discriminating between 
mangroves that possessed different leaf pigments. The band on the red-
edge slope is useful for separating mangrove species that contain 
different internal leaf structure and water. Similar to the red edge band, 
the near-infrared band helps sort different plants according to the 
dissimilarity of their leaf internal structure such as the size of 
intercellular volume. Finally, the spectral information of the mid-infrared 
region (i.e., the infrared slope, the mid-infrared absorption pitch, and the 
mid-infrared peak) is essential for dissolving the internal structure 
variables and foliar biochemical contents other than the leaf pigments. 
 
The reader may note that the form of GA and its parameters used in this 
study are not the only options available. To tackle the problem at hand, it 
is also possible to alter, for example, the encoding scheme, fitness 
criterion, population size, crossover rate, and mutation rate. Even though 
the alteration may affect the evolution, it is expected that the robustness 
of the evolutionary search could still produce a similar outcome (see 
“freedom of choice” in Goldberg, (1989), page 80). In other words, GA 
is likely to find meaningful spectral bands that possess high spectral 
separability despite the alteration. It is, however, beyond the scope of this 
study to compare different designs of GA and the use of different search 
parameters. 
 
The optimism gains from the results of this laboratory-level study (i.e., 
using laboratory spectra) encourages further investigation into the 
potential of the GA-based band selector for vegetation discrimination 
when hyperspectral images taken by airborne or satellite sensors are 
used. Furthermore, it is also anticipated that the use of the GA-based 
band selector is not limited to the application for vegetation 
discrimination. The GA-based band selector is now being tested by the 
author to detect spectral bands that show strong vegetation responses to 
different physico-chemical treatments (e.g., nitrogen, illumination) in 
both laboratory and field scenarios.  It is hoped that the GA-based band 
selector could be used as an alternative to traditional methods such as 
statistical and derivative analyses that are normally used for detecting 
vegetation responses to external influences (Tsai and Philpot, 1998; 
Mutanga et al., 2003). 
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In conclusion, this study strengthens the confidence when using GA as 
band selection tools. The results confirm that the GA-based band selector 
is able to cope with spectral similarity at the species level. It selects 
spectral bands that related to principal physico-chemical properties of 
plants, and, simultaneously, maintains the separability between species 
classes at a high level. Additionally, the application of the GA-based 
band selector other than vegetation discrimination such as the 
investigation into vegetation spectra in response to different physico-
chemical treatments is also anticipated. 
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Chapter 4* 
 

Spectral Smoothing 
 

                                                 
* Vaiphasa, C. (in press). Consideration of Smoothing Techniques for Hyperspectral 
Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing. 
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Abstract 

Spectral smoothing filters are popularly used in a large number of 
modern hyperspectral remote sensing studies for removing noise from the 
data. However, most of these studies use subjective ad hoc measures for 
selecting filter types and their parameters. We argue that this 
subjectively-minded approach is not appropriate for choosing smoothing 
methods for hyperspectral applications. In our case study, it is proved 
that smoothing filters can cause undesirable changes to statistical 
characteristics of the spectral data, thereby affecting the results of the 
analyses that are based on statistical class models. If preserving statistical 
properties of the original hyperspectral data is desired, smoothing filters 
should then be used, if necessary, after careful consideration of which 
smoothing techniques will minimize disturbances to the statistical 
properties of the original data. A comparative t-test is proposed as 
choosing a smoothing filter for hyperspectral data at hand. 
 
Keywords: aggregation; convolution; hyperspectral; Savitzky-Golay; 
spectral smoothing 
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4.1 Introduction 

One of the most important problems when using hyperspectral sensors is 
noise levels. Each narrow-band spectral recorder of the hyperspectral 
sensor captures small amount of energy that is sometimes undermined by 
the self-generated noise inside the sensors. This problem is particularly 
obvious at long wavelength regions (e.g., short-wave infrared). 
Moreover, physical disturbances such as the fluctuation of light 
illumination and atmospheric states could further reduce the quality of 
the spectral signal recorded by the sensors (Oppenheim and Schafer, 
1975; Landgrebe, 1997; Lyon, 2004). It is a common practice that ad hoc 
spectral smoothing techniques are used for solving such problem of high 
noise levels (Chen et al., 2001; Ben-Dor et al., 2002; Andréfouët et al., 
2003; Vaughan et al., 2003; Rees et al., 2004; Smith et al., 2004; 
Thenkabail et al., 2004; Whiting et al., 2004; Zhang et al., 2004; Wu et 
al., 2005). 
 
Nevertheless, smoothing methods cause changes to the original spectral 
data that could lead to incorrect results in subsequent analyses (Savitzky 
and Golay, 1964; Kawata and Minami, 1984; Tsai and Philpot, 1998; 
Gong et al., 2001; Schmidt and Skidmore, 2004).  For example, image 
processing of remotely sensed imagery for accurate plant biophysical 
studies (Bruce and Li, 2001; Zarco-Tejada et al., 2001; Imanishi et al., 
2004; le Maire et al., 2004; Meroni et al., 2004) and vegetation 
discrimination and classification (Tsai and Philpot, 2002; Hochberg and 
Atkinson, 2003; Foody et al., 2004; Schmidt et al., 2004) are dependent 
upon statistical estimates of spectral data that is often dampened by 
smoothing filters (Figure 4.1). Instead of ad hoc methods, a more 
objectively-minded approach should be used for selecting the right 
smoothing method for a particular hyperspectral application so as to 
minimize the disturbance to the original spectral data.  
 
As a result, there are two major goals in this study. First, this study 
intends to demonstrate the effects of smoothing techniques on the 
statistical properties of the spectral response. Second, as a replacement 
for ad hoc measures, the study suggests the use of one statistical test (a 
pair t-test) as a tool for realising the trade-off between the choice of 
smoothing methods and their effects on statistical properties of the 
original data. A real example of plant reflectance responses is used for 
supporting the argument of this study. 
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Figure 4.1: (a) An average spectral profile of plants before smoothing; (b) An 

average spectral profile after smoothing; and (c) A scatter plot of the two 

principal wavelengths (550 nm and 700 nm) before (triangle) and after (square) 

smoothing 

4.2 Methods 

4.2.1 Smoothing techniques 

In the field of digital signal processing, the definition of a spectrum so(λ) 
observed by a spectrometer is given by the sum of the true signal of the 
spectrum st(λ) and the noise n(λ): 
 
so(λ) = st(λ) + n(λ) [Eq.1] 

 
Please note that λ indicates a wavelength. Thus, the definition of spectral 
smoothing is the estimation of st(λ) from the observed spectrum so(λ). An 
estimate ŝt(λ) can be calculated by the convolution of the observed 
spectrum so(λ) with a weighting function (i.e., smoothing filter) g(λ) 
chosen by the practitioner: 

 
ŝt(λ) = so(λ) * g(λ) [Eq.2] 
 
The operator * denotes convolution integral (Oppenheim and Schafer, 
1975; Lyon, 2004). There are many types of smoothing filters g(λ) 
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adopted by remote sensing practitioners for hyperspectral applications 
including linear and non-linear methods (Savitzky and Golay, 1964; 
Kawata and Minami, 1984; Tsai and Philpot, 1998; Foody et al., 2004; 
Schmidt and Skidmore, 2004). The most popularly used ones are moving 
average and Savitzky-Golay filters. As a result, both of them are selected 
for this study. 

4.2.1.1 Moving average 

The moving average method for smoothing is well-known and has been 
called by different names, for example, running mean, mean average 
filter, etc. The concept of the moving average filter is simple as it takes 
the mean spectral value of all points within the specified window (i.e., 
filter size) as the new value of the middle point of the window (Tsai and 
Philpot, 1998). The method is solely based on linear calculations and has 
one key parameter, the filter size. 

4.2.1.2 Savitzky-Golay 

The concept of this method is based on simple polynomial least-square 
calculations. However, instead of fitting a least-square curve to the total 
length of spectrum at once, the method fits the spectral data piece-by-
piece with the size equal to a user-defined value (i.e., filter size) by using 
a special form of matrix calculations (Savitzky and Golay, 1964; Steinier 
et al., 1972; Madden, 1978). This method requires two key parameters: 
the filter size and the degree of polynomial orders. 

4.2.2 Hyperspectral data collection 

The data used for testing the key hypothesis of this study are laboratory 
spectra of mangrove leaves. The data were recorded from the leaves of 
16 tropical mangrove species listed in Table 4.1. The leaves were 
collected using a line-transect method from mangrove trees (higher than 
2.5 m) in the natural mangrove forest of Ao Sawi (Sawi Bay), Chumporn, 
the south of Thailand (10º 15’N, 99º 7’E) on February, 6, 2001. There 
were ten transects randomly placed throughout the area so as to collect 
tree samples from pioneer, intermediate, and upper zones. Species 
identification was carried out by the staffs of Royal Thai Forestry 
Department; taxonomy follows Tomlinson (1994) and Teeratanatorn 
(2000). 
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Table 4.1: Thirty reflectance curves were recorded per each mangrove species 

listed below. 

Mangrove species 
1. Avicennia alba 

2. Acrostichum aureum 

3. Bruguiera cylindrica 

4. Bruguiera gymnorrhiza

5. Bruguiera parviflora 

6. Ceriops tagal 

7. Excoecaria agallocha 

8. Heritiera littoralis 

9. Lumnitzera littorea 

10. Lumnitzera racemosa 

11. Nypa fruticans 

12. Pluchea indica 

13. Rhizophora apiculata 

14. Rhizophora mucronata 

15. Sonneratia ovata 

16. Xylocarpus granatum 

 
The leaves were randomly broken up into 30 piles per mangrove species. 
Each pile is about the same size (20-30 leaves). Each pile of leaves (top 
side up) was then placed on top of a black metal plate until the 
background could not be seen. We recorded spectral responses of each 
plate for 20 times. Each plate was rotated 45º horizontally after every 
fifth record so as to compensate for the bi-directional reflectance 
distribution function (BRDF). Next, the 20 records were averaged to 
create a radiance curve. Then, the radiance was converted to a reflectance 
curve by using a spectralon reference panel, as well as the correction of 
the spectrometer internal current (dark current). The abovementioned 
steps were repeated for all the leaf plates. Finally, we have 30 reflectance 
curves per each mangrove species (Table 4.1). 
 
The whole operation was conducted using the FieldSpec Pro FR 
spectroradiometer (Analytical Spectral Device, Inc.) under a laboratory 
condition (i.e., dark room, 25ºC) in order to avoid ambient light sources 
unrelated to the true spectral signal of the leaves. The instrument was 
equipped with three spectrometers (i.e., VNIR, SWIR1, and SWIR2), 
covering 350 nm to 2500 nm (2151 bands in total), with sampling 
intervals of 1.4 nm between 350 nm and 1000 nm, and 2 nm between 
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1000 nm and 2500 nm. The spectral resolution of the spectrometers was 
3 nm for the wavelength interval 350 nm to 1000 nm, and 10 nm for the 
wavelength interval 1000 nm to 2500 nm. The sensor, equipped with a 
field of view of 25°, was mounted on a tripod and positioned 0.5 m above 
the leaf plate at the nadir position. A halogen lamp fixed at the same 
position was used to illuminate the sample plate. 

4.2.3 Experimental use of smoothing filters 

4.2.3.1 Statistical comparisons 

We smoothed all the leaf spectra of the mangrove species listed in Table 
4.1 (N=480 spectra in total) by using two different types of smoothing 
filters: (i) the moving average, and (ii) 2nd order Savitzky-Golay. Filter 
sizes in use were exhaustively varied between 7 and 51 with the 
increment of 2 (i.e., i = 7, 9, 11,…, 51) for each filter type. Then, we 
statistically compared the smoothed data against the original spectral data 
by using pair t-tests for all the filters. The test was thoroughly conducted 
at every spectral location between 400 nm and 2400 nm. In other words, 
for each filter, Ho: µs(λ)-µo(λ) = 0 and Ha: µs(λ)-µo(λ) ≠ 0 where µs(λ) is 
the mean of smoothed spectra at λ nm wavelength (λ = 400,…,2400 nm) 
and µo(λ) is the mean of original spectra at the same wavelength. 

4.2.3.2 Spectral separability analysis 

The square of Jeffries-Matusita (J-M) distance analysis was used to 
quantify the effect of smoothing. The calculation of the J-M distance in 
this study was based on the following equation (Eq.3) (Richards, 1993). 
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Note:  i and j are the spectral responses of two classes being compared. C 
is the covariance matrix of the spectral response. μ is the mean vector of 
the spectral response. ln is the natural logarithm function. T is the 
transposition function. |C| is the determinant of C. 
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The J-M distance index was used for quantifying spectral separability 
between two very similar mangrove classes, R. apiculata and R. 

mucronata, to see whether smoothing reduced the separability between 
the two classes. Due to “the curse of dimensionality” (Bellman, 1961; 
Hughes, 1968; Fukunaga, 1990), a subset of the whole range of all 
spectral bands had to be chosen prior to the separability analysis. Thus, 
spectral bands used for calculating the J-M distance were: 513 nm, 717 
nm, 1263 nm, 1385 nm, 1489 nm, and 1669 nm. These principal spectral 
locations were selected by a feature selection algorithm (please see 
further details of the algorithm in Siedlecki and Sklansky, 1989; 
Kavzoglu and Mather, 2002; Yu et al., 2002; Vaiphasa, 2003). 

4.3 Results 

Each small plot in Figure 4.2 demonstrates the p-values of the 
comparative t-tests between smoothed and original data for all spectral 
locations between 400 nm and 2400 nm. In brief, if a p-value at a 
particular spectral location was as low as 0.01, it demonstrated that the 
smoothed data were statistically different from the original spectral 
response with 99% confidence. This illustrated that the original spectra 
were significantly disturbed by the chosen smoothing method. For 
example, the 2nd order Savitzky-Golay filter at size 11 resulted in 560 
statistically-disturbed bands (Np<0.01=560). Additionally, original and 
smoothed spectral curves of Avicennia alba were also included in the 
figure so as to illustrate the smoothing effect of each filter. 
 
It is important to note that, even if we had exhaustively done the t-test for 
2 filter types with sizes between 7 and 51, we only illustrated in Figure 
4.2 the results of the 2 filters at 3 different sizes, including 11, 31, and 51 
for the purpose of brevity. Instead, the results of the exhaustive 
experiment for all filter types and sizes were summarized in Figure 4.3. 
The plot demonstrated the number of statistically different spectral 
locations with 99% confidence (Np<0.01) per filter size. Overall, it was 
found that the moving average filters statistically disturbed the original 
spectral response more than the Savitzky-Golay filters. In the case of the 
moving average filters, the number of statistically different locations 
steadily increased from 1000 to 1526. In contrast, the number of 
statistically different locations of the Savitzky-Golay filters increased 
from 606 to 1153. The general trends in Figure 4.3 of both filter types 
indicated that bigger filter sizes resulted in higher statistical disturbances 
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even if there were some exceptions in the trend of the Savitzky-Golay 
filters where local minima were noticeable. 
 
The reader may note that, even if the number of spectral bands that had 
p-values less than 0.01 (Np<0.01) were recorded for every filter, the p-
value level at 0.01 were not used as a critical value α for accepting or 
rejecting the outcome of one individual filter. Instead, the Np<0.01 was 
only used for the purpose of comparisons between the influences of 
smoothing filters on the spectral mean. In the case that the reader wish to 
make a decision to accept or reject the smoothing results of one 
individual filter on the basis of the reported p-values alone, the reader has 
to adjust α to the effect of “multiplicity” (i.e., increasing chance of 
having Type I error as the number of tests grows) (Rothman, 1990; Hsu, 
1996; Perneger, 1998; Feise, 2002). Nevertheless, such consideration of 
one individual filter was not the intension of this study. 
 
Finally, the results of the separability analysis between the two mangrove 
classes (R. apiculata and R. mucronata) were demonstrated in Table 4.2. 
It was found that none of the J-M distance indices of the smoothed data 
was higher than the J-M distance index of the original data. In other 
words, spectral smoothing reduced the separability between the two 
mangrove classes. Additionally, the results in Table 4.2 also reflected the 
trends in Figure 4.3. The separability index reduced while the filter size 
increased. 
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(b)

Figure 4.2: The effect of smoothing filters on the mean of the leaf-level 

spectral data of 16 mangrove species: (a) moving average filters; and (b) 2nd 

order Savitzky-Golay filters.
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Figure 4.3: The number of statistically disturbed locations caused by the 

moving average and Savitzky-Golay filters 

 

Table 4.2: Comparisons between the J-M distances of two very similar 

mangrove classes, R. apiculata and R. mucronata, before and after smoothing 

Filter Type Filter Size J-M distance 
11 1.9311 
31 1.9254 Moving Average 
51 1.9163 
11 1.9314 
31 1.9307 

2nd order 
Savitzky-Golay 

51 1.9284 
Original data n/a 1.9315 

4.4 Discussion & Conclusion 

Our case study demonstrates that the effects of smoothing on the 
statistical estimate of spectral data are possible to affect negatively the 
outcome of the subsequent analyses that utilize statistical characteristics 
of the spectral data. In other words, spectral smoothing does not always 
enhance the data but make the classes of interest (e.g., R. apiculata and 
R. mucronata) more difficult to separate in the spectral feature space. 
This problem is evident in Table 4.2, as smoothing filters reduce 
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separability between the two mangrove classes, R. apiculata and R. 

mucronata. This argument may also be true for the following spectral 
discrimination and classification studies that used ad hoc measures for 
selecting smoothing filters without preserving statistical properties of the 
original data (Gong et al., 2001; Andréfouët et al., 2003; Hochberg and 
Atkinson, 2003; Schmidt and Skidmore, 2003; Vaughan et al., 2003; 
Yamano et al., 2003; Castro-Esau et al., 2004; Foody et al., 2004; Rees et 
al., 2004; Schmidt et al., 2004; Thenkabail et al., 2004). 
 
An instructive example of how to use the t-test method for choosing 
smoothing filters is described as follows. In Figure 4.2, if an ad hoc 
criterion is used, a practitioner who is challenged to smooth the spectral 
profile of A. alba might face a dilemma to choose between the size-31 
moving average filter and the size-51 Savitzky-Golay filter so as to 
remove the noise in the mid-infrared region of the spectrum (i.e., ≈1900–
2400 nm) as well as try not to over-smooth the data. In contrast, when the 
t-test is applied, its results (Figure 4.2) persuade the practitioner to select 
the size-51 Savitzky-Golay filter. This is because the size-51 Savitzky-
Golay filter does not disturb as many spectral bands as the size-31 
moving average filter (i.e., the Np<0.01 of the size-51 Savitzky-Golay filter 
is 1153 while the Np<0.01 of the size-31 moving average filter is 1458) 
even if both filters have similar smoothing effects on the mid-infrared 
region of the spectrum. 
 
Even though our case study is based on the use of two most-popular 
filters (moving average and Savitzky-Golay), the t-test method is a 
universal method that can be used for choosing smoothing filters other 
than the moving average and Savitzky-Golay.  Moreover, this t-test 
method is not limited to the application for smoothing vegetation spectra. 
It could be used in other case studies, for example, in selecting 
appropriate smoothing filters for mineral spectra. However, the number 
of spectral samples required for t-statistics (e.g., N≈20 samples) is one 
obvious limitation of this method. 
 
In the continuing study, the notion of using statistical measures (e.g., the 
t-test) for constraining the selection of spectral smoothing could be 
expanded to a greater extent. Instead of using only the t-test that 
constrains the disturbance on the statistical mean, the F-test could also be 
integrated to limit the disturbance on the statistical variance. In addition, 
designing smoothing filters that preserve other properties of the original 
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spectral data such as signal strength (i.e., maximising signal-to-noise 
ratios) could also be an interesting topic for future research. Only a few 
pioneer studies have been found in this particular area (Kawata and 
Minami, 1984, Bruce and Li, 2001; Schmidt and Skidmore, 2004). 
 
In conclusion, hyperspectral smoothing should be used, if necessary, with 
objective justification of which smoothing technique causes minimal 
damages to the original data in terms of statistical differences. Therefore, 
we suggest a comparative t-test as a measure for choosing the right 
smoothing filter for the hyperspectral data at hand. 



 

 62 

 



 

 63 

 
 
 
 
 
 
 
 
 
 
 
 

Chapter 5* 
 

Ecological Data Integration 

                                                 
* Vaiphasa, C., Skidmore, A.K., de Boer, W.F. (accepted). A post-classifier for 
mangrove mapping using ecological data. ISPRS Journal of Photogrammetry and 
Remote Sensing. 
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Abstract 

A global decline in the extent of tropical mangrove forests is one of the 
most serious problems of the world’s coastal ecosystems. This problem 
results in an increasing demand for detailed mangrove maps at the 
species level for monitoring mangrove ecosystems and their diversity. 
Consequently, the goal of this research is to investigate, for the first time, 
the potential of exploiting mangrove-environment relationships for 
improving the quality of the final mangrove map at the species level. The 
relationships between mangroves and the surrounding environmental 
gradient were incorporated into the mapping process via a typical 
Bayesian probability model. The Bayesian model functioned as a post-
classifier to improve the quality of an already-produced mangrove map. 
The environmental gradient in use was a GIS layer of soil pH data. 
Despite the remaining confusion between R. mucronata and S. 
caseolaris, the extra investment in collecting the soil pH data paid off. 
The addition of the soil pH data into the post-classification model helped 
increase the mapping accuracy from 76.0 % to 88.2%. It is therefore 
anticipated that the methodology presented in this study can be used as 
guidelines for producing mangrove maps at a finer level. 
 
Keywords: classification; expert system; multispectral; remote sensing; 
vegetation 
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5.1 Introduction 

Mangroves colonize tropical and subtropical regions of the world where 
physico-chemical conditions of the surrounding environment, namely 
temperature, rainfall, tidal frequency, sedimentation process, freshwater 
availability, wave and storm shelters, and soil chemistry are suitable for 
their growth. In addition, such biological conditions as herbivore 
disturbance, growth competition, and propagule dispersion are also 
critical factors that determine their survival (Lugo and Snedaker 1974; 
Hogarth, 1999; Manson et al., 2003).  
 
The existence of mangrove communities benefits the surrounding 
ecosystem in many ways. For example, they help protect coastal 
environments from wave and storm surges, maintain coastal water 
quality, support estuarine food chains, and provide nursery habitats for 
invertebrates and juvenile fish (Linneweber and de Lacerda, 2002; 
Manson et al., 2003). 
 
Mangroves forests at large are currently under pressure from 
anthropogenic activities (e.g., aquaculture, agriculture, urbanization) 
(Barbier and Sathiratai, 2004). Such activities lead to the alterations of 
sedimentation rates, freshwater runoff and tidal inundation patterns that 
subsequently affect the distribution of mangroves (Hogarth, 1999; 
Linneweber and de Lacerda, 2002). To understand the dynamics of 
mangrove ecosystems better, detailed assessment of mangrove 
distribution is required. To date, remote sensing is the only technique that 
can be used for assessing mangrove change over large areas and that can 
provide this spatial insight on a repetitive basis (Ramsey III and Jensen, 
1996; Green et al., 2000; Ramsey III et al., 2005). 
 
Even though multispectral remote sensing is popularly used at the 
operational level for mapping mangroves, the information provided by 
the multispectral sensors is not enough for studying mangrove 
ecosystems and their diversity owing to the lack of spatial and spectral 
details (Aschbacher et al., 1995; Ramsey III and Jensen, 1996; Gao, 
1999; Green et al., 2000; Sulong et al., 2002; Verheyden et al., 2002; 
Demuro and Chisholm, 2003; Held et al., 2003). Advanced remote 
sensing applications are therefore required to serve such demands. The 
use of ancillary data for vegetation mapping is a prospective candidate 
(Skidmore et al., 1997a, 1997b; Lehmann and Lenz, 1998; Berberoglu et 
al., 2004; Comber et al., 2004; Schmidt et al., 2004). In general, ancillary 
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data are extracted from the relationships between plants and their 
environment, and then incorporated with remotely sensed data into the 
mapping model in order to improve the quality of the final map 
(Lillesand and Kiefer, 2000). Artificial neural networks (Skidmore et al., 
1997a; Lehmann and Lenz, 1998; Berberoglu et al., 2004) and expert 
systems (Skidmore et al., 1997b; Comber et al., 2004; Schmidt et al., 
2004) are the two most frequently-used mapping models.  
 
Due to the strong relationships between mangroves and the surrounding 
environment (Macnae, 1968; Clough, 1982; Semeniuk, 1983; Tomlinson, 
1994; Hogarth, 1999), it is normally found that mangrove species occur 
in a sequencing order. This particular characteristic of mangroves is 
termed “mangrove zonation.” (Tomlinson, 1994; Hogarth, 1999; 
Vilarrubia, 2000; Satyanarayana et al., 2002). Thus, we hypothesise that 
these quantifiable spatial relationships between mangroves and their 
environment can be exploited for mangrove mapping at a finer level 
(e.g., species level). 
 
Consequently, this study investigates yet another unexplored potential of 
remote sensing for mangrove mapping. The aim of this study is to test the 
possibility of integrating ecological data into the mapping model in order 
to map mangroves at the species level by using a well-established 
Bayesian expert system (Skidmore et al., 2001; Schmidt et al., 2004). 
Specifically, the expert system is used as a post-classifier for improving 
the quality of an already-produced mangrove map. The results before and 
after applying the post-classifier are statistically compared to see whether 
there is any improvement in the mapping accuracy. 

5.2 Methods 

5.2.1 Study site 

The study site is located at Cape Talumpuk, Pak Phanang, Nakorn Sri 
Thammarat, Thailand (8º 31’N, 100º 9’E). A satellite photo of the cape is 
illustrated in Figure 5.1.  A white narrow edge along the eastern end of 
the cape is an extended sand beach, while the majority of the area on the 
western side is extensively covered by a 56.8 km2 dense mangrove forest. 
There are seven dominant mangrove species: Avicennia alba, Avicennia 

marina, Avicennia officinalis, Bruguiera parviflora, Rhizophora 

apiculata, Rhizophora mucronata, and Sonneratia caseolaris. The most 
prominent species is R. apiculata. This species covers approximately one 
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third of the cape. In most cases, each species possesses an almost 
homogeneous stand of its own community. The morphological 
characteristics of the area are dominated by a long process of 
sedimentation from the river at the south end of the cape, as well as by 
the tidal influence from the east and north. The area is under the 
influence of a tropical climate with two seasons in a year. The dry period 
is between February and April, and the rest of the year is dominated by 
monsoons (Teeratanatorn, 2000). 
 

 
Figure 5.1: The location of the study area, Cape Talumpuk, Pak Phanang, 

Nakorn Sri Thammarat, Thailand (8º 31’N, 100º 9’E) 
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5.2.2 Field survey 

5.2.2.1 Ecological data collection 

In this study, soil pH was selected as input ancillary data for the post-
classifier (§ 5.2.4.). The soil pH was chosen because it is an important 
environmental gradient that possesses strong relationships with the 
spatial distribution of tropical mangrove species (Macnae, 1968; Clough, 
1982; Semeniuk, 1983; Hogarth, 1999; Tomlinson, 1994).  In other 
words, a mangrove species is likely to be found in the area where the pH 
level is suitable for its growth. For example, Avicennia officinalis is less 
abundant in acidic conditions (i.e., pH < 7.0) than Rhizophora apiculata. 
 
The field campaign for soil sampling was carried out in March, 2004 (dry 
season). The distribution of 200 soil sampling stations is shown in Figure 
5.2.  A stratified random sampling method was used for selecting these 
200 locations with two conditions in mind: (i) the sampling locations 
have to be evenly-distributed throughout the cape; and (ii) the sampling 
locations must contain as various mangrove species as possible.  Both an 
image generated by unsupervised classification and an existing 
vegetation map were used as stratification constraints. Good data 
distribution over the study area was the key requirement for point-data 
interpolation in the following section (§ 5.2.3.1.). 
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Figure 5.2: Two hundred soil sampling stations: 150 plots for interpolation (�) 

and 50 plots for validation (V) 

 
A 500-cm3 soil sample was collected at the centre of each sampling 
station at 15 cm depth beneath the ground level. Then, all the soil 
samples were sent to the soil laboratory at the faculty of agricultural 
technology, King Mongkut’s Institute of Technology Ladkrabang 
(KMITL), Bangkok for further analyses of soil pH. All the samples were 
air-dried and sieved. Then, a glass-electrode pH meter was used for 
measuring the samples (McLean, 1982). 
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Even though using dried soil samples instead of fresh soil samples is not 
an ideal practice (Ahern et al., 2004), it was necessary because of the 
hostile conditions of the mangrove forest (i.e., too difficult to perform in 

situ analyses). Therefore, one should note the differences of soil pH 
values between dried and fresh samples that could affect the outcome of 
the study. Nevertheless, based on the assumption that there are strong 
correlations between the two sample types, the differences of soil pH 
values between dried and fresh samples are expected to have little effect 
on the outcome of the study. This is because the absolute values of soil 
pH have not been used in our mapping model (i.e., Eq.1), but they were 
transformed and used in a relative fashion instead (see the probability 
values in the expert table (Table 5.2)). Thus, either when dried or fresh 
samples are used, the relative probability values in the expert table are 
expected to be similar as both dried and fresh soil pH values are 
correlated. 

5.2.2.2 Mangrove sampling 

523 sampling stations were set up for mangrove sampling. The size of 
each sampling station was 15x15 m2. Similar to soil sampling, a stratified 
random sampling method was used for selecting the locations of the 
sampling stations. Both an image generated by unsupervised 
classification and an existing vegetation map were used as stratification 
constraints. The stratified random sampling was chosen to make sure that 
the stations are evenly distributed through out the mangrove zones (i.e., 
pioneer, landward, and upper zones). For the sake of brevity, the 
locations of 523 sampling stations are not graphically shown in this 
thesis. 
 
The field campaign for mangrove sampling was carried out during the 
wet season between October, 2003, and January, 2004. Mangrove species 
composition of all trees (i.e., ≥ 2.5 m high) was recorded from each 
sampling station. The floristic parameters recorded were the species 
name, tree height, diameter at breast height, crown cover area, and DGPS 
coordinates in the UTM system. It was found that each station comprised 
an almost pure vegetation stand (i.e., dominated by one mangrove species 
only). As a result, the floristic composition of each sampling station was 
classified into one of the seven available species (A. alba, A. marina A. 
officinalis, B. parviflora, R. apiculata, R. mucronata, or S. caseolaris). 
Species identification was under the supervision of the staffs of Royal 
Thai Forestry Department; taxonomy follows Tomlinson (1994) and 
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Teeratanatorn (2000). Then, the plots were randomly split into two 
groups for the purpose of image classification and validation (Table 5.1). 
 
Table 5.1: Mangrove samples and their coded names used for image 

classification 

Vegetation Types Training samples Testing samples 
Avicennia alba (AA) 19 20 
Avicennia marina (AM) 28 29 
Avicennia officinalis (AO) 39 39 
Bruguiera parviflora (BP) 27 27 
Rhizophora apiculata (RA) 69 70 
Rhizophora mucronata (RM) 45 45 
Sonneratia caseolaris (SC) 33 33 
Total 260 263 

5.2.3 Input data for the post-classifier 

5.2.3.1 Soil pH interpolation 

The post-classifier in use required input ancillary data (i.e., soil pH) in a 
format of a GIS map. In this study, geo-statistical interpolation was used 
for producing the soil pH map. The reliability of geo-statistical 
interpolation is well-known among soil scientists (Burgess and Webster, 
1980; Gajem et al., 1981; Yost et al., 1982; Samra et al., 1988; Yates et 
al. 1988; Ardahanlioglu et al., 2003). 
 
Prior to the interpolation, the soil pH data were thoroughly checked for 
outliers, but none was found. Next, directional semi-variograms were 
used to check for any sign of directional anisotropy, but it turned out that 
the distribution of the soil pH data was isotopic. Then, all 200 data points 
were separated into two groups, the interpolation and validation sets. The 
distribution of both interpolation (150 points) and validation (50 points) 
points is shown in Figure 5.2. Then, the interpolation points were 
interpolated over the study area to create a GIS layer of soil pH. The 
interpolation method in use was an ordinary kriging method based on a 
spherical model. The point-data interpolation procedure of this study 
followed the guideline of Isaaks and Srivastava (1989) using commercial 
software (ILWIS v.3.0, ITC institute, the Netherlands). The interpolation 
result is demonstrated in Figure 5.3, and its variogram model can be 
found in Appendix III. Finally, a Root Mean Square (RMS) error of the 
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interpolation map was calculated using the validation points. It was found 
that the RMS error of the interpolation result was pH ±0.43. 

 
Figure 5.3: The interpolation map of soil pH using an ordinary kriging method 

5.2.3.2 Plant-environment relationships 

Relationships between soil pH and mangrove species are illustrated in 
Table 5.2 in terms of conditional probability values.  Each value in the 
table indicated the chance to find a particular environmental condition 
(e.g., a pH range) at an area where the mangrove species was known. 
Each column of the table was actually the normalised histogram of soil 
pH per each mangrove species (i.e., the sum of all elements in each 
column = 1.00). In this study, the mangrove-pH relationships derived 
from the 200 points of the soil pH data were used for the construction of 
Table 5.2. The construction of Table 5.2 was, however, not restricted to 
the use of empirical data collected from the field.  Subjective knowledge 
of mangrove experts could be used to replace (or improve) the values in 
the table if appropriate. Subsequently, Table 5.2 was termed “the expert 
table”. 
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Table 5.2: Mangrove-pH relationships in terms of conditional probability 

values (the expert table) 

pH AA AM AO BP RA RM SC 
6.20-6.39 0.00 0.00 0.00 0.00 0.26 0.50 0.10 
6.40-6.59 0.00 0.00 0.00 0.00 0.37 0.07 0.30 
6.60-6.79 0.10 0.00 0.00 0.00 0.11 0.00 0.00 
6.80-6.99 0.18 0.00 0.00 0.00 0.24 0.22 0.40 
7.00-7.19 0.27 0.00 0.00 0.12 0.02 0.00 0.20 
7.20-7.39 0.45 0.00 0.00 0.22 0.00 0.21 0.00 
7.40-7.59 0.00 0.40 0.00 0.44 0.00 0.00 0.00 
7.60-7.79 0.00 0.40 0.00 0.22 0.00 0.00 0.00 
7.80-7.99 0.00 0.20 1.00 0.00 0.00 0.00 0.00 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5.2.3.3 The classified image 

An already-classified satellite image was also required for the calculation 
of the post-classifier. In this study, the satellite image was originally 
taken by the ASTER instrument (Terra spacecraft) in the dry season on 
March, 6, 2002. After eliminating the off-nadir band, the 14-band 
satellite image was then corrected for radiometric and geographic 
distortion and resampled into a UTM coordinate system (zone 47 North) 
with a 15x15m2 pixel size. Subsequently, the image was classified using 
a maximum likelihood classifier (MLC). The classifier was trained using 
the mangrove species data of 260 training plots (Table 5.1). As a result, 
each pixel was assign to one of the seven dominant mangrove classes. 
The result of the MLC classification is demonstrated in Figure 5.4a with 
its confusion matrix (Table 5.3). 263 independent testing samples were 
used for the calculation of the confusion matrix. Additionally, the MLC 
did not only produce a classified image, but also seven rule maps 
containing convertible information of the Chi-square-based likelihood of 
all mangrove species. The MLC used in this study is a function in 
commercial software (ENVI v.3.6, RSI, Inc). 
 
The time difference between the acquisition of the image and the 
collection of soil samples should be noted even if the collection of both 
data was carried out in the same season (i.e., dry season) without any 
extreme weather condition reported in between. The time difference bars 
both data from being used in some applications that require a precise 
snapshot of what happens to the mangroves and soil pH conditions 
simultaneously. However, the drawback of the time difference is deemed 
to be of little significance to this study since this study exploited 
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mangrove-soil relationships in a relative sense. In other words, the soil 
pH data were not used for pinpointing an exact location of a mangrove 
species but for comparing relatively between the likelihood of seven 
different mangrove species. 
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Figure 5.4: A classification result when using MLC only (a) and a classification 

result when applying the post-classifier (b). Non-mangrove areas are shown in 

grey. 
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Table 5.3: Accuracy tables before applying the post-classifier (overall accuracy 

= 76.0%) 

Class AA AM AO BP RA RM SC Total 
AA 10 0 0 0 0 0 4 14 
AM 0 25 0 0 0 0 0 25 
AO 0 0 33 0 0 0 0 33 
BP 0 0 0 19 0 0 0 19 
RA 2 0 6 8 60 10 0 86 
RM 6 4 0 0 10 28 4 52 
SC 2 0 0 0 0 7 25 34 

Total 20 29 39 27 70 45 33 263 
 
Class Producer’s accuracy User’s accuracy 
AA 50.0 71.4 
AM 86.2 100.0 
AO 84.6 100.0 
BP 70.4 100.0 
RA 85.7 69.8 
RM 62.2 53.8 
SC 75.8 73.5 

5.2.4 The post-classifier 

The post-classifier in use is a computer programme in IDL language 
developed by the institute (ITC, Enschede, the Netherlands). It is being 
employed at the operational level for mapping salt marsh vegetation in 
the Netherlands (Skidmore et al., 2001; Schmidt et al., 2004).  The post-
classifier is designed as a pixel-based tool in which the post-classification 
process is carried out at one pixel at a time. The key mechanism of the 
post-classifier is Bayes’ Rule (Bayesian). B1, B2,…, Bn are independent 

events that are members of a sample space (S) and ∪
n

i

iB
1=

= S. Given a 

situation A and P(A) ≠ 0, the Bayes’ rule can then be illustrated in Eq. 1. 
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Each term of Eq. 1 can be elaborated as follows. 
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• P(Bj|A) is the output term of the equation. It describes the probability 
that a mangrove species (Bj) occurs when a soil pH condition (A) of 
the area is known. 

 
• P(A|Bj) describes the chance of finding a particular soil pH condition 

(A) at an area where the mangrove species (Bj) is known. Thus, 
P(A|Bj) can be looked up from the expert table (Table 5.2). 

 
• P(Bj) is a priori probability of occurrence of a mangrove species (Bj) 

at a certain location. In this study, P(Bj) is the Chi-square based 
probability value that is converted from the MLC rule map.  

 
• The dividing term of Eq. 1 is the sum of all possible cases (i.e., i=1, 

2,…, n) where n is the total number of mangrove species under study. 
In this study, the total number of species is 7 (i.e., n = 7). 

 
At each pixel of the already-classified image, the post-classifier 
repeatedly calculates the value of P(Bj|A) for every mangrove class (i.e., 
from j=1 to j=7). Then, all of the values are compared, and the pixel is 
finally re-labelled as the mangrove species that possesses the highest 
P(Bj|A) value. 

5.2.5 Statistical test 

In this study, a z-test based on KHAT or K statistics in Eq. 2 was used 
for comparing between the results before and after applying the post-
classifier. Given the null hypothesis Ho: K1-K2=0 and the alternative H1: 
K1-K2≠0, Ho is rejected if Z≥Zα/2. A 95% confidence limit was used as a 
critical value (i.e., Zα/2=1.96). Congalton and Green (1999) provide more 
mathematical details about the test. 
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5.3 Results 

The classification accuracy before applying the post-classifier was 
reported in Table 5.3, and its corresponding classified map was 
illustrated in Figure 5.4a. The overall accuracy of the map (OA) and an 
estimate of kappa statistics (K) were OAMLC=76.0% and KMLC=0.71, 
respectively. For comparison, the post-classified result was illustrated in 
Figure 5.4b and Table 5.4. Overall, it was found that the post-classifier 
helped improve the mapping accuracy. The overall accuracy and an 
estimate of kappa statistics after applying the post-classifier were OApH= 
88.2% and KpH= 0.86, respectively. 
 
Before applying the post-classifier (Table 5.3), the members of the 
Rhizophoraceae family (BP, RA, and RM) were spectrally confused with 
the other mangrove species as well as within the family. This spectral 
confusion was responsible for almost all misclassified pixels in every 
column of Table 5.3. 
 
Table 5.4: Accuracy tables after applying the post-classifier (overall accuracy 

= 88.21%) 

Class AA AM AO BP RA RM SC Total 
AA 15 0 0 1 0 1 0 17 
AM 0 29 0 0 0 0 0 29 
AO 0 0 39 0 0 0 0 39 
BP 0 0 0 26 0 0 0 26 
RA 1 0 0 0 66 2 0 69 
RM 2 0 0 0 4 24 0 30 
SC 2 0 0 0 0 18 33 53 

Total 20 29 39 27 70 45 33 263 
 
Class Producer’s accuracy User’s accuracy 
AA 75.0 88.2 
AM 100.0 100.0 
AO 100.0 100.0 
BP 96.3 100.0 
RA 94.3 95.7 
RM 53.3 80.0 
SC 100.0 62.3 

By comparing between the situations before and after applying the post-
classifier (i.e., between Table 5.3 and Table 5.4), it was found that the 
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spectral confusion caused by the members of Rhizophoraceae in every 
column was improved except in the RM column. This resulted in the 
improvement in the producer’s accuracy of every mangrove class but 
RM. In addition, the result of the z-test based K statistics confirmed that 
the accuracy improvement was statistically significant. The z value 
reported was 3.76 and it was higher than the critical value (i.e., 
Zα/2=1.96). 
 
The significant improvements in the mapping accuracy were also 
noticeable graphically by comparing between Figure 5.4a and Figure 
5.4b. There were two distinct features that were responsible for most of 
the improvements. First, the “salt-and-pepper” patterns of RM in Figure 
5.4a were mostly eliminated by the post-classifier and resulted in more 
homogeneous patterns in Figure 5.4b. This effect of the post-classifier 
helped reduce most of the class confusion between RM and the other two 
members of the Rhizophoraceae family (RA and BP). Second, the post-
classifier created a distinctive pH limit in the middle of Figure 5.4b. This 
pH limit (pH ≈ 7.20) helped separate RA, RM, and SC from the rest of 
the mangroves, as the three species were more susceptible to alkaline 
conditions. 

5.4 Discussion & conclusion 

Another unexplored potential of remote sensing for mangrove mapping 
has been unveiled in this study. Overall, the results confirm that 
integrating a soil-related ecological parameter such as soil pH into the 
mapping process significantly improves the quality of the final mangrove 
map. The influence of soil pH via the Bayesian model of the post-
classifier satisfactorily increases the overall mapping accuracy by 12% 
(i.e., from 76.0% to 88.2%) that is acceptable by the USGS classification 
standard (Anderson et al., 1976). The superiority of the addition of 
ancillary data over the solo use of multi-spectral data in mapping tropical 
mangrove species of Cape Talumpuk helps realise the possibility that the 
methodology presented in this study can be used as guidelines for 
producing mangrove maps at the community or species level. 
 
The difficulty in discriminating the members of the Rhizophoraceae 
family in Table 5.3 may not be neglected. It is interesting to find that the 
spectral confusion between the members of the Rhizophoraceae family 
and the other mangrove species reported in this study is reconciled with 
the results of the laboratory experiment conducted by Vaiphasa and 
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Ongsomwang (2004). These authors studied the spectral separability 
indices between various tropical mangrove species under laboratory 
conditions. It was found that the laboratory spectra of the members of the 
Rhizophoraceae family were not only similar to the other mangrove 
families but also among themselves. As a result, it may be concluded that 
using spectral information alone is not adequate for mangrove species 
classification if the study area is dominated by Rhizophoraceae. In 
contrast, additional information (e.g., the soil pH map) is needed for 
resolving such spectral confusion. 
 
Lastly, despite the optimism of the overall result, it should be noted that 
the addition of the soil pH data into the mapping process was not able to 
resolve the confusion between R. mucronata and S. caseolaris (please 
compare between the R. mucronata (RM) columns in Table 5.3 and 
Table 5.4). In fact, the addition of soil pH led to more confusion between 
the two species. As a result, it is recommended that extra treatments, in 
addition to the use of the soil pH map, should be done to improve 
specifically the separability between the two classes. Since both species 
possess totally different leaf textures, one possible solution is to exploit 
the leaf texture information extracted from aerial photographs. 
 
In summary, this study explores one step beyond the existing studies. It is 
the first time that the possibility of exploiting mangrove-environment 
relationships for improving the quality of the final mangrove map is 
investigated. Despite the remaining confusion between R. mucronata and 
S. caseolaris, the integration of ecological information such as soil pH 
into the mangrove mapping process is worth the extra fieldwork effort. It 
significantly increases the mapping accuracy from 76.0 % to 88.2%. 
Therefore, we anticipate that the methodology presented in this study can 
be used as guidelines for producing a mangrove map at a finer level (e.g., 
community or species level). 
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6.1 Introduction 

Mangrove forests are part of the coastal environment and stretch 
throughout the tropics and sub-tropics of the world (Tomlinson, 1994; 
Hogarth, 1999). They cover up to 75% of the world’s tropical coastlines 
(Spalding et al., 1997). Their importance is recognisable in such aspects 
as forestry, fisheries, and environmental conservation (Barbier and 
Sathiratai, 2004). Similar to many other natural resources, mangroves are 
declining because of the influence of natural disturbance and human 
intervention. This has negative effects on economic development and 
ultimately on the environment as a whole (Barbier and Sathiratai, 2004). 
These repercussions have subsequently drawn considerable attention to 
the conservation and management of this unique estuarine ecosystem 
(Ramsar Convention, 1971; Linneweber and de Lacerda, 2002).  
 
Precise and up-to-date spatial information on the current status of 
mangroves is a prerequisite for the sustainable conservation of mangrove 
ecosystems. It is almost impossible to gather this information by using 
traditional field surveys because mangrove swamps are extremely 
difficult to access. Fortunately, it has been discovered that remote 
sensing technology is a promising solution to this problem of 
accessibility (Green et al., 2000; Held et al., 2003).  
 
To date, the use of remote sensing technology for gathering spatial 
information from mangrove forests (e.g., mapping and monitoring) at the 
community levels has been extensive (Aschbacher et al., 1995; Ramsey 
III and Jensen, 1996; Gao, 1999; Sulong et al., 2002), but the application 
at the species level, which is necessary for studying mangrove species 
diversity, is still inconclusive (Demuro and Chisholm, 2003; Held et al., 
2003). Therefore, this thesis further explores the capability of remote 
sensing technology to map mangroves at the species level, using two 
important ingredients: (i) the use of narrow-band hyperspectral data and 
(ii) the integration of ecological knowledge of mangrove-environment 
relationships into the mapping process. 
 
The key objectives of this study are: 
 
(1) to demonstrate the potential of hyperspectral technology for 

discriminating mangroves at the species level 



 

 84 

(2) to test whether a form of genetic algorithms can be used for selecting 
a meaningful subset of spectral bands that maintains spectral 
separability between mangrove species 

(3) to investigate one of the most popular methods of reducing noise 
levels in hyperspectral data (i.e., spectral smoothing), as well as 
propose a technique for selecting an appropriate smoothing filter for 
the data at hand 

(4) to test whether mangrove-environment relationships can be exploited 
in order to improve the mapping accuracy. 

6.2 The main results 

6.2.1 Hyperspectral data for mangrove discrimination 

Although multispectral sensors are the most cost-effective remote 
sensing solutions for mangrove mapping (Aschbacher et al., 1995; 
Ramsey III and Jensen, 1996; Gao, 1999; Green et al., 2000; Sulong et 
al., 2002; Held et al., 2003), they are still limited to applications for 
mapping at the regional scale. One of their major constraints is the lack 
of spectral detail. 
 
Unlike multispectral sensors, hyperspectral sensors that possess 100 or 
more narrow spectral bands between the visible and shortwave infrared 
regions have already proved to have the potential for discriminating 
terrestrial plants at the species level (Cochrane, 2000; Schmidt and 
Skidmore, 2003). Nevertheless, the hyperspectral research on mangroves 
published to date (Green et al., 2000; Demuro and Chisholm, 2003; Held 
et al., 2003; Hirano et al., 2003) remains inconclusive when it comes to 
using the technology for tropical mangrove species discrimination.  
 
The prerequisite study described in Chapter 2 took the investigation into 
this issue one step further. It was a laboratory investigation to see 
whether hyperspectral data contained adequate spectral information for 
discriminating mangroves at the species level. The study helped us in 
deciding whether to invest in the expensive acquisition of airborne or 
satellite hyperspectral data. In brief, the spectral responses of 16 tropical 
mangrove species were recorded from the leaves, using a 2151-band 
spectrometer under laboratory conditions. Then, the mangrove spectra at 
every spectral location were statistically compared using one-way 
ANOVA to see whether they significantly differed. Finally, the spectral 



 

 85 

separability between each pair of mangrove species was calculated using 
the J-M distance in order to confirm the results. 
 
It turned out that the leaf spectra of different mangrove species were 
statistically different at most spectral locations, with a 95% confidence 
level (Figure 6.1). Specifically, the total number of spectral bands that 
had p-values < 0.05 was 1941, of which 477 bands had p-values < 0.01. 
Moreover, the J-M distance indices calculated for all pairs of the 
mangrove species also confirmed that the mangroves were spectrally 
separable (i.e., J-M distance ≥ 1.90), except the pairs that comprised 
members of Rhizophoraceae (Table 6.1).  
 
Overall, the results encourage further investigation into the use of 
airborne and satellite hyperspectral sensors for discriminating mangrove 
species. However, one should bear in mind the difficulty in 
discriminating the members of the Rhizophoraceae family. Since the 
Rhizophoraceae family usually dominates tropical mangrove forests, 
difficulty in discriminating these mangroves is expected when 
implementing the on-board hyperspectral sensors.  
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Figure 6.1: The plot of p-values of the ANOVA test (black line) showing against 

a laboratory reflectance of Rhizophora apiculata (grey line) 
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Table 6.1: The J-M distances between all pairs of 16 mangrove species (120 

pairs in total). The species names are coded in Chapter 2. The pairs that 

possess separability levels lower than 1.90 are highlighted in grey. Mangrove 

species are grouped by family name. 
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6.2.2 Hyper-dimensionality problems 
The high-dimensional characteristics of hyperspectral data can trigger the 
phenomenon known as “the curse of dimensionality” (Bellman, 1961). 
This phenomenon causes imprecise class estimates in the spectral feature 
space, which result in low output classification accuracy (Bellman, 1961; 
Hughes, 1968). Consequently, this situation demands more training 
samples in order to construct better class estimates, thereby dramatically 
increasing the cost of the field survey. 
 
Chapter 3 demonstrated an alternative to the existing account of feature 
selection tools to deal with the curse of dimensionality. This alternative 
feature selection tool was a form of genetic search algorithms (GA). 
Pioneering work that gained significant insight into this issue was carried 
out by Siedlecki and Sklansky (1989). The authors reported that the GA-
based band selector performed better than many other popular band 
selection algorithms (e.g., branch and bound search, exhaustive search, 
and sequential forward selection). The authors rigorously tested their 
hypothesis, using a synthetic error model instead of real remotely sensed 
data in order to eliminate the variables (e.g., sample size, the number of 
spectral bands, and the number of classes of interest) that could have 
biased the outcome. Further evidence of the success of GA-based band 
selection tools can be found in recent hyperspectral remote sensing 
publications (Yu et al., 2002; Fang et al., 2003; Kooistra et al., 2003, 
Cogdill et al., 2004). 
 
In contrast to the acid tests completed so far (Lofy and Sklansky, 2001; 
Kavzoglu and Mather, 2002; Yu et al., 2002; Ulfarsson et al., 2003), the 
work presented in Chapter 3 was the first time that the GA-based band 
selector had been tested on spectrometer records of very high 
dimensionality, comprising 2151 bands of leaf spectra of 16 tropical 
mangrove species. It turned out that the GA-based band selector was able 
to cope with spectral similarity at the species level. It selected spectral 
bands that related to the principal physico-chemical properties of plants 
(Curran, 1989; Elvidge, 1990; Kumar et al., 2001) and, simultaneously, 
maintained the separability between species classes at an 80% level of 
classification accuracy. The selection result is shown in Figure 6.2. 
 
It is worth noting that only one of the six spectral locations illustrated in 
Figure 6.2 is in the visible region where electro-magnetic energy interacts 
with mangrove leaf pigments (e.g., chlorophylls, carotenoids) (Menon 
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and Neelakantan, 1992; Basak et al., 1996; Das et al., 2002). This 
outcome may be interpreted as an indication that the spectral responses of 
mangrove pigments contain less important spectral information for 
mangrove species discrimination than the information from the spectral 
responses of the other leaf components that interact with electro-
magnetic energy at longer wavelengths. Unfortunately, the results of 
studies so far on the physico-chemical properties of leaves of different 
mangrove species are still inconclusive when it comes to pinpointing 
which components of mangrove leaves are spectrally separable (Menon 
and Neelakantan, 1992; Tomlinson, 1994; Basak et al., 1996; Das et al., 
2002). A thorough comparative study is therefore recommended in order 
to confirm this part of the findings. 
 

Lastly, the capability of the GA-based band selector to cope with a very 
complex band selection problem reported in Chapter 3 encourages the 
future use of the band selector for detecting spectral bands that show 
strong vegetation responses to different physico-chemical treatments 
(e.g., nitrogen, illumination) in both laboratory and field scenarios. It is 
anticipated that the GA-based band selector will be a viable alternative to 
the statistical and derivative analyses popularly used at the moment (Tsai 
and Philpot, 1998; Mutanga et al., 2003). 
 

 
Figure 6.2: Six average spectral positions selected by the GA-based feature 

selection algorithm 
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6.2.3 Noise levels 

Another important problem when using hyperspectral data is low signal-
to-noise ratios. This problem is normally solved by applying spectral 
smoothing filters to each spectral profile in order to create convolutions 
of spectral values, thereby reducing the noise level. According to the 
review in Chapter 4, however, it was found that at least 20 recently 
published reports used subjective ad hoc inspections as their measures 
for selecting filter types and the parameters. In other words, they did not 
employ any strict optimizing criterion to select suitable smoothing filters 
for their studies. It is believed that the ad hoc approach is not the most 
appropriate way. Furthermore, it is hypothesized that smoothing filters 
can cause significant changes to the statistical properties (e.g., mean) of 
spectral data (see Figure 6.3). This statistical disturbance could then 
affect the outcome of subsequent analyses (e.g., maximum likelihood 
classifier, Jeffries-Matusita distance) that are based on statistical 
estimates of the data. 
 
In Chapter 4, it was proved that the above hypothesis is true (i.e., the 
effect of the smoothing disturbances on the class statistics is evident in 
Table 4.2). Thus, if preserving statistical properties of the original 
hyperspectral data is desired, smoothing filters that cause the minimum 
disturbance to the statistical properties of the original data should be 
objectively applied. One possible solution is to use a simple comparative 
t-test as a post-smoothing measure for choosing an optimum smoothing 
filter for the hyperspectral data at hand. 
 
The purpose of the post-smoothing method (the t-test) proposed in 
Chapter 4 was to control the effect on the statistical estimate of popular 
smoothing filters such as the moving average and Savitzky-Golay that 
have no built-in ability to preserve the original statistical properties of the 
spectral data (i.e., these popular filters are based on underlying non-
parametric mathematics that does not preserve statistical estimates of 
class information) (Kay, 1993). However, the post-smoothing method 
could have been omitted if the filter used had had the ability to preserve 
the statistical properties of the data. This ability could be achieved by 
designing a specialized smoothing filter, using an estimation theory such 
as maximum likelihood estimation (Oppenheim and Schafer, 1975; Kay, 
1993; Deng and Shen, 1997). In this way, class statistics of the original 
spectral data could be preserved by the filter after smoothing without the 
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need for the post-smoothing statistical verification (i.e., no need to use 
the t-test method presented in Chapter 4). 
 
Similarly, if preserving other properties of the spectral data, including 
signal phases or signal-to-noise ratios, is desired, specialized smoothing 
techniques could be used as a replacement for the generic techniques 
(e.g., moving average and Savitzky-Golay). With respect to the first case, 
preserving signal phases is particularly desirable for specific applications 
such as spectral derivative analyses. In this regard, specialized methods 
such as the Fourier transformation and wavelet decomposition would be 
the right choice because it has been proved that they can preserve the 
signal phase better than the generic smoothing methods (Curran et al., 
1992; Schmidt and Skidmore, 2004). As for the second case, signal-to-
noise ratios could be preserved by specific filters such as the Kawata-
Minami filter, which is equipped with a least mean-square criterion that 
helps to maximize the signal-to-noise ratio (Kawata and Minami, 1984; 
Tsai and Philpot, 1998).   
 
Nevertheless, according to the review in Chapter 4, application-specific 
smoothing methods such as the Fourier and wavelet transformation and 
the Kawata-Minami filter are less popular in the field of remote sensing 
than generic methods such as the moving average and Savitzky-Golay 
filters. Consequently, tailoring specialized smoothing filters to specific 
requirements as a replacement for generic methods could be an 
interesting topic for future research. 
 

(a) 
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Figure 6.3: An average spectral profile of plant leaves (a) before smoothing 

and (b) after smoothing; (c) a scatter plot of two principal wavelengths before 

(triangle) and after (square) smoothing 

6.2.4 Utilizing mangrove-environment relationships 

Spatial relationships between mangroves and the environment are well 
known (Macnae, 1968; Clough, 1982; Semeniuk, 1983; Tomlinson, 
1994; Hogarth, 1999). These relationships result in the mangrove 
zonations that are usually found in tropical mangrove forests (Tomlinson, 
1994; Hogarth, 1999; Vilarrubia, 2000; Satyanarayana et al., 2002). As a 
result, it is hypothesized in this thesis that these quantifiable spatial 
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relationships between mangroves and their environment can be exploited 
for mangrove mapping. 
 
In Chapter 5, the relationships between mangroves and the surrounding 
environmental gradient were utilized. The relationships were 
incorporated into the mapping process via a typical Bayesian probability 
model. The Bayesian model functioned as a post-classifier to improve the 
quality of a mangrove map already produced. The environmental 
gradient used was a GIS layer of soil pH data. 
 
The integration of soil pH into the mapping process turned out to be 
worthwhile as it significantly increased the mapping accuracy: from 
76.0% to 88.2%. However, the remaining confusion between R. 
mucronata and S. caseolaris points to the fact that soil pH data cannot 
help to resolve the similarity between the two species, and, as a result, 
more ancillary data such as leaf texture (i.e., captured by aerial photos) 
are recommended. Overall, it is anticipated that the methodology 
presented in this study will be used as a guideline for producing a 
mangrove map at the community or species level. 
 
Lastly, follow-up research is already underway. First, the performances 
of other inference engines, such as artificial neural networks and the 
Dempster-Shafer theory, are now being compared with the outcome of 
Bayes’ rule used in this thesis. Second, despite the problem relating to 
interoperability (i.e., data incompatibility) (Bishr, 1998), the research 
question of how to draw a consensus from expert knowledge from 
different spatial and non-spatial data sources (e.g., mangrove scientific 
publications, empirical data from other study areas, and opinions from 
local mangrove experts) is being resolved using recent advances in geo-
information theories, including (i) suitability modelling (Bonham-Carter, 
1994; Yamada et al., 2003), (ii) the personal construct theory (Kelly, 
1955; Zhu, 1999), and (iii) the semantics look-up table method (Comber 
et al., 2004). 

6.3 This thesis in a nutshell! 

This thesis is all about exploring remote sensing methods that can be 
used for mapping mangroves at the species level. The significance of this 
thesis can be synthesised into three major points. First, I point out the 
reason why there is the need for the continuation of my research on the 
use of hyperspectral sensors for mapping mangroves at the species level. 
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Second, I tell the reader that there is no real reason to feel panic with the 
technical complications when working with hyperspectral data. Third, I 
explain why my attempt to incorporate the mangrove-environment 
relationships into the mapping process (i.e., an idea that seems to be too 
expensive to implement) could lead to an operational method in the near 
future. 

6.3.1 Why is the follow-on research needed? 

The evolution of remote sensing sensors from multispectral sensors to 
hyperspectral sensors gives birth to a practical tool for detailed mangrove 
studies. The hyperspectral sensor does not only share advantageous 
characteristics of its ancestor, multispectral sensor, particularly on the 
aspect of cost-effectiveness. It allows us to exploit the relationships 
between mangroves and their spectral characteristics in finer detail. This 
successful exploitation is evident in the following examples. Hirano et al. 
(2003) used the 224-band Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) sensor for producing accurately the map of the 
mangrove communities of the Everglades, Florida. Furthermore, Demuro 
and Chisholm (2003) successfully used the HYPERION hyperspectral 
sensor, accommodated on the satellite platform, for discriminating 8-
class mangrove species communities in Australia. The situation looked 
even more optimistic when we discovered that pure mangrove spectra 
(laboratory spectra) contained enough information for discriminating 
most of mangrove species (Chapter 2). Nevertheless, the hyperspectral 
research on mangroves published to date (Green et al., 2000; Demuro and 
Chisholm, 2003; Held et al., 2003; Hirano et al., 2003) is still 
inconclusive. As a result, more research is still needed as to see whether 
the mangroves can be mapped at the species level when airborne or 
satellite hyperspectral sensors are used under the field conditions where 
there are numerous factors that could degrade the spectral signal received 
by the hyperspectral sensor, thereby making it harder to separate 
mangrove species. 

6.3.2 Be at ease with hyperspectral data 

With respect to spatial resolution of hyperspectral sensors, studying 
mangroves in detail does not require expensive high spatial resolution 
data as one might think. According to the spatial sensitivity analysis of 
tropical mangrove distribution reported by Manson et al. (2003) and our 
own experience in the tropical mangrove forests, it is clear that mangrove 
forests possess low spatial heterogeneity of mangrove species 
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distribution and, therefore, spatial resolution of commercial hyperspectral 
sensors installed on the satellite platform such as HYPERION (i.e., 30 m 
spatial resolution) should be adequate for the study of mangroves at the 
species level. This means that mapping mangrove species does not 
require expensive airborne hyperspectral sensors as in case studies of 
other terrestrial plants at the species level (Schmidt and Skidmore, 2003; 
Clark et al., 2005).  
 
In addition, using hyperspectral sensors for mapping mangroves at the 
species level does not necessarily require more complex data treatments 
than the case of typical multispectral sensors. In other words, one can 
still use those existing methods (e.g., statistical-based classifiers etc.) that 
are normally used for the case of multispectral analyses for analysing 
hyperspectral data except for the requirements of special treatments for 
(i) high dimensionality, and (ii) high noise levels.  
 
First, high dimensionality of hyperspectral technology is a two-sided 
sword. On the one hand, the inter-band correlations provide useful 
information about the shape of the spectral distribution in the feature 
space. This shape information has been proved that it helps increase the 
mapping accuracy (Landgrebe, 1997). This author falsified the old notion 
that the inter-band correlations are not good for classification (Ramsey 
III and Jensen, 1996). On the other hand, when there is limited number of 
field samples, using too many spectral bands (e.g., > 20 bands) at the 
same time could reduce the precision of the mathematical model of class 
information in the feature space (i.e., the curse of dimensionality 
(Bellman, 1961; Hughes, 1968)). To our relief, this problem of high-
dimensionality can be solved straightforwardly by the use of feature 
extraction/selection algorithms (Lee and Landgrebe, 1993; Du and 
Chang, 2001; Kavzoglu and Mather, 2002). In the light of the existing 
tools, we have proposed an innovative form of genetic search algorithms 
for reducing the number of bands and, at the same time, maintaining 
mangrove species separability (see Chapter 3).  
 
Second, it is well-known that narrow-band sensors of hyperspectral 
instruments can capture a very low amount of energy, thereby resulting 
in poor signal quality (i.e., noisy signals). This problem could get worse 
when there are additional external disturbances such as the fluctuation of 
the atmospheric states (Oppenheim and Schafer, 1975; Landgrebe, 1997; 
Lyon, 2004). Moreover, the connection points between spectral detectors 
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of the hyperspectral instrument could also play an important role in the 
quality of the spectral signal recorded (Schmidt and Skidmore, 2004). 
We have raised awareness of this issue in Chapter 4 and discuss about the 
spectral convolutions, which are popularly used for solving this signal-
noise problem. In addition, we have proposed a method that can be used 
to visualise the trade-off between the noise levels reduced and the 
statistical estimate of the original data disturbed by the spectral 
convolution. 

6.3.3 Is exploiting non-spectral information promising? 

This thesis supports the idea of incorporating ancillary ecological data 
into the mapping process. This concept of integrating extra information 
into the mapping process has been borrowed from successful case studies 
of mapping other plant species (Skidmore et al., 1997a, 1997b; Lehmann 
and Lenz, 1998; Berberoglu et al., 2004; Comber et al., 2004; Schmidt et 
al., 2004). In short, similar to the extra spectral bands (or layers) 
provided by the hyperspectral sensor, the extra GIS layer produced by 
exploiting the relationships between mangroves and the environmental 
gradients can be thought as if it is an extra non-spectral dimension (i.e., 
ecological dimension). The outcome of this thesis in Chapter 5 points out 
that the integration of ecological data (soil pH) into the mapping process 
is worth the extra fieldwork effort. It significantly increases the mapping 
accuracy of the final mangrove map of Cape Talumpuk from 76% to 
88%. More importantly, soil pH is a cost-effective parameter. It is easy to 
analyse (i.e., using a pH probe), and, in some countries such as 
Thailand*, soil-related parameters such as soil pH are often available for 
the research as they are collected regularly from the mangrove forests to 
monitor their conditions. In addition to the success of adding soil pH data 
into the mapping process, I have a plan to test other ecological gradients 
that can be gathered cost-effectively (e.g., leaf textures captured by aerial 
photos, LIDAR-derived elevation maps, and inundation frequency maps 
produced by incorporating elevation maps with automatic tidal records) 
for improving the mapping accuracy further (e.g., > 90% of accuracy). If 
this plan is successful, it will strengthen the possibility of exploiting non-
spectral information for mangrove species mapping at the operational 
level. 
 

                                                 
* Forest Research Office, Royal Forest Department: 
www.forest.go.th/Research/English/index.htm  
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6.4 Conclusion 

As the potential of hyperspectral and ecological data for detailed 
mangrove mapping has already been unveiled, the main goal of this study 
has been achieved. The achievement of this thesis can be summarized as 
follows: 
 
(1) The thesis reports that hyperspectral data contain adequate spectral 

details for discriminating most mangrove species. Further studies 
using airborne and satellite hyperspectral sensors are therefore 
encouraged. 

(2) A form of genetic search algorithms has been successfully tested on a 
species-level problem of very high dimensionality. The results point 
to the capability of the genetic search algorithm to help in solving the 
problem of high dimensionality.  

(3) The mistreatment of hyperspectral smoothing has been investigated, 
and an alternative method of optimizing the smoothed result is 
proposed.  

(4) Mangrove-environment relationships have been successfully 
exploited for mangrove mapping, using a Bayesian expert system. It 
has been found that the relationships help to increase the accuracy of 
the final mangrove map at the species level. 
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Appendix I: Genetic algorithms step by step 
The details of the genetic search algorithm (GA) used in this thesis can 
be mapped into several steps in a computational flowchart (Figure A.1.1), 
and each step of the flowchart is described below. 
 

 
 
 
 
  
 

 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  

 

Generate an initial population 

User Inputs 

Fitness score calculation of every 
chromosome by the SAM-based 

classifier 

If any of the chromosomes
 reports satisfactory accuracy 

Select parent chromosomes using the 
roulette wheel 

Crossover and mutation: Reproducing 
the offspring 

STOP 

YES 

 
Figure A.1.1: A flowchart showing the details of the genetic algorithm used in 

this thesis, a combination between a genetic search algorithm and a spectral 

angle mapper based classifier 
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STEP 1: First of all, the user has to provide a number of initial input 
requirements: (i) a population size (the number of chromosomes in a 
generation); (ii) a chromosome length (the number of image band labels 
per chromosome); (iii) a crossover rate; (iv) a mutation rate; (v) an input 
hyperspectral image with class samples; (vi) a fitness score threshold; 
and (vii) a maximum limit of evolutionary generations.  
 
STEP 2: The population of the first generation is randomly generated 
according to the population size (N) specified by the user. Figure A.1.2 
shows a population of randomly generated chromosomes of the first 
generation (e.g., N=100) when the user-defined chromosome length is 
10. Each chromosome is randomly assigned with 10 image band labels 
without repetition. Given that the hyperspectral dataset in use has, for 
example, 2151 channels in total, the possible band labels to be assigned 
to a chromosome are between 1 and 2151. 
 

 

B2 B7 B19 B55 B134 B337 B583 B799 B1200 B2120

 

B3 B5 B10 B45 B150 B368 B579 B791 B1210 B2121

 

B3 B6 B11 B44 B131 B352 B569 B770 B1201 B2122

……………………………………………………….. 

……………………………………………………….. 

……………………………………………………….. 

B1 B5 B13 B57 B132 B351 B567 B780 B1197 B2111

 

1st chromosome with 

Fitness score=77% 

2nd chromosome with 
Fitness score=78% 

3rd chromosome with 
Fitness score=69% 

100th chromosome with 
Fitness score=55% 

 
Figure A.1.2: A randomly generated population of one hundred length-10 

imaginary chromosomes is illustrated. Each chromosome is randomly assigned 

with 10 spectral bands without repetition. 

 
STEP 3: Before natural competition can start, each chromosome of the 
population has to have its own implicit strength relative to the others (i.e., 
a fitness score) (see Figure A.1.2). A fitness score of a chromosome 
indicates the chance for mating. A spectral angle mapper (SAM) based 
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nearest neighbour classifier is used as a tool for calculating the fitness 
scores for every chromosome so as to determine their relative strengths 
and weaknesses in terms of class separability. Following the definition of 
Goldberg (1989), the classifier works as a “fitness function”. 
 
STEP 4: Check the condition: if any chromosome in the current 
generation has its fitness score higher than the desired value indicated by 
the user in STEP 1 (e.g., 80% estimated accuracy), then stop and report 
the spectral band content of the winning chromosome. Otherwise, go on 
to the next step of the flowchart.  
 
STEP 5: Use “the biased roulette wheel” (Goldberg, 1989) to select N 
chromosomes as parents of the next generation offspring. The biased 
roulette wheel is a metaphoric tool for making a selective competition. A 
chromosome with a larger fitness value obtains a larger area on the 
wheel. As a result, it has a higher chance to be selected. The roulette 
wheel has to be applied N times in order to select N parent chromosomes 
for reproduction. 
 
STEP 6: After the selection process is done, the selected parents are 
paired and mated to produce the next generation. As an example, if the 1st 
and 2nd chromosomes in Figure A.1.2 are selected as parents, the image 
bands inside the two chromosomes will be exchanged and inherited to 
their offspring. This process is shown in Figure A.1.3 where the offspring 
share the first half from the 1st parent and the other half from the 2nd 
parent. Please note that the location of exchanging the bands is not 
always at the middle of the chromosome length like this example, but, in 
fact, it is randomly selected. Moreover, if the crossover rate selected by 
the user in STEP 1 is less than 100%, some of the selected parents may 
not have to mate to produce young, but, instead, they will be copied to 
the next generation. This reproduction process is repeated for all the 
parent chromosomes until the whole new generation (N offspring) is 
created. As a result, the new generation of N chromosomes tends to gain 
higher class separability because they inherit the image bands from the 
strong parent chromosomes. 
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B2 B7 B19 B55 B134 B337 B583 B799 B1200 B2120

  

B3 B5 B10 B45 B150 B368 B579 B791 B1210 B2121

 

  

B2 B7 B19 B55 B134 B368 B579 B791 B1210 B2121

 

B3 B5 B10 B45 B150 B337 B583 B799 B1200 B2120

 

1st parent  
chromosome 

2nd parent  
chromosome 

1st offspring  
chromosome 

2nd offspring  
chromosome 

 
Figure A.1.3: The reproduction of the offspring of the first and second parents 

(from Figure A.1.2) by crossing over the image bands 

 
The effect of random mutation is also added at this phase (not shown). 
So, some of the chromosomes are mutated corresponding to a pre-defined 
chance that the user indicated (mutation rate). At the end, a new epoch of 
the calculation is to start over again if the maximum limit of generations 
has not been reached. 
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Appendix II: Spectral signatures of the mangroves 
 

 
Figure A.2.1: Mean leaf spectra of 16 mangrove species stacked on top of one 

another 
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Appendix III: The variogram of soil pH 
interpolation 
 

 
Figure A.3.1: The omnidirectional variogram of soil pH (Spherical model, 

Range = 6,000, Sill = 0.6, Nugget = 0.17) used for the interpolation in Chapter 

5.  
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