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Abstract: One factor of precision agriculture is remote sensing, through which we can monitor

vegetation health and condition. Much research has been conducted in the field of remote sensing

and agriculture analyzing the applications, while the reviews gather the research on this field and

examine different scientific methodologies. This work aims to gather the existing vegetation indices

used in viticulture, which were calculated from imagery acquired by remote sensing platforms such

as satellites, airplanes and UAVs. In this review we present the vegetation indices, the applications

of these and the spatial distribution of the research on viticulture from the early 2000s. A total of

143 publications on viticulture were reviewed; 113 of them had used remote sensing methods to cal-

culate vegetation indices, while the rejected ones have used proximal sensing methods. The findings

show that the most used vegetation index is NDVI, while the most frequently appearing applications

are monitoring and estimating vines water stress and delineation of management zones. More than

half of the publications use multitemporal analysis and UAVs as the most used among remote sensing

platforms. Spain and Italy are the countries with the most publications on viticulture with one-third

of the publications referring to regional scale whereas the others to site-specific/vineyard scale. This

paper reviews more than 90 vegetation indices that are used in viticulture in various applications

and research topics, and categorized them depending on their application and the spectral bands

that they are using. To summarize, this review is a guide for the applications of remote sensing and

vegetation indices in precision viticulture and vineyard assessment.

Keywords: vine; spectral bands; precision viticulture; imagery; spatial analysis

1. Introduction

Viticulture has existed for more than 5000 years in ancient Egypt [1]; many cultures use
wine as a main factor in their food culture. To increase production in agriculture, technolo-
gies were introduced in the 1990s to convert agriculture to “precision agriculture” [2]. The
first results and applications of precision agriculture were published in 1999. In the same
year precision viticulture (PV), which is a sector of precision agriculture focusing on the
vineyard, started to be introduced. The main objective is to manage the variability on yield
and development dividing the vineyard into management zones. With this management
the yield is increased and the environmental impact is reduced, which translates into an
increase in economy [3].

With remote sensing, PV has an extra added tool for the study of spatial variability
in the vineyard. Vegetation indices are mainly used to monitor the vine conditions and
to correlate them with yield and other parameters such as chlorophyll concentration on
leaves [4], nitrogen content [5] and water content [6] regarding the canopy [4]. Additionally,
correlations of vegetation indices (VIs) with parameters of the grape such as Brix and pH
have been studied [7]. Furthermore, remote sensing offers data in many temporal and
spatial resolutions to study a vineyard or a viticulture region. Platforms such as Landsat
with 30 m pixel resolution or more were used mostly on a regional scale while unmanned
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aerial vehicle (UAVs) and aircrafts offer high resolution imagery which is widely used on a
vineyard scale. The evolution of technology has brought the application of hyperspectral
remote sensing along with multispectral to be more specific and to produce specialized
vegetation indices [5]. Primarily though, hyperspectral vegetation indices are applied in
proximal sensing by spectroradiometers on field campaigns rather than remote sensing
methods in viticulture [8].

Through the years, many reviews have been conducted in the viticulture sector,
analyzing technologies and applications. Research has been instigated on the topic of
precision viticulture combining vegetation indices from remote sensing platforms with
ground data such as soil electrical conductivity [9], vine vigor parameters and yield [10]. A
review of Xie et al. [11] reviews all the UAV-mounted sensors applied on the estimation of
yield, biomass, height, and leaf area index. Reviews on the production of spatial data for
precision viticulture [12], on remote sensing and GIS applications have been conducted.
Additionally, the sensors used in viticulture have been gathered and analyzed [13] and the
different resolutions in combination with applications [14]. All these reviews captured the
methodologies and technologies applied in PV, in order to manage the spatial variability in
variables (grape yield, pH, phenolics) within a vineyard [14], highlighting the importance
of remote sensing and spatial data.

Vegetation indices are an important tool to monitor vineyards, vine growth cycle,
yield estimation and water stress, they can be used for better management of the vineyard
combined with precision agriculture techniques. For analyzing the reviews of vegetation
indices our main concept was to gather the VIs in terms of agricultural applications. An
attempt was made to categorize them according to their relationship with the characteristics
of the vegetation [15], additionally examined the usage and the applications of VIs in
precision agriculture [16]. The reviews demonstrate the usage and the general applications
of vegetation indices in agriculture, without focusing on specific cultivation, e.g., viticulture.
There is a lack of references on viticulture and vegetation indices applications.

The purpose of this review is to collect those vegetation indices that have been used
specifically on vine and viticulture with remote sensing imagery, to comment and analyze
on applications and classify accordingly the wavelengths used in the calculation. Addition-
ally, a critical review has been conducted on the effectiveness of each method and whether
the objectives have been adequately addressed.

2. Publications and Research

2.1. Review Methodology

Holistic research of papers has been conducted in Scopus, Google Scholar and Web of
Science. The review method is separated into three phases (Figure 1): the review planning,
execution and review reporting which follows in the results, while a relational database
model was created for the management of the research papers evolving the methodology of
Adamides (2020) [17]. The research of publications focused on “viticulture” or “vineyard”
or “grapevine” and “vegetation index” keywords. 143 research papers were downloaded
and after the removal of duplicates and publications with proximal sensing methods
113 papers were finally taken in consideration. A total of 97 different vegetation indices
were gathered from multispectral and hyperspectral imagery. In addition, information was
collected just like the year of the publication, the journal, the application and the sensor.

Due to the quantity of papers, a relational database was created including the infor-
mation descriptively, as a database management system offers the ability to capture and
analyze the data. Its design helps to include information such as the year, the remote
sensing platforms, the main purpose of the research and the different vegetation indices
that have been used on each publication. The tables are connected with primary and
foreign keys, while for the connection “many-to-many” linking tables were created; e.g.,
one vegetation index is used in many research papers and one paper uses many vegetation
indices. Due to this design, it becomes easier to extract results for comment and interpreta-
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tion by using structured query language (SQL) queries with the structure demonstrated in
Figure 2.

Figure 1. Phases of review method.

Figure 2. Relational Database structure.

The categorization is based on the scale of the study area. Two categories are created,
“field scale” and “regional scale”. The first category includes publications whose study
area was a vineyard and focuses on site-specific research. The second category refers to
publications whose study area was a group of vineyards or a viticultural region.

2.2. Study Areas Spatial Distribution

The publications occur in a variety of countries and landscapes. In general they
are concentrated in countries with tradition on viticulture and wine. The study areas
of research were located in 19 countries all over the globe; more than 20 publications
had a study area in Spain and Italy, more than 10 in France and the USA, followed by
Australia, Portugal and Greece with more than 5. In most publications, the study area was
on site-specific scale, but in the last years, research on regional scale is developing as it
seems on histogram (Figure 3). Research on a regional scale has benefits, such as reducing
heterogeneity in yield of a viticultural region [6] or monitoring how different topographic
conditions affect vegetation development [18].

Figure 3. Number of publications in each scale (Vineyard and Regional).

Spatially the research is on 19 countries (Figure 4), in countries that have more than
5 publications there are both scales, regional and site-specific (vineyard). The only country
where more research has been conducted on the regional scale is Portugal, while 50–50 was
on France and Australia. It is observed that the USA and Italy tend to do more research
on the scale of the site-specific, while in the group of the other countries (Portugal, Spain,
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France, Greece, Australia) they research both on the site-specific and regional scale. It is
worth to mention that the study areas are concentrated in latitude ±40 degrees due to the
suitable climatic conditions for the development of the vineyards.

Figure 4. Spatial distribution of publications (study area).

2.3. The Remote Sensing Platforms

The plethora of options for remote sensing platforms, such as satellites, aircrafts and
unmanned aerial vehicles are summarized in Table 1. UAVs are used in 45 publications due
to the extended use in the last years. 27 research papers based on aircraft imagery for the
calculation of the vegetation indices, while 19 times the research had based on Sentinel-2
satellite. Additionally, Rapideye satellite, Landsat 8, MODIS, Quickbird and Landsat 7
were used from 5 up to 10 research papers.

Table 1. Count of platforms used in publications.

Platform Count

UAV 45

Aircraft 27

Sentinel 2 19

Rapideye 10

Landsat 8 7

MODIS 6

Quickbird 6

Landsat 7 5

Landsat 5 4

Worldview 2 4

Pleiades 2

Planet 2

Sentinel 3 OTCI 1

MSG1 2

SEVIRI 1

SPOT 5 1

SPOT-Vegetation 1

Deimos 1 1

ASTER 1
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The usage for each platform depends on the price and the resolution of the imagery
it offers. Satellites with high-resolution imagery offer detailed information for analyzing
vineyards, but their price is a limiting factor mainly for multitemporal monitoring. In this
case, medium-resolution free access satellites are used such as Sentinel-2 where with the
resolution of 10 m × 10 m can reveal the spatial variability in the vineyard. The Figure 5
shows the same vineyard from three different remote sensing data sources, (a) from UAV
mounted multispectral camera with 3 cm pixel size, (b) from Worldview-2 with 0.5 m pixel
size and (c) from Sentinel-2 with 10 m pixel size. In the first case we must have in our
possession a UAV, to process the data and produce this NDVI map. In the second case of
WV2 we have to purchase the satellite imagery, while when it comes for Sentinel-2 we can
download it for free.

Figure 5. NDVI map from different resolution imagery (UAV, Worldview-2, Sentinel-2), source:

Unpublished research results from project code: T1EDK-04202 (under the call RESEARCH–CREATE–

INNOVATE), GIS Research Unit, Laboratory of Soils and Agricultural Chemistry, Department of

Natural Resources and Agricultural Engineering, Agricultural University of Athens.

The examination of uses has two perspectives: firstly, the appearance of each technol-
ogy and satellite, for example, UAVs, which have come to the fore after 2010, and secondly,
the purpose of the research and the extent of the study area, viticulture region or field
scale. Figure 6 demonstrates the usage of each platform per year. It is obvious that the
numbers in the last years are greater due to the many publications, and also that aircrafts
are replaced by UAVs. The need to extract the vine rows is captured in the high usage
of ultra-high-resolution sensors (aircraft, UAV). Sentinel-2 and other medium resolution
give an extra solution because of the free access and their spatial resolution which can
display the variability in a vineyard [19]. The high-resolution satellites constitute a minor
percentage in the research, due to restrictions such as the price and the controversial usage
for vineyard row extraction.

Figure 6. Usage of each platform per year, grouped by resolution (ultra-high, 1–20 cm; high, 0.5–5 m;

medium, 10–30 m; low >100 m).
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Because of the two categories on the scale of the study area, some satellites were
suitable to be used only on regional scale due to their spatial resolution. For example,
in order to perform an analysis on a viticulture region a Landsat series satellite is ideal
concerning the spatial resolution it offers. Figure 7 demonstrates the percentage of usage
for each platform in both scales. When the research is based on regional scale the usage
of UAVs and aircraft reduced and their place is taken by Landsat satellites, MODIS and
Worldview 2.

Figure 7. Percentage of sensors usage in different scales.

3. Vegetation Indices

3.1. Vegetation Indices and Electromagnetic Spectrum

The need to acquire information about vegetation from remote sensing adopted the
concept of vegetation indices (VI). Two or more spectral bands need to be combined in
mathematical formulas for vegetation index calculation, while the usage of VIs is increasing
due to the rising availability of platforms both in terms of resolution and available spectral
bands [6].

The vegetation indices are based on different wavelength reflectance in the electro-
magnetic spectrum of each target, and they are using active and passive sensors to achieve
it [15]. The electromagnetic spectrum which is used in remote sensing is divided into blue
(450 nm), green (550 nm), red (650 nm), red-edge (700), near-infrared (800–900 nm) and
short-wave infrared (1300–2200 nm) bands. Most remote sensing platforms have sensors
with bands on these sections of the electromagnetic spectrum, while their categorization is
divided into two categories, multispectral with up to 10–15 spectral bands and hyperspec-
tral with a total of more than 50 bands. With multispectral sensors we get the reflectance
of the object in a few areas of the electromagnetic spectrum in a bandwidth of 30 nm in
visible and more than 100 in SWIR. While with hyperspectral sensors we get more detailed
reflectance data in many more subsections of the electromagnetic spectrum and with a
narrow bandwidth less than 10 nm. The different reflectance of each band captures the
properties of vegetation and with combinations of bands these differences becomes more
intense. The higher difference in the reflectance of vegetation occurs in RGB and NIR.
Because of this, more VIs use combinations of RGB bands and infrared such as red-edge
or near-infrared.

The vegetation indices are formed to focus on different properties of the vegetation [16]
and provide information about biomass, leaf area and health of the plant, based on cal-
culations of different bands of the electromagnetic spectrum [16]. RVI (Ratio Vegetation
Index) or SR (Simple Ratio) [20] is the oldest one and is based on the ratio between NIR
and red. The normalized difference vegetation index [21], presented in 1973, uses the ratio
of the NIR and red difference divided by their sum, while it stays the most popular VI
until today. The applications of VIs in viticulture expand in many fields for estimating the



Agriculture 2021, 11, 457 7 of 20

parameters of the vine. Many of them used to predict chlorophyll absorption of leaves (e.g.,
CLREDEDGE [7], MCARI [7], MTVI1 [5]), as an indicator of health and phenology [22–25],
some others are sensitive on the pigments of leaves (PRI [24], ExB [26], ExG [26], ExR [26])
and demonstrate mainly diseases [26–29]. The most frequently used VIs that are sensitive
on biomass and vegetation density (NDVI [4], EVI [25], SAVI [25], MSAVI [5]), the usage of
them is to identify the crop rows [30], to monitor leaf area [31] and other applications. VIs
that are more sensitive on the water content of leaves (NDWI [32], SIWSI [23], GVMI [32],
MSI [32]) were used to predict and monitor the water stress [32–34].

Five categories emerged considering the difference in reflectance of chlorophyll, pig-
ments, biophysical parameters, biomass and water content of leaves taking into con-
sideration the literature review and the categorization of vegetation indices [7,26,35,36].
Examining the application of indices based on their sensitivity (Table 2) we conclude that,
97 times there have been used VIs focusing on leaves chlorophyll concentration, more than
100 times for the estimation of pigments, 150 times VIs that have been correlated with
biophysical parameters and more than 200 VIs those that serve to predict biomass and
vegetation density. In addition, VIs were used nine times to estimate the water content on
vine leaves. Mainly, VIs have been used to estimate and monitor the biomass of vineyards
and also to detect and extract the vine rows [30]. Likewise, there are VIs that have been used
for prediction of biophysical parameters correlated with yield or in situ data [25,26,37].

Table 2. Usage of vegetation indices in each category.

VIs Categories Count

Chlorophyll 97

Pigment 101

Biophysical parameters 150

Biomass/Vegetation dens 216

water content 9

Each band compilation used to calculate vegetation indices is sensitive to specific
parameters of vegetation. Mainly RGB is used to estimate pigment [38] (carotenoids,
anthocyanins); the compilation of RGB and red-edge performs better for the estimation
of chlorophyll concentration [39]. Green, red and NIR included in vegetation indices to
predict biophysical parameters [40], while biomass and vegetation density estimated with
red and NIR [41] due to the difference of vegetation reflectance on red and NIR. For the
estimation of water content on leaves, NIR and SWIR bands are the most common. Table 3
shows all the band combinations of VIs studied in this review. In this cross-table, the
inputs are the categories depending on which parameters the VI is sensitive to and the
band combination on VIs calculation. This table is a resume of the review and shows the
potentiality of each band for the prediction of vine plant parameters. It is obvious that only
RGB bands are not able to predict biophysical parameters and they have to be combined
with NIR band, while they are useless to estimate water content. The main usage of VIs
from RGB bands is to estimate pigments; in addition, when the red-edge is combined,
the prediction of leaves chlorophyll content performs better. Red and NIR are the most
common band combination to estimate biomass and vegetation density, these VIs are often
used for vine detection and row extraction. For estimating water content on vine leaves,
the combination of NIR and SWIR is the one that can predict and demonstrate better the
water stress of the vineyard. Table 4 shows all the vegetation indices used in vineyards and
precision viticulture, and collected in this review.
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Table 3. ID of Vegetation indices cross-table of categories and spectral bands (B = blue, G = green, R = red, RE = red-edge,

NIR = near infrared, SWIR = short wave infrared).

Pigment Chlorophyll
Biomass/

Vegetation Density
Biophysical
Parameters

Water Content

B, G 18, 49, 77

B, G, R
16, 17,19, 21, 22, 34,

37, 78, 79, 80, 81
34 34

B, R 12, 15, 50, 88, 89 15, 88, 89

B, R, NIR 54 69, 90, 91

B, RE 51, 53 51, 95

B, NIR 84

G, R 13, 14, 20, 35, 36

G, R, RE 47, 48, 92, 93

G, R, NIR 33 45, 46, 61, 62 33 33, 45, 46

G, RE 38, 57, 96 57, 96

G, NIR 86, 94 26, 82 86 26, 29, 30

R, RE 65, 67, 97 59, 65, 67, 76, 97

R, NIR
1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 25, 27, 28, 31,

32, 75
1, 9

RE, NIR 40, 60, 83 60

NIR, SWIR 70, 72, 73, 74

Table 4. Vegetation indices table (in hyperspectral VI’s the nominal reference has been replaced by arithmetic in nanometers).

ID Vegetation Index Equation Reference

1 NDVI (NIR − RED)/(NIR + RED)
[4–7,9,10,18,19,22–27,30–

34,37,38,42–115]

2 PVI
√

(0.335 ∗ NIR − 0.149 ∗ RED)2 + (0.335 ∗ RED − 0.149 ∗ NIR)2 [43]

3 SAVI NIR−RED
NIR+RED+L ∗ (1 + L) [25,27,30,37,43,54,83,84,108]

4 MSAVI 2∗NIR+1−
√

(2∗NIR+1)2−8∗(NIR−RED)
2

[5,6,24,26,37,38,43,60,69,110]

5 SR NIR/RED [5,6,26,30,33,37,39,43,60,66,116]

6 DVI NIR − RED [6,27,35,36,43]

7 RDVI (NIR − RED)/
√

(NIR + RED) [5,7,24–26,37,38,43,60,108,110]

8 NLI
(

NIR2 − Red
)

/
(

NIR2 + Red
)

[26,43]

9 MSR ((NIR/RED)− 1)/
√

((NIR/RED) + 1) [5,7,24–26,37,38,43,60,108,110]

10 GEMI
eta ∗ 1 − 0.25 ∗ eta − Red−0.125

1−Red

eta =
2∗(NIR2−RED2)+1.5∗NIR+0.5∗RED

NIR+RED+0.5

[43]

11 MNLI (NIR2−RED)∗(1+L)

NIR2+RED+L
[43]

12 R/B index RED/BLUE [26]

13 R/G index RED/GREEN [6,26–29,35,36,38]

14 NGRDI (GREEN − RED)/(GREEN + RED) [26–29,117,118]

15 NPCI (BLUE − RED)/(BLUE + RED) [26,38]

16 VARI (GREEN − RED)/(GREEN + RED − BLUE) [23,27,28,117]

17 Woebbecke index (GREEN − BLUE)/(RED − GREEN) [26,119]

18 ExB 1.4 ∗ BLUE − GREEN [26,117]

19 ExG (2 ∗ GREEN − RED − BLUE)/(RED + GREEN + BLUE) [23,26,28–30,117,119]
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Table 4. Cont.

ID Vegetation Index Equation Reference

20 ExR (1.4 ∗ RED − GREEN)/(RED + GREEN + BLUE) [26,29,117]

21 ExGR ExG − ExR [26,29,117]

22 CIVE 0.441 ∗ RED − 0.811 ∗ GREEN + 0.385 ∗ BLUE + 18.78745 [26,28,117]

23 VEG GREEN
RED0.667∗BLUE1−0.667 [26,28]

24 Clgreen NIR
GREEN − 1 [25,26,64]

25 VIF NIR/(NIR + RED) [26]

26 GNDVI (NIR − GREEN)/(NIR + GREEN)
[6,7,22–

27,36,54,59,81,83,84,101,108]

27 RVI RED/NIR [26,118]

28 MRVI (RED − 1)/(NIR − 1) [26]

29 NIR–G NIR–GREEN [26]

30 NIR/G NIR/GREEN [24,26,36,59]

31 OSAVI (1 + 0.16) NIR−RED
NIR+RED+0.16

[5–7,22,26,37,38,110,120]

32 TVI1 NDVI+0.5
ABS(NDVI+0.5)

∗
√

ABS(NDVI + 0.5) [5,26]

33 TVI2 0.5 ∗ (120 ∗ (NIR − GREEN)− 200 ∗ (RED − GREEN)) [23,38]

34 GLI (GREEN−RED)∗(GREEN+BLUE)
2∗GREEN+RED+BLUE

[28,119]

35 MGRVI
(

GREEN2 − RED2
)

/
(

GREEN2 + RED2
)

[28,119]

36 GR GREEN/RED [6,24,28,37,38,110]

37 GCC GREEN/(GREEN + RED + BLUE) [28,53,121]

38 ARI GREEN−1 − REDEDGE−1 [27,36,37]

39 MARI
(

GREEN−1 − REDEDGE−1
)

∗ NIR [27,36]

40 CLREDEDGE (NIR/REDEDGE)− 1 [7,23,25,27,36]

41 GRVI (RED − GREEN)/(RED + GREEN) [22,29,36]

42 PRI (R570 − R531)/(R570 + R531) [24,33,38,110]

43 RE R750/R710 [5,33,38,120]

44 WI R900/R970 [33]

45 MTVI2 1.5 ∗ 1.2 ∗ (NIR−GREEN)−2.5 ∗ (RED−GREEN)
√

(2 ∗ NIR+1)2−(6 ∗ NIR−5∗
√

RED−0.5)
[5,38]

46 MTVI1 1.2 ∗ (1.2 ∗ (NIR − GREEN)− 2.5 ∗ (RED − GREEN)) [5,7,24,37,38,108,110]

47 MCARI
((REDEDGE − RED)− 0.2 ∗ (REDEDGE − GREEN)) ∗

(REDEDGE/RED)
[7,22,24,25,35,38,110]

48 TCARI
3 ∗ (((REDEDGE − RED)− 0.2 ∗ (REDEDGE − GREEN)) ∗

( REDEDGE
RED ))

[7,22,25,35,38,110,120]

49 BGI 1.2 R400/R550 [22,38,119]

50 BRI 1.2.3 R400/R690 [22,35,38,119]

51 CTR1 R695/R420 [35,38]

52 CTR2 R695/R760 [38]

53 LIC R440/R740 [38]

54 SIPI (NIR − BLUE)/(NIR + RED) [23,35,38]

55 VOG1 R740/R720 [38]

56 VOG2 (R734 − R747)/(R715 + R726) [38,120]

57 GM1 R750/R550 [5,38]

58 GM2 R750/R700 [5,38]

59 CUR (R675 ∗ R690)/R6832 [38]

60 NDRE (NIR − REDEDGE)/(NIR + REDEDGE) [6,7,22,23,36,84]

61 MCARI1 1.2 ∗ (2.5 ∗ (NIR − RED)− 1.3 ∗ (NIR − GREEN)) [5,22,24,35]

62 MCARI2 (1.2∗(2.5∗(NIR−RED)−1.3∗(NIR−GREEN)))√
(2∗NIR+1)2−6∗(NIR−5∗RED)−0.5

[5,22,24,35]
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Table 4. Cont.

ID Vegetation Index Equation Reference

63 PI1 (R522 − R504)/(R522 + R504) [22]

64 PI2 (R551 − R562)/(R551 + R562) [22]

65 PI3 (R700 − R680)/(R700 + R680) [22]

66 PI4 (R782 − R700)/(R782 + R700) [22]

67 PI5 (R782 − R671)/(R782 + R671) [22]

68 TCARI/OSAVI TCARI/OSAVI [24,37,110,120]

69 EVI 2.5 ∗ (NIR − RED)/(NIR + 6 ∗ RED − 7.5 ∗ BLUE + 1) [25,32,54,64,103,108,122,123]

70 NDWI (NIR − SWIR2)/(NIR + SWIR2) [32,34]

71 SWIRR SWIR1/SWIR2 [32]

72 SIWSI (NIR − SWIR1)/(NIR + SWIR1) [23,32]

73 MSI SWIR/NIR [32]

74 GVMI (NIR+1)−(SWIR+0.02)
(NIR+1)+(SWIR+0.02)

[32,103]

75 EVI2 2.5 ∗ (NIR − RED)/(NIR + 2.4 ∗ RED + 1) [124]

76 S2TCI (R740 − R705)/(R705 − R665) [125]

77 NGBDI (GREEN − BLUE)/(GREEN + BLIE) [119]

78 RGBVI GREEN2−(BLUE∗RED)
GREEN2+(GREEN∗BLUE)

[119]

79 TGI GREEN − 0.39 ∗ RED − 0.61 ∗ BLUE [119]

80 2GRGi 2 ∗ GREEN − (RED + BLUE) [119,126]

81 G% GREEN/(RED + GREEN + BLUE) [30,119,126]

82 Gitelson cl1 (1/GREEN)−1
NIR ∗ NIR [35]

83 Gitelson cl2 (1/REDEDGE)−1
NIR ∗ NIR [35]

84 Blackburn Car1 NIR/BLUE [35]

85 Blackburn Car2 (NIR − BLUE)/(NIR + BLUE) [35]

86 Gitelson Car1 (1/R520)−1
R570 ∗ NIR [35]

87 Gitelson Car2 (1/R520)−1
REDEDGE ∗ NIR [35]

88 CTR1 R695/R420 [35,38]

89 NPCI2 (RED − BLUE)/(RED + BLUE) [35]

90 ARVI NIR−RED−γ(BLUE−RED)
NIR+RED−γ(BLUE−RED)

[30]

91 EVIr (EVI − EVImin)/(EVImax − EVImin) [103]

92 CARI

REDEDGE
RED ∗

√
(a∗RED+RED+b)2

(a2+1)
0.5

b =
(

550nm −
(

REDEDGE−GREEN
150 ∗ 550

))

a = (REDEDGE − GREEN)/150

[25,108]

93 CARI2

a∗RED+RED+b

(a2+1)
0.5 ∗ REDEDGE

RED

a = (REDEDGE − GREEN)/150
b = GREEN − (a ∗ GREEN)

[25]

94 ACI GREEN/NIR [36]

95 NPCI3 (REDEDGE − BLUE)/(REDEDGE + BLUE) [36]

96 REGI (REDEDGE − GREEN)/(REDEDGE + GREEN) [36]

97 RERI (REDEDGE − RED)/(REDEDGE + RED) [36]

3.2. Review of VI’s in Viticulture Publications

One to 16 different VIs have been used in each of the 113 reviewed papers (Figure 8).
The usage of one or more VIs depends on the requirements of the research. 72 out of 113
have used only one vegetation index while NDVI appeared in 99 different papers. It is
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one of the oldest vegetation indices and the most widely used because of the simplicity
of calculation, and this is the reason why all sensors have bands on red and NIR. The
explanation of results is easy, and most publications have used it in a supportive way in
the research, e.g., to extract the vine rows [71].

Figure 8. The number of vegetation indices applied per paper.

GNDVI was used 16 times, followed by SR and MSR with 11 references. Soil adjusted
vegetation indices (SAVI, MSAVI, OSAVI) had about 10 references each on this review.
SAVI and MSAVI are used most in medium and low-resolution imagery due to the ability
to minimize soil brightness influences [127]. Figure 9 displays the usage of each vegetation
index with 3 or more references. The area of the rectangle is proportional to the references
of each VI.

Figure 9. Vegetation indices usage with 3 or more references represented with proportional area.

4. Applications in Viticulture

4.1. Methodologies in Vine Research

The main methodologies which are used in viticulture research are analyzed in the
present review. Out of 113 papers, 34 have extracted the vine rows (Table 5) in order to be
more accurate by removing the inner row area and focusing only on the vine canopy [18,49].
This method provides results that are not affected by the cultivation practices in the inner
row vegetation. This method is used only in high-resolution imagery, with a threshold of
50 cm pixel size; nevertheless, the main usage is on UAV imagery which have a few cm
pixel size [29]. It is important to mention that about 76% of publications that apply row
extraction methods are on site-specific scale. With vine row extraction the results are more
accurate, due to zero interference from inner row pixels [128] and helpful to apply canopy
management [121]. The main algorithms used in row extraction apply machine learning
techniques [47,49], others apply OBIA to identify vine rows and inner row vegetation [26,28]
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with high accuracy. Classification methods (supervised [18] and unsupervised [44]) achieve
high quality results, beyond that a threshold method is used [121] with vegetation indices
and digital surface model (DSM).

Table 5. Methodologies applied in publications.

Methodologies Count of Papers

Row extraction 34

Estimation/prediction 40

Machine learning 12

Hyperspectral 5

Multispectral 108

Vegetation indices are the tools for predicting the vine status and estimate various
parameters of the plant, VIs provide information about vegetation without the need for in
situ samplings. This approach in viticulture research using remote sensing techniques is
a key factor for management. The main research on estimation is focused on grape yield
and biophysical parameters of grape [85,118]. A total of 40 papers use methodologies to
estimate/predict variables such as yield [72], water status [24], biophysical parameters
of the canopy [4] and grape phenolics [74], while 21 out of 40 use UAV imagery and
8 aircraft imagery to calculate the VIs. Estimation and prediction methodologies with UAV
or airborne platform imagery are used in order to apply selective harvesting according
to the desired type of wine [10], while early growth stage yield [49] and water stress [93]
predictions support decision-making in cultivation practices and irrigation management.
The high-resolution imagery of UAVs or airborne platforms, offers the ability to remove
the inner-row area and focus only on the vine canopy, removing the interference in the
vegetation indices from the inside of the lines and obtain VIs from pure vine vegetation
pixels [129]. The estimation accuracy is a major factor, the water status or water stress
estimation of vine canopy is the one with the best accuracy with high values of r2 up to
0.93 [105]. Other parameters such as chlorophyll concentration on vine leaves, nutrients
uptake and leaf area, are estimated with acceptable accuracy [4,5,120]. The yield is the
more important factor for estimation, in this case linear regressions perform moderately,
while the more accurate results are obtained with artificial neural networks [49].

In recent years, there are studies that have been using machine learning algorithms
in order to achieve more accurate results. They perform better in estimation than older
methods such as regression, applied for binary classification and became a useful and
powerful tool in precision viticulture [6]. A total of 12 papers [29] used machine learning
methodologies in order to identify vine canopy, estimate yield, predict vine water status
and disease detection. One limitative parameter is the lack of data to execute the training of
the algorithm [29,85]. Machine learning is used mainly of several vine parameters such as
water status estimation [6] and for vine row extraction [126], for yield estimation machine
learning provides better results from regressions [49], furthermore, machine learning and
artificial neural networks are used to estimate and locate diseases [26,29,47] more than
other classification methods.

Of the 113 papers, 108 have used multispectral and 5 hyperspectral imagery capturing
the wide use of multispectral platforms. Multispectral platforms constitute a large part of
satellites, in addition multispectral sensors are widely mounted in UAV or aircraft as well
as vegetation health is captured in visible and near-infrared area of the electromagnetic
spectrum. The hyperspectral sensors are used mainly for accurate estimation of chlorophyll
a and b, carotenoids and nutrients [5,38,120]. The narrow bands offer unlimited combi-
nations and formulas in order to be more specific on the absorption of these. Moreover,
hyperspectral vegetation indices are used to estimate grape composition and grapevine
physiology [33,120].
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4.2. Research Focus and Applications in Viticulture

The research based on remote sensing imagery and vegetation indices revolves around
three categories (Table 6); these are multitemporal monitoring, management zones and
terroirs analysis. Three research papers only focus on terroirs analysis with vegetation
indices in order to evaluate differences on vineyards vegetation and crop cycle [60,63,122].
Management zones delineation is referred to in 29 publications, which proves the impor-
tance to manage the spatial variability in the vineyard [50,86]. Furthermore, 68 publications
have monitored the vineyard on multitemporal scale in order to capture the phenology,
growth stages and crop cycle [77,108].

Table 6. Categories of vegetation indices applications.

Applications Categories Count of Papers

Terroirs 3

Management Zones 29

Multitemporal Monitoring 68

This review also gathered the main applications on vines based on vegetation indices
(Table 7) such as estimation of water stress [7] on vines, combining it sometimes with
different irrigation strategies [97], or monitor water stress to change the irrigation [6].
Primarily, the water content of vine leaves was estimated with indices based on SWIR
(GVMI [103], NDWI [32,34], SIWSI [32], SWIRR [32]) showing great accuracy. In other
cases, the water content can be estimated with commonplace vegetation indices, such as
NDVI, despite the absence of short-wave infrared [62], and correlate them with it. With
these methods for estimating water stress, vine growers can manage irrigation and reduce
water waste.

Table 7. Vegetation indices applications on vine.

VIs Applications Count of Papers

Water stress/Irrigation 36

Yield 10

Vine Disease 10

An important application of vegetation indices is to estimate and predict the yield,
which is referred to in 10 publications. Eight out of 10 use high-resolution imagery for
yield estimation provided by sensors on UAVs and Aircrafts [35,37,49,72,74,85,118,130].
The accuracy of yield estimation varies from r2 = 0.6 up to 0.9, which is achieved with
artificial neural networks [49].

Weeds and diseases which affect the vine and specifically the vine canopy, includ-
ing Cynodon dactylon [26] and Flavescence dorée [27] can be detected and reduce their
spread [29]. Methodologies to detect vine diseases are referred to in 10 papers, as shown in
Table 7, and mainly these are diseases detected from RGB generated vegetation indices.

5. Discussion and Future Perspectives

The findings of our review reveal the increasing use of UAVs and Sentinel-2 in viti-
culture. This dipole of free satellite data (Sentinel-2 and UAV) imagery has been reported
and analyzed also in [129,131,132]. The results of the review agree with [129,131,132], as in
the last 2 years the use of UAV and Sentinel-2 data in papers constitute more than 65%. In
2019 UAVs were used in 35% of papers and Sentinel-2 30%, while in 2020 UAVs 37% and
Sentinel-2 23%, capturing the tendency to study on site-specific and regional scale. The
usage of RGB (Red, Green, Blue) and NIR (near-infrared) from UAVs is a powerful tool
for researchers to monitor vineyard development with VIs and apply crop management in
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the vineyard [129]. With 10 m pixel size vegetation indices from Sentinel-2 imagery can
demonstrate the spatial variability in the vineyard [19] but do not remain unaffected by
inner row vegetation and different cultivation practices between vineyards. This shows
that it is possible to study vineyards with some limitations, which relate to cloud cover and
assumptions, e.g., the presence of different types of land cover in an area of 10 m × 10 m,
while the positive is that the cost is negligible and as a satellite it offers 3–5 days revisit.
Remote sensing platforms such as Sentinel-2, used for the assessment of spatial variabil-
ity [19] and detect changes in LAI (leaf area index) of vineyards [56]. As reported [131,132],
medium resolution satellite data are successfully used in the observation of crops with
vegetation indices. UAVs offer VIs data for vineyard analysis with high accuracy and high-
resolution for vine row extraction [126] in a low cost [72]. Furthermore, it is also possible
to study a vineyard area on regional scale with free access imagery such as Sentinel-2.

The long course of VIs begins in 1968 with RVI [20], and in 1973 with NDVI [21].
The combinations for the creation of VIs are almost unlimited, in this case the VIs used
in viticulture almost reach 100. VIs have been created to study various parameters of
vegetation; nevertheless, NDVI is the most often appearing with a total of 99 times, and
was used 27 times to extract vine rows, and 29 times to delineate management zones in the
vineyard. Despite the large number (97) of vegetation indices collected in this review, more
than 10 times only 6 were used (NDVI, GNDVI, MSR, SR, MSAVI, RDVI). The emergence
of new VIs showed a repletion in the early 2000s, later, hyperspectral remote sensing
helped to calculate new VIs. Initially, the VIs identified healthy vegetation relative to other
land cover and then evolved to identify specific parameters of vegetation. We conclude
that in viticulture VIs are a field that can evolve by increasing the use of different VIs,
rather than the basic ones that use bands in red and near-infrared. The development
of the sector nowadays is based on the software part and the processing of the data for
the better performance of the VIs, e.g., machine learning [6,49,126] and artificial neural
networks [26,29,47].

The future perspectives of the research focus on VIs Big Data analytics [131] and tech-
nologies such as cloud computing, machine learning, IoT (Internet of Things) and artificial
intelligence [13] to manage and analyze VIs data. An important contribution to research
has the combination of sensors such as Sentinel-2 and Sentinel-3, for evapotranspiration
estimations, and Sentinel-2 with Sentinel-1 (Synthetic Aperture Radar) for soil moisture as-
sessment and irrigation management [132]. Research is now focused on the implementation
of decision support systems (DSS) with VIs for real economic development [129].

The design of the relational database played an important role in conducting the
review. The three main tables (Papers, VIs and Sensors) are interconnected, and results can
be extracted from all directions. After assigning the data to the database, it was possible to
find out which platforms imagery each index have used, for example, which papers used
NDVI from Sentinel-2 data, or which platform GNDVI have used for calculation and how
many times. In conclusion, with the relational database we were able to access and answer
every question that concerned us, during the design and writing.

6. Conclusions

The aim of this review was to gather all the vegetation indices and applications which
have been used in viticulture with remote sensing methods. These include low-resolution
satellite platforms such as MODIS, medium-resolution (Landsat, ASTER, Sentinel-2) and
high-resolution satellite platforms (Worldview2, IKONOS, Quickbird). In addition, remote
sensing methods are the non-orbit sensors such as aircrafts and UAVs equipped with
multispectral and RGB cameras. Methodologies based on spectroradiometer-produced
vegetation indices are not included in this review due to proximal sensing which requires
the presence of a human in the field.

The wide usage of UAV demonstrates the utilities of this technology in viticulture, the
high-resolution it offers is ideal to extract the vine rows and be more accurate by removing
the inner row pixels. Before UAVs, aircrafts that were used instead for the production of
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high-resolution imagery. High-resolution imagery that comes from UAV is a value for
money option as a remote sensing sensor in the vine research and precision viticulture,
due to the ability to extract the vine rows. In medium-resolution imagery, Sentinel-2 excels
in use over others, due to the ability to reveal spatial variability that can be used on a
regional scale.

From a geographical point of view, these different methodologies are applied in study
areas that occur in countries with traditions of viticulture and beneficial climate conditions
for the development of viticulture. In high latitudes however, vineyards research with
remote sensing methods are not used. In contrast, they use proximal sensing or focus
on other parameters, such as soil and precipitation. In conclusion, as the geographical
exploration and the spatial distribution of the study areas are concerned, it seems that the
research is located in mid-latitudes mainly in around ±40 degrees from the equator.

In this review, we have presented 97 different vegetation indices with applications
on different scales, such as regional or site-specific. The keywords “precision viticulture”,
“remote sensing”, “UAV” and “NDVI” were recorded more times, which shows that
the research trend of the present is to study the spatial variability on the vineyard with
vegetation indices and UAV’s imagery. Additionally, the aim of research on the regional
scale mainly focuses on evaluating methodologies in different vineyards and rarely to
categorize or study differences in the regional scale.

The use of vegetation indices on viticulture aims to analyze and estimate the condition
of the vine canopy. Vegetation indices are sensitive to different characteristics of the plant
such as chlorophyll, pigments, biomass or water content on the leaves. The applications of
these in vineyards are an extra tool for modernization viticulture with new technologies
and application of precision viticulture. The large amount of spatial data from remote
sensing in recent years has led to the era of big data. The evolution and implementation of
hyperspectral imagery and hyperspectral VIs are of interest for the future in the field of
PV. The evolution of research on the remote sensing vegetation indices, their management
with artificial intelligence, neural networks, and smart technologies provides producers
with more efficient decision support systems and the ability to apply technologies in order
to increase yield and quality.
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