Remote Sensing and Digital Image Processing

Volume 22

Series Editor

Freek D. van der Meer, Faculty of Geo-Information Science and Earth Observation (ITC), Department of Earth Systems Analysis, University of Twente, Enschede, The Netherlands

EARSeL Series Editor

Anna Jarocińska, Department of Geoinformatics, Cartography and Remote Sensing, Warsaw University, Poland

Editorial Advisory Board

Michael Abrams, NASA Jet Propulsion Laboratory, Pasadena, CA, U.S.A. Paul Curran, City University London, U.K. Arnold Dekker, CSIRO, Land and Water Division, Canberra, Australia Steven M. de Jong, Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands Michael Schaepman, Department of Geography, University of Zurich, Switzerland

EARSeL Editorial Advisory Board

Mario A. Gomarasca, CNR - IREA Milan, Italy Martti Hallikainen, Helsinki University of Technology, Espoo, Finland Håkan Olsson, Swedish University of Agricultural Sciences, Umea, Sweden Eberhard Parlow, University of Basel, Switzerland Rainer Reuter, Carl von Ossietzky University of Oldenburg, Germany More information about this series at http://www.springer.com/series/6477

Claudia Kuenzer • Stefan Dech Wolfgang Wagner Editors

Remote Sensing Time Series

Revealing Land Surface Dynamics

Editors Claudia Kuenzer German Remote Sensing Data Center, DFD German Aerospace Center, DLR Wessling, Germany

Wolfgang Wagner Department of Geodesy and Geoinformation Vienna University of Technology Vienna, Austria

Responsible Series Editor: A. Marçal

Stefan Dech German Remote Sensing Data Center, DFD German Aerospace Center, DLR Wessling, Germany

Institute for Geography and Geology University of Wuerzburg Wuerzburg, Germany

 ISSN 1567-3200
 ISSN 2215-1842 (electronic)

 Remote Sensing and Digital Image
 Processing

 ISBN 978-3-319-15966-9
 ISBN 978-3-319-15967-6 (eBook)

 DOI 10.1007/978-3-319-15967-6

Library of Congress Control Number: 2015938907

Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Foreword

Our fragile planet experiences global change at unprecedented speed. Much of this change is man-made. We harness rivers and lakes, clear-cut forests, transfer natural ecosystems into agricultural land, and extract underground resources. Through urbanization as well as socio-economic transformation more and more pristine habitats come under pressure. Changes in climate variability impact the dynamics of snow cover and water bodies, soil moisture and vegetation phenology.

Satellite-based earth observation technology allows us to monitor and quantify these changes. Satellite remote sensing – and here

especially the analysis of long-term time series – enables us to reveal land surface dynamics that otherwise might remain hidden to the human eye. The book *Remote Sensing Time Series Revealing Land Surface Dynamics* focuses on exactly this potential of space-borne earth observation.

What can earth observation contribute to the understanding of global change? Which satellite sensors exist? Which data really allow for long-term monitoring and time-series analysis? When is a time series long enough to shed light on climate variability? Which challenges face scientists who use remote sensing satellite data to further knowledge about our planet? How do different ecosystems change over time?

This book, which has been initiated by scientists of DLR's German Remote Sensing Data Center (DFD), addresses all these questions. Experts from all over Europe, the USA, and China have contributed to this comprehensive volume.

In recent years many satellite data archives have been made available to the public. The USA made nearly 40 years of Landsat data accessible free of charge. Data archives like this one, which allow us to look into the past for several decades,

are of immense value. Medium resolution data collected by the US AVHRR sensor have also been available for several decades. Additionally, since the year 2000, MODIS data also allow us to monitor our entire planet at daily intervals. Europe has followed this lead to facilitate satellite data access. Free optical, thermal infrared, and radar data from sensors on board the ESA research satellite ENVISAT, enabled dense, multifaceted analysis of the land surface between 2002 and 2012. Furthermore, data of the novel and upcoming European Sentinel missions operated by the European Space Agency on behalf of the European Union are currently being made available free of charge both to scientific and commercial users.

Amongst other institutions, our German Remote Sensing Data Center will provide and operate the processing and archiving facilities for the data from Sentinel-1 C-band SAR sensors that grants continuity for ENVISAT-ASAR, as well as for Sentinel-3 OLCI data, continuing the ENVISAT MERIS instrument. Sentinel-5 precursor data will also be processed and archived at DFD.

However, the large amount of earth observation data contained in satellite data archives globally also poses great challenges for the science community. The analysis of time series of data is much more complex than just comparing a few multitemporal satellite scenes. Time-series analysis requires the processing of hundreds, thousands, or even a hundreds of thousands of data sets. This "big data" needs to be calibrated, preprocessed, harmonized, interpolated, and statistically analyzed. At frequent intervals - monthly or annually - time series have to be re-processed to derive updated mean, minima, maxima, variability and anomalies. This is an extremely demanding task. Additionally, the challenge of big data and the challenge to fully exploit all the wealth of information that is contained in data archives are getting bigger every day. More and more space nations launch satellites into orbit. The life span of sensors increases. And data access is eased further. The computer and programming literacy of scientists and young people in general is rapidly increasing. Envisioning this trend, one of our technical answers is that algorithms should rather come to the data instead of routing mass-data archives to the analysts. So, hopefully, as the challenges grow, so will our means to address them. I am confident that we will be able to manage the upcoming challenges, and that the European Copernicus program will help to blaze the trail.

I hope that this book will trigger or deepen your interest in remote sensing time-series analysis as a valuable means to assess the state of our Planet Earth.

I wish you stimulating reading.

1n.US

Prof. Dr.-Ing. Johann-Dietrich Wörner Chairman of the Executive Board German Aerospace Center DLR Cologne, Germany

Acknowledgements

The chapters presented in this book were contributed by renowned scientists in the field of remote sensing time series analysis from around the world. This work would not have been possible without each author's voluntary and enthusiastic commitment to this book project. We thank all authors for the very smooth process of chapter compilation.

We are extremely grateful to the following experts who have volunteered to peer-review the chapters of this book. Investing their time and knowledge, the reviewers significantly helped to shape the final chapters with their critical comments and suggestions.

Alphabetically, we express our sincere thanks to:

Terry Arvidson (Lockheed Martin, Greenbelt, MD, USA); Kirsten de Beurs (Department of Geography, University of Oklahoma, Norman, OK, USA); Christopher Conrad (Institute of Geography and Geology, University of Würzburg, Würzburg, Germany); Stefan Dech (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Andreas Dietz (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Jeffery Eidenshink (Earth Resources Observation and Science, EROS, U.S. Geological Survey, Sioux Falls, SD, USA); Christina Eisfelder (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Ursula Gessner (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Huadong Guo (Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China); Xulin Guo (Department of Geography and Planning, University of Saskatchewan, Canada); Geoffrey M. Henebry (Geospatial Sciences Center of Excellence, GSCE, South Dakota State University, Brooking, SD, USA); Martin Herold (Wageningen University and Research Centre, WUR, Laboratory of Geo-information Science and Remote Sensing, Wageningen, The Netherlands); Koen Hufkens (Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA); Juliane Huth (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Igor Klein (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Kim Knauer (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Patrick Leinenkugel (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany): Sebastian van der Linden (Geographisches Institut, Humbold-Universität Berlin, Berlin, Germany); V. E. Nethaji Mariappan (Centre for Remote Sensing and Geoinformatics, Sathyabama University, Chennai, India); Markus Niklaus (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany): Marco Ottinger (German Aerospace Center, DLR, Earth Observation Center, EOC, German Remote Sensing Data Center, DFD, Oberpfaffenhofen, Germany); Stuard Phinn (School of Geography, Planning and Environmental Management, University of Queensland, Brisbane, Australia); Andreas Rienow (Department of Geography, University Bonn, Bonn, Germany); Achim Röder (Umweltfernerkundung und Geoinformatik, Universität Trier, Germany); David Roy (Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA); Mauritio Santoro (GAMMA Remote Sensing Research and Consulting AG, Gümligen, Switzerland); Joseph O. Sexton (Global Land Cover Facility, University of Marvland, MD, USA); Pascal Sirguey (School of Surveying, University of Otago, Dunedin, New Zealand); Ruth Sonnenschein (Institute for Applied Remote sensing, European Academy of Bolzano/Bozen, EURAC, Bolzano, Italy); Wolfgang Wagner (Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria); Jun Wang (Beijing University, China).

Special thanks go to Susan Giegerich for her support in proofreading and language editing selected chapters, as well as to Nils Sparwasser (Science Visualization and Geoinformation, DLR, EOC, DFD) for designing the title page.

Furthermore, we are especially grateful to Philipp Koch for his excellent cooperation and editing work during the preparation of this volume.

Our gratitude also goes to the European Association of Remote Sensing Laboratories (EARSeL) for supporting this book project.

Contents

1	Remote Sensing Time Series Revealing Land SurfaceDynamics: Status Quo and the Pathway AheadClaudia Kuenzer, Stefan Dech, and Wolfgang Wagner	1
2	Time Series Analyses in a New Era of Optical Satellite Data Patrick Hostert, Patrick Griffiths, Sebastian van der Linden, and Dirk Pflugmacher	25
3	Calibration and Pre-processing of a Multi-decadalAVHRR Time SeriesMartin Bachmann, Padsuren Tungalagsaikhan, Thomas Ruppert,and Stefan Dech	43
4	Analysis of Snow Cover Time Series – Opportunities and Techniques Andreas J. Dietz, Claudia Kuenzer, and Stefan Dech	75
5	Global WaterPack: Intra-annual Assessment of Spatio-Temporal Variability of Inland Water Bodies Igor Klein, Andreas J. Dietz, Ursula Gessner, and Claudia Kuenzer	99
6	Analysing a 13 Years MODIS Land SurfaceTemperature Time Series in the Mekong BasinCorinne Myrtha Frey and Claudia Kuenzer	119
7	TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics Lars Eklundh and Per Jönsson	141

Contents

8	Assessment of Vegetation Trends in Drylands from Time Series of Earth Observation Data	159
	and Kjeld Rasmussen	
9	Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data	183
10	Land Surface Phenology in a West African Savanna: Impact of Land Use, Land Cover and Fire Ursula Gessner, Kim Knauer, Claudia Kuenzer, and Stefan Dech	203
11	Assessing Rainfall-EVI Relationships in the Okavango Catchment Employing MODIS Time Series Data and Distributed Lag Models Thomas Udelhoven, Marion Stellmes, and Achim Röder	225
12	Land Degradation in South Africa – A Degradation Index Derived from 10 Years of Net Primary Production Data Markus Niklaus, Christina Eisfelder, Ursula Gessner, and Stefan Dech	247
13	Investigating Fourteen Years of Net Primary Productivity Based on Remote Sensing Data for China Christina Eisfelder and Claudia Kuenzer	269
14	The Utility of Landsat Data for Global Long Term Terrestrial Monitoring	289
15	Forest Cover Dynamics During Massive Ownership Changes – Annual Disturbance Manning Using Annual	
	Landsat Time-Series Patrick Griffiths and Patrick Hostert	307
16	Radar Time Series for Land Cover and Forest Mapping Christiane Schmullius, Christian Thiel, Carsten Pathe, and Maurizio Santoro	323
17	Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin	357

Contents

18	Land Surface Phenology Monitoring with SeaWinds Scatterometer Time Series in Eastern Asia	383
19	Monitoring Recent Urban Expansion and Urban Subsidence of Beijing Using ENVISAT/ASAR Time Series Datasets Xinwu Li, Huadong Guo, Huaining Yang, Zhongchang Sun, Lu Zhang, Shiyong Yan, Guozhuang Shen, Wenjin Wu, Lei Liang, and Meng Wang	401
20	SAR Time Series for the Analysis of Inundation Patterns in the Yellow River Delta, China Claudia Kuenzer, Juliane Huth, Sandro Martinis, Linlin Lu, and Stefan Dech	427

Contributors

Martin Bachmann German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Stefan Dech German Remote Sensing Data Center, DFD, German Aerospace Center, DLR, Wessling, Germany

Institute for Geography and Geology, University of Wuerzburg, Wuerzburg, Germany

Andreas J. Dietz German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Christina Eisfelder German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Andrea Ehammer Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Lars Eklundh Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Rasmus Fensholt Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Corinne Myrtha Frey German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Ursula Gessner German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Felix Greifeneder European Academy of Bozen/Bolzano, EURAC, Bolzano-Bozen, Italy

Patrick Griffiths Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Kenneth Grogan Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Huadong Guo Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Patrick Hostert Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

IRI THESys, Humboldt-Universität zu Berlin, Berlin, Germany

Stephanie Horion Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Silvia Huber DHI GRAS, Copenhagen K, Denmark

Juliane Huth German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Per Jönsson Group for Materials Science and Applied Mathematics, Malmö University, Malmö, Sweden

Igor Klein German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Kim Knauer German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Remote Sensing, Institute of Geology and Geography, University of Wuerzburg, Wuerzburg, Germany

Indrani Kommareddy Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA

Valeriy Kovalskyy Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA

Claudia Kuenzer German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Xinwu Li Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Lei Liang Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Linlin Lu Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Sandro Martinis German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Vahid Naeimi Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Markus Niklaus German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Carsten Pathe Department for Earth Observation, Institute of Geography, Faculty for Chemistry and Geosciences, Friedrich-Schiller University, Jena, Germany

Dirk Pflugmacher Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Stephen D. Prince Department of Geographical Sciences, University of Maryland, College Park, MD, USA

Kjeld Rasmussen Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Achim Röder Environmental Remote Sensing and Geoinformatics, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany

David P. Roy Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA

Thomas Ruppert German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Daniel Sabel Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Maurizio Santoro GAMMA Remote Sensing Research and Consulting AG, Gümligen, Switzerland

Christiane Schmullius Department for Earth Observation, Institute of Geography, Faculty for Chemistry and Geosciences, Friedrich-Schiller University, Jena, Germany

Guozhuang Shen Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Marion Stellmes Environmental Remote Sensing and Geoinformatics, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany

Zhongchang Sun Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Torbern Tagesson Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark Christian Thiel Department for Earth Observation, Institute of Geography, Faculty for Chemistry and Geosciences, Friedrich-Schiller University, Jena, Germany

Feng Tian Section of Geography, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Copenhagen K, Denmark

Compton J. Tucker NASA Goddard Space Flight Center, Greenbelt, MD, USA

Padsuren Tungalagsaikhan German Remote Sensing Data Center, DFD, Earth Observation Center, EOC, German Aerospace Center, DLR, Oberpfaffenhofen, Germany

Thomas Udelhoven Environmental Remote Sensing and Geoinformatics, Faculty of Regional and Environmental Sciences, University of Trier, Trier, Germany

Sebastian van der Linden Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

IRI THESys, Humboldt-Universität zu Berlin, Berlin, Germany

Jan Verbesselt Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, Wageningen, The Netherlands

Wolfgang Wagner Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Cuizhen Wang Department of Geography, University of South Carolina, Columbia, SC, USA

Meng Wang Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Wenjin Wu Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Lin Yan Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA

Shiyong Yan National Earthquake Response Support Service, Shijingshan District, Beijing, China

Huaining Yang National Earthquake Response Support Service, Shijingshan District, Beijing, China

Hankui Zhang Geospatial Science Center of Excellence, South Dakota State University, Brookings, SD, USA

Lu Zhang Key Laboratory of Digital Earth Sciences, Institute of Remote Sensing and Digital Earth, RADI, Chinese Academy of Sciences, CAS, Beijing, China

Abbreviations

a.s.l.	Above sea level
AATSR	Advanced Along-Track Scanning Radiometer
aET	Actual evaporation
AI	Aridity Index
ALOS	Advanced Land Observing Satellite
AMOC	Acoustic Monitoring of the Ocean Climate
ANPP	Aboveground net primary productivity
APOLLO	AVHRR Processing scheme Over cLouds Land and Ocean
ARMA	Autoregressive moving average
ASAR	Advanced Synthetic Aperture Radar
ASCAT	Advanced scatterometer
ASI	Italian Space Agency
AVHRR	Advanced Very High Resolution Radiometer
BETHY/DLR	Biosphere Energy Transfer Hydrology Model
BFAST	Breaks For Additive Seasonal and Trend
BISE	Best index slope extraction
BMBF	German Federal Ministry of Education and Research
BMWI	Federal Ministry for Economic Affairs and Energy
BOA	Bottom of atmosphere
BRDF	Bidirectional reflectance distribution function
BWI	Basin Water Index
CAO	Carnegie Airborne Observatory
CAS	Chinese Academy of Sciences
CBERS	China-Brazil Earth Resources Satellite
CCI	Climate Change Initiative
CEODE	The Center for Earth Observation and Digital Earth
CFV	Closest Feature Vector
CGIAR-CSI	Consultative Group on International Agricultural
	Research - Consortium for Spatial Information
CLASS	Comprehensive Large Array-data Stewardship System

CMAP	CPC Merged Analysis of Precipitation
CNES	French Space Agency
CONUS	Conterminous United States
Cosmo-SkyMed	Constellation of Small Satellites for Mediterranean Basin
•	Observation
CRU	Climatic Research Unit
CSA	Canadian Space Agency
dB	Decibel
DEM	Digital elevation model
DFD	German Remote Sensing Data Centre
DFF	Danish Council for Independent Research
DFG	Alliance of Science Organisations in Germany
DGVMs	Dynamic Global Vegetation Models
DI	Disturbance Index
DIMS	Data and Information Management System
DInSAR	Differential Interferometric SAR
DLM	Distributed lag-model
DLR	German Aerospace Centre
DN	Digital number
DORIS	Delft object-oriented radar interferometric software
DOY	Day-of-year
DVT	Dynamic visible threshold
EBVs	Essential biodiversity variables
EC	European Commission
ECMWF	European Centre for Medium-Range Weather Forecasts
ECV	Essential climate variable
ENSO	El Nino Southern Oscillation
ENVISAT	Environmental Satellite
ENVISAT/ASAR	Environmental Satellite/Advanced Synthetic Aperture
	Radar
EO	Earth observation
EOM	Earth observation monitor
EOS	End of season
EOST	End of season time
EROS	Earth resources observation and science
ERS	Earth Resources Satellite
ERS	European remote sensing
ESA	European Space Agency
ESA GMES	ESA Global Monitoring for Environment and Security
ESDB	European Soil Database
ETM	Enhanced Thematic Mapper
ETM+	Enhanced Thematic Mapper Plus
EVI	Enhanced Vegetation Index
FAO	Food and Agriculture Organization
	6 6

FAPAR	Fraction of Absorbed Photosynthetically Active Radiation
FOMO	Remote sensing of the forest transition and its ecosystem
	impacts in mountain environments
FOV	Field of view
FPAR	Fraction of photosynthetically active radiation
FVC	Fraction of vegetation cover
FT	Functional types
GCOS	Global Climate Observing System
GDP	Gross domestic product
GEO BON	Earth Observations Biodiversity Observation Network
GIMMS	Global Inventory Modeling and Mapping Studies
GLASS	Global LAnd Surface Satellite
GLC2000	Global Land Cover
GLS	Generalized least square
GLS	Global Land Survey
GLWD	Global Lakes and Wetlands Dataset
GMES	Global Monitoring for Environment and Security
GPCC	Global Precipitation Climatology Centre
GPCP	Global Precipitation Climatology Project
GPP	Gross primary productivity
GSE	ESA GMES Service Element
GSV	Growing stock volume
HANTS	Harmonic Analyses of NDVI Time Series
HDF	Hierarchical data format
HDF-EOS	Hierarchical Data Format–Earth Observing System
HRPT	High resolution picture transmission
HWSD	Harmonized World Soil Database
IFOV	Instantaneous field of view
IGBP	International Geosphere-Biosphere Programme
IIASA	International Institute for Applied Systems Analysis
InSAR	Interferometric Synthetic Aperture Radar
INPE	Brazilian Space Agency
IOD	Indian Ocean Dipole
IPCC	Intergovernmental Panel on Climate Change
JAXA	Japan Aerospace Exploration Agency
JERS	Japanese Earth Resources Satellite
JPL	Jet Propulsion Laboratory
K.T.	Kaboré-Tambi
KML	Keyhole Markup Language
LAI	Leaf Area Index
LandTrendr	Landsat-based Detection of Trends in Disturbance and
	Recovery
LCC	Lambert conic conformal
LCU	Land capability unit
-	1 ···· · · · · ·

LDCM	Landsat Data Continuity Mission
LDI	Land Degradation Index
Lidar	Light detection and ranging
LMB	Lower Mekong Basin
LNS	Local net primary productivity scaling
LSP	Land surface phenology
LST	Land surface temperature
LST_13year	Land surface temperature 13-year average
LTDR	Land Long Term Data Record
LUE	Light use efficiency
LULC	Land Use Land Cover
LUT	Look-up table
MACs	Multi-sensor Airborne Campaigns
MEA	Millennium Ecosystem Assessment
MEI	Multivariate ENSO Index
MB	Mekong Basin
MetOp	Meteorological Operational Satellites
MERIS	Medium resolution imaging spectrometer
MGET	Marine Geospatial Ecology Tools
MODIS	Moderate-resolution imaging spectroradiometer
MODIS NBAR	MODIS Nadir bidirectional reflectance distribution
	function adjusted reflectance
MODIS QA	MODIS Quality assessment
MODSCAGvMODIS	Snow-covered area and grain size
MSS	Multispectral Scanner System
MTCI	MERIS Terrestrial Chlorophyll Index
MTInSAR	Multi-Temporal Interferometric Synthetic Aperture Radar
MVA	Mean annual variation
MVIs	Microwave Vis
NAO	North Atlantic Oscillation
NASA	National Aeronautics and Space Administration
NBR	Normalized Burn Ratio
NDSI	Normalized Difference Snow Index
NDVI	Normalized Difference Vegetation Index
NDWI	Normalised Difference Water Index
NEODASS	Earth Observation Data Acquisition and Analysis Service
NEODC	NERC Earth Observation Data Centre
NERC	Natural Environment Research Council
NESDIS	National Environmental Satellite, Data, and Information
	Service
NEST	Next ESA SAR Toolbox
NEX	NASA Earth Exchange
NIR	Near-infrared
NIR	Surface reflectances in the near infrared

NLCD	National Land Cover Database
NOAA	National Oceanic and Atmospheric Administration
NORAD	North American Aerospace Defense Command
NPP	Net primary production
NPP	Suomi National Polar-orbiting Partnership
NRSC	Normalized radar cross-section
NSCAT	NASA scatterometer
NSIDC	National Snow and Ice Data Center
OA	Overall accuracy
OA	Overall agreement
OK	Over kappa
OLI	Operational Land Imager
OLS	Ordinary least-square
OSO	Office of Satellite Operations
OSPO	Satellite and Product Operations
PALSAR	Phased Array type L-band Synthetic Aperture Radar
PAR	Photosynthetically active radiation
PATMOS-x	AVHRR Pathfinder Atmospheres Extended
PDO	Pacific Decadal Oscillation
PEM	Production efficiency modelling
POES	Polar Orbiting Environmental Satellites
PolInSAR	Polarimetric Synthetic Aperture Radar Interferometry
PPI	Plant Phenology Index
PPS	Precipitation Processing System
PS	Permanent scatterers
PSI	Persistent scatterer interferometry
QuickSCAT	Quick Scatterometer
RADI	Institute of Remote Sensing and Digital Earth
RBSI	Radar Backscatter Index
RCM	Radar Satellite Constellation
RED	Surface reflectances in the red
REDD	Reducing Emissions from Deforestation and Forest
	Degradation in Developing Countries
RESTREND	Residual Trend Analysis
RF	Random Forest
RLOS	Radar line of sight
RMSE	Root mean square error
ROIs	Regions of interest
RUE	Rain-use efficiency
SAFs	Satellite application facilities
SAR	Synthetic Aperture Radar
SAR-EDU	Radar Remote Sensing Education Initiative
SARs	Synthetic Aperture Radars
SBInSAR	Small Baseline Subset InSAR

	٠	٠
vv	1	1
$\Lambda\Lambda$	1	1

SCAT	Scatterometer
SCD	Snow cover duration
SCD _{ES}	Early season snow cover duration
SCDLS	Late season snow cover duration
SCF	Snow cover fraction
SeaWiFS	The Sea-viewing Wide Field-of-view Sensor
SGRT	SAR Geophysical Retrieval Toolbox
SIR	Scatterometer image reconstruction
SIR	Shuttle Imaging Radar
SOS	Start of season
SOST	Start of season time
SPARC	Separation of Pixels Using Aggregated Rating over
	Canada
SPOT	Satellite Pour l'Observation de la Terre
SPOT-VGT	Satellite Pour l'Observation de la Terre-Vegetation
SRM	Snowmelt Runoff Model
SRTM	Shuttle Radar Topography Mission
SSM	Surface soil moisture
SSM/I	Special sensor microwave/imager
SST	Sea surface temperature
StaMPS	Stanford Method for Permanent Scatterers
STARFM	Spatial and Temporal Adaptive Reflectance Fusion Model
STL	Seasonal trend decomposition by Loess
SVAT	Soil vegetation atmosphere transfer
SVD	Singular value decomposition
SVM	Support vector machines
SWBD	Shuttle Radar Topography Mission Water Body Data
SWI	Soil Water Index
SWIR	Short-wave infrared
TanDEM-L	TerraSAR-L add-on for digital elevation measurement
TC	Tasseled cap
TCW	Tasseled cap wetness
T-D	Threshold delay
ТМ	Thematic Mapper
TOA	Top-of-atmosphere
TRMM	Tropical Rainfall Measuring Mission
TS	Theil-Sen
UNCCD	United Nations Convention to Combat Desertification
UNDP	United Nations Development Programme
UNEP	United Nations Environment Program
UNFCCC	United Nations Framework Convention on Climate
-	Change
USGS	United States Geological Survey
UTM	Universal Transverse Mercator

Abbreviations

VCF	MODIS Vegetation Continuous Fields
VI	Vegetation Index
VIIRS	Visible/Infrared Imager Radiometer Suite
VIP	Vegetation Index and Phenology Earth Science Data
	Record
VIS	Visible
WCD	Water cover duration
WDC-RSAT	World Data Center for Remote Sensing of the Atmosphere
WELD	Web Enabled Landsat Data
WGS84	World Geodetic System 1984
WSM	Wide Swath Mode
WUE	Water use efficiency
WUE _{instantaneous}	Water use efficiency leaf level
WUE _{vield}	Water use efficiency crop level
WYSIWYG	What You See Is What You Get
WS	Wide Swath