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Remote synchronization in star networks
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We study phase synchronization in a network motif with a starlike structure in which the central node’s (the

hub’s) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally

a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while

the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the

mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant

amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we

derive an analytic expression which supports our explanation of the mechanism.
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I. INTRODUCTION

Networks of oscillatory units have been recently studied

widely [1–4]. These kinds of systems serve as a modeling

basis for a variety of systems from neuroscience [5], pat-

tern recognition [6], chemistry [7], biology [8], climatology

[9–11], ecology [12], social systems [13], or engineering

as for instance in robot coordination [14], communication

[15], and sensor networks [16], and as a general concept

for understanding complex self-organizing systems. Gaining

knowledge about networks of coupled dynamical systems

helps in understanding several phenomena, in particular

synchronization, self-organization, and information transfer

in complex systems.

Many networks found in nature have a scale-free topology

[1,17], which is a structure where just a few nodes—the so

called hubs—hold the major bulk of the links. In this work

we study a typical network motif of such a hub (Fig. 1). It is

interesting to study synchronization in such a hub motif as it

captures the essence of scale-free topologies.

Many articles on oscillatory networks focus on a rather

homogenous distribution of the nodes’ parameters across the

network; that is, all nodes are either identical or just detuned

within a small parameter range. This is very likely due to

the possibility of an analytical treatment of the underlying

equations, which becomes very complicated or even undoable

if the network and thus the describing equations become too

heterogenous. However, the assumption of homogeneity is,

in fact, not fulfilled in most realistic situations, which means

it is quite unlikely to find a real system made up of several

absolutely identical subsystems.

Therefore, we study in this work an oscillatory network

model and focus on a strong heterogeneity; precisely, the

frequency of the hub is strongly detuned with respect to the

peripheral nodes. We investigate phase synchronization (PS)

in these motifs. Within this setup we focus on a phenomenon

which we will call remote synchronization (RS), which is a

situation in which two or more nodes, say n and m, which

are not coupled directly, but through other nodes only, are

phase synchronized, but (and this is important) the transmitter

nodes, that is the nodes along the path from n to m, are not

phase synchronized with n and m, respectively.

We also investigate RS experimentally. To this aim, we

designed a complex network made of coupled electronic

nonlinear oscillators and study it with respect to different

values of the coupling strength. The experimental results

obtained confirm the emergence of RS in real systems.

In addition to numerical and experimental studies, we give

necessary conditions for the existence of RS and show that

fixed amplitude systems, such as Kuramoto phase oscillators,

cannot generate the phenomenon and explain this analytically

as well.

The outline of this paper is the following. First we introduce

our model and the parameters and give a description of the

experimental setup. Then we describe the observed phenomena

and present analysis of them. Finally, we discuss the outcome

and explain the underlying mechanism.

II. MODEL AND EXPERIMENTAL SETUP

Since we want to focus on the mere phenomenon of

synchronization, in particular PS, we chose a simple and

paradigmatic model, namely the Stuart-Landau oscillator.

This model is the most simple one having a harmonic

limit cycle without any distortions, so we can exclude n : m

synchronization in our analysis for now.

We consider a network of diffusively coupled Stuart-

Landau oscillators [7,18]. The equations are given by

u̇n = (α + iωn − |un|
2)un +

κ

d in
n

N
∑

m=1

gnm(um − un), (1)

where u ∈ C, α is the (Hopf) bifurcation parameter which

controls how fast the trajectory will decay onto the attractor, ωn

is the eigenfrequency of the individual uncoupled oscillator n,

κ is the overall or global coupling strength, d in
n is the in-degree

of node n and is used to normalize the input into node n, and

(gnm) is the adjacency matrix, which is symmetric, since we

consider bidirectional couplings.
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FIG. 1. Graphic visualization of a hub network motif (star motif).

Now we give the values of the parameters used for the

simulations in this paper. The number of nodes has been set

to N = 5 in correspondence with our experimental setup, but

we also verified numerically the existence of the phenomenon

for higher values of N . The decay parameter is α = 1. As

mentioned in the Introduction we are analyzing a hub motif

(starlike network, Fig. 1), due to its importance as a building

block for scale-free networks. Node 1 is chosen to be the hub

and thus n = 2, . . . ,N subscripts the peripheral nodes. The

adjacency matrix is given by

(gnm) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The in-degrees are {d in
n } = {4,1,1,1,1}. We chose the fre-

quency of the hub to be ω1 = 2.5 in the beginning, but we

discuss the influence of a continuous change of this value later,

as well. The peripheral nodes have a similar, but not identical,

frequency since some repelling force is needed in order to

see the transition to PS. The frequencies used in numerical

simulations are {ωn}
5
n=2 = {0.975,0.992,1.008,1.025}

For the experimental realization Eq. (1) must be trans-

formed into its equivalent real form which is given by

d

dt

(

xn

yn

)

=

[(

α −ωn

ωn α

)

−
(

x2
n + y2

n

)

1

] (

xn

yn

)

+
κ

d in
n

N
∑

m=1

gnm

[(

xm

ym

)

−

(

xn

yn

)]

. (2)

The experimental setup is based on an electronic circuit

mimicking the behavior of the Stuart-Landau oscillator. The

circuit made of discrete components (operational amplifiers,

multipliers realizing the nonlinearities of the oscillator, and a

number of passive components such as resistors and capaci-

tors) has been designed in order to obey to the same equations

[Eq. (2)] of the Stuart-Landau oscillator, after appropriate

scaling in frequency. We designed the circuit by following

the guidelines reported in Ref. [19] and used, for instance,

in Refs. [20,21]. The values of some components of the hub

and peripheral circuits are chosen in a different way so that to

realize the different simulation parameters used for hub and

peripheral nodes. The circuits have been then coupled in such

a way that a single resistor for each node controls the value

of the coupling strength in Eq. (2). The circuit schematic,

the governing equations, and the used component values are

reported in the Appendix .

III. EMERGENCE OF REMOTE SYNCHRONIZATION

We start our analysis with a visual inspection of numerically

integrated time series of system (1). Figure 2 depicts the

excerpts from the time series, as well as the instantaneous

frequencies and Lissajous-like patterns of the phases. For low

coupling [Fig. 2(a)] we see that the nodes are interacting

with each other and modulations of the phase appear, but no

(a)

(b)

(c)

FIG. 2. (Color online) Plots to help in understanding the observed

phenomena. For three different values of the coupling strength

κ snapshots are shown of the time series u(t), the instantaneous

frequencies ϕ̇(t), and Lissajous-like figures made by plotting pairwise

the phases ϕn of all oscillators against each other. The red (gray) line is

the hub. (a) Snapshots for κ = 0.2. Here no synchronization between

any nodes is visible. (b) Snapshots for κ = 0.6. Here we find RS.

The peripheral nodes are synchronized with each other while the hub

(node 1) remains unsynchronized with the rest. (c) Snapshots for κ =

0.8. Regime of full PS. All nodes of the network are synchronized

with each other.
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synchronization is visible. For a strong coupling [Fig. 2(c)]

we find a regime of full PS with an identical amplitude of

all nodes and without any modulations. The phenomenon of

RS appears for intermediate values of the coupling strength

[Fig. 2(b)]. Here we see that all peripheral nodes become phase

synchronized, while the hub remains with its own phase and

frequency.

In order to study this more precisely, we introduce some

measures for PS. The most common measure for PS is the

Kuramoto order parameter, which is defined

rnm =
∣

∣

〈

ei[ϕn(t)−ϕm(t)]
〉

t

∣

∣, (3)

where 〈·〉t denotes the mean over time, and ϕn(t) is the phase

of oscillator n. For the Stuart-Landau oscillator the phase is

simply given by ϕ(t) = −i ln(u/|u|) .

Since we are interested in the situation where the peripheral

nodes form one synchronized cluster and the hub is separated

from this, that is, it forms another trivial cluster with itself,

we introduce two measures accounting for that situation. For

measuring the coherence of the hub with the rest of the

network we define rdirect = 1
N−1

∑N
n=2 r1n. As a measure for

the coherence of the peripheral cluster we define r indirect =
2

(N−1)(N−2)

∑N
n=2,m>n rnm, that is, the mean of the pairwise

measured phase coherence among the peripheral nodes.

Figure 3 shows the transition to PS of both measures in

dependence on the coupling strength κ. The measures have

been computed from numerical integration of Eq. (1) with

the parameter setup given in Sec. II. Here it is clearly visible

that the phase coherence of the peripheral nodes increases

considerably faster than the synchronization of the hub with

the rest. The peripheral nodes reach full PS at a value of the

coupling strength κ of about 0.47, while the hub joins this

cluster much later at κ ≈ 0.74, when it hits the global Arnold

tongue of the network. In the figure we marked three steps in

the curve of r indirect. These steps correspond to the onset of RS

between two, three, and all (four in our case) peripheral nodes

of the network. These transitions are more clearly visible in

Fig. 5(b) in which the number of synchronized clusters are

FIG. 3. (Color online) Transition to PS for the hub motif (Fig. 1).

From the plot the onset of RS is clearly visible. The three annotations

indicate synchronization between two, three, and four peripheral

oscillators, respectively.

FIG. 4. (Color online) Transition to PS for the hub motif for

experimentally obtained data. The regime of RS is clearly visible.

shown. This figure is discussed in more detail later in the

article.

Figure 4 shows the same plot for experimentally generated

data. The data have been obtained by a set of experiments on

the implemented network of Stuart-Landau oscillator circuits

performed with respect to different values of the coupling

κ, starting from κ = 1.0 and decreasing this parameter. The

coupling strength is decreased by small steps and for each

value of it, the state variable xn for each circuit has been

acquired with a National Instruments USB6255 acquisition

board with the sampling frequency fs = 300 kHz. The phases

of the oscillators have been then calculated by applying the

Hilbert transform on the obtained time series and the two

parameters r indirect and rdirect have been calculated. The result,

shown in Fig. 4, confirms the existence of RS in real systems.

It should be noted that the coupling strength is implemented in

the circuit through five different components, which makes it

quite difficult to obtain exactly the same value for it, taking also

into account the tolerances in the whole network circuit. For

this reason, in Fig. 4 the average value 〈κ〉 of this parameter

is reported. The scenario observed is qualitatively similar to

that obtained with numerical data, and the two transitions

occur at slightly different values of the parameter. It is clearly

visible that there exists a quite large domain of the coupling

parameter, where we have RS while the hub remains with its

own dynamics.

As a second analysis tool we are computing the Lyapunov

spectrum (LS). Any nontrivial attractor (limit cycle, chaotic)

of continuous dynamical systems has one Lyapunov exponent

(LE) equal to zero, corresponding to the free phase of that

system. Any perturbation in the direction of the system’s flow

will remain constant over time. In the case of an ensemble

of uncoupled systems with a limit cycle or chaotic attractor,

there will be as many zero LEs as there are systems included.

As one couples those systems, PS will manifest itself by one

or more (depending on the number of subsystems forming

the synchronized cluster) LEs becoming strictly negative due

to the attractive force between the former free phases of the

oscillators [22]. Hence, the number of LEs equal to zero

can be used as an indirect measure for the number of phase

synchronized clusters.
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FIG. 5. (Color online) (a) �r in dependence on �ω and κ, which

can assume values between 0 and 1, whereby values close to 1 indicate

RS (see text). The dotted line shows the analytically derived border

of the Arnold tongue. The dark areas to the left and right of the

Arnold tongue are regimes in which RS occurs. (b) The number of

LEs equal to zero in dependence on �ω and κ. The two-cluster state

corresponds to the RS regime.

In order to examine this phenomenon in more detail, we also

studied the clustering in dependence on the hub’s frequency. In

Fig. 5(a) we plot �r := |rdirect − r indirect| in dependence on the

global coupling strength κ and the frequency mismatch �ω of

the hub with respect to the mean frequency of the peripheral

nodes: �ω := ω1 − 〈ωn〉
N
n=2. In the case of RS r indirect will be

close to 1, while rdirect will be rather low, say less than 0.5,

so �r will be large here. If we are either in a regime where

we have no synchronization or full synchronization rdirect and

r indirect will be about equal (either around 0 or around 1) and

thus �r will be low.

Figure 5(b) shows the number of LEs equal to zero for the

same parameters �ω and κ. As already mentioned, this is an

indirect measure for the number of synchronized clusters.

The dark area in Fig. 5(a) corresponds to the regime where

RS exists. We find the same shape in Fig. 5(b) with a value of

2, thus showing that we have two synchronized clusters here.

Both measures are in very good agreement with each other. For

coupling strengths κ > 1 and outside the Arnold tongue we

have oscillation death, which manifests in the LS by all LEs

becoming negative, since the system has only one global stable

fixpoint. In both figures we clearly see the classical V-shaped

Arnold tongue of the globally synchronized state, that is, a

regime of one cluster PS.

For system (1), the Arnold tongue A can be computed

analytically,

A =
{(

κ,{ωn}
N
n=1

)

| κ > max
n

|� − ωn|
}

,

where � is the frequency inside the Arnold tongue, given by

� =
1

2

(

ω1 +
1

N − 1

N
∑

n=2

ωn

)

.

In Fig. 5(a) the analytically computed border of A is shown

with dotted lines and agrees very well with the border observed

from the numerically integrated data.

In the following we discuss the basic mechanism of RS

and give an explanation for the necessary conditions for RS to

occur robustly. We first describe the mechanism verbally and

give a mathematical derivation afterward.

IV. MECHANISM UNDERLYING REMOTE

SYNCHRONIZATION

Since we are interested in the mechanism of how two

indirectly connected oscillators become synchronized, it is

sufficient to focus on three nodes only: two peripheral nodes,

to which we refer as nodes 2 and 3 (in correspondence with

our initial numbering), connected indirectly via the hub (node

1). In order for nodes 2 and 3 to mutually synchronize, actions

of node 2 need to be transmitted to node 3 and vice versa.

It means that the dynamics of node 1 have to be such that

they leave the transmitted actions of nodes 2 and 3 possibly

unaltered. Thus, two conditions have to be fulfilled for RS to

occur. First, the average time scale of the attractor of node 1

should be sufficiently different from the ones of the attractors

of node 2 and node 3 in order to not to synchronize with them.

Furthermore, nodes 2 and 3 must not be so different that they

are able to synchronize through a weak interaction. Second,

perturbations of node 1 must not decay too fast in order to get

transmitted via node 1 .

The decay of perturbations of the Stuart-Landau oscillator

is controlled by the parameter α in Eq. (1). The larger the α

the faster a deviation from the limit cycle will “fall back” onto

that. For α → ∞ any deviation of the amplitude will decay

immediately. Thus, we expect that the RS regime disappears

for α → ∞. In this case, after a change into polar coordinates

and omitting the amplitude, Eq. (1) can be transformed into a

network of coupled Kuramoto phase oscillators [7,23]:

ϕ̇n = ωn +
κ

d in
n

N
∑

m=1

gnm sin(ϕm − ϕn). (4)

We applied the analysis described in Sec. III to this network

of phase oscillators using the same setup and parameters as in

the Stuart-Landau case described in Sec. II. Figure 6 shows

�r(�ω,κ) for this system. By comparing Fig. 6 with Fig. 5(a)

the absence of the RS regime for the phase oscillators is clearly

visible (absence of the dark areas to left and right of the

Arnold tongue which indicate RS). We have also checked

that by computing �r for different increasing values of α.

In this case the disappearance of the RS can be tracked.

Thus, our previously made assumption, that the ability of

indirectly coupled oscillators to synchronize remotely depends

on a certain flexibility or memory of the amplitude of the

transmitting system, is correct. Even more crucial is that it

depends on the existence of a free amplitude at all. We show,

in fact, that when amplitude perturbation is not possible, as for

instance in coupled Kuramoto phase oscillators, for which a
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FIG. 6. (Color online) �r(�ω,κ) for the hub motif of Kuramoto

phase oscillators [Eq. (4)]. By comparing with Fig. 5(a) it can be

observed that there is no RS regime here.

fixed not perturbable amplitude is assumed indirectly, RS does

not appear.

Of interest is the dependence on the hub’s frequency of

the RS state, which cannot be explained with the above

argumentation alone. In the following we derive some analytic

description, which qualitatively accounts for that.

We come back to the situation of three coupled Stuart-

Landau oscillators, as discussed in the beginning of this

section. We linearize the hub oscillator around its limit cycle

and leave the other two nodes untouched. We get the following

equations:

u̇h = (−2α + iωh)uh + 1
2
κ(u1 + u2 − 2uh), (5)

u̇1,2 = (α + iω1,2 − |u1,2|
2)u1,2 + κ(uh − u1,2). (6)

These equations describe two Stuart-Landau oscillators

[Eq. (6)] coupled through a linear filter whose dynamics is

described by the Eq. (5). Applying the Laplace transform we

can write the transfer function for this filter:

Hh(ω) =
κ

iω + 2α + κ − iωh

. (7)

Using this, the hub can be replaced by an effective coupling

coefficient, which is just a number derived from Eq. (7). Thus,

we can write

u̇1,2 = (α + iω1,2 − κ − |u1,2|
2)u1,2 + κHh(ω2,1)u2,1.

(8)

From this perspective we are able to explain two main

properties: First, obviously, since limα→∞ Hh = 0 the effective

coupling strength between the two peripheral oscillators drops

to zero and they are effectively uncoupled and, thus, unable

to synchronize. This confirms our previous discussion of the

mechanism as well as the numerically made analysis with

Kuramoto phase oscillators. Second, by inspection of Eq. (7)

the dependence of the coupling strength on the frequency

of the hub is clear. The faster the hub oscillates the lower

the effective coupling strength will be. Figure 7 shows the

transition curve to RS in the (�ω,κ) plane for the discussed

system of three oscillators in comparison with the system of

two effectively coupled oscillators, as described by Eqs. (8)

and (7). The simplified system can qualitatively describe the

made observations and even agrees quantitatively for low and

high values of the frequency mismatch �ω adequately.

FIG. 7. (Color online) Comparison of the transition lines to RS

between a system of three nodes (real hub), described by Eq. (1)

with N = 3, and the linear approximation, described by Eqs. (8)

and (7). The frequencies of nodes 1 and 2 are 0.975 and 1.025,

respectively. The frequency of the hub has been changed from 1 to

15 (corresponds to 1 + �ω). The dotted lines mark the regions of the

Arnold tongue and of oscillation death and are inserted to help the

reader by comparing with Fig. 5.

V. HIDDEN INFORMATION TRANSFER

Finally, we want to stress another important point. From

our study we conclude that in the analysis of complex

heterogeneous systems the choice of an appropriate corre-

lation or information measure becomes more important. We

demonstrate this with an example. Analogously to Eq. (3), we

introduce another measure,

ρnm =
∣

∣

〈

ei[θn(t)−θm(t)]
〉

t

∣

∣ , (9)

where θ (t) = arctan[Hϕ̈(t)/ϕ̈(t)] and H is the Hilbert trans-

form operator (see the Appendix in Ref. [18] for details). We

use the second derivative of ϕ in order to eliminate the bias.

The measure ρ is an index for PS between the modulations of

the instantaneous frequencies ϕ̇, which are visible in Figs. 2(a)

and 2(b). From visual inspection of those figures one sees that

in the case of RS these modulations of ϕ̇ are in synchrony

among all nodes. Figure 8 shows for the same data which had

FIG. 8. (Color online) Transition of PS for the modulation of the

instantaneous frequency of the nodes.
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been used to create Fig. 3, the measures ρdirect and ρ indirect

which are analogously computed to rdirect and r indirect with

r replaced with ρ. From the resulting graph one clearly

sees that the phase modulations of all the oscillators in the

network synchronize completely already at the first transition

for κ ≈ 0.47. At κ ≈ 0.74 ρ drops to zero, which is due

to the disappearance of the phase modulations (oscillation

death due to a Hopf bifurcation; see Ref. [24]). With the

measure ρ we are able to track the increase of the information

transmission within the network. Other nonlinear phase space

based measures (such as described in Ref. [25]) are also able

to track this transition. In a more complex network, this or a

similar method could be used to track the path through which

certain remotely synchronized oscillators communicate. This

is of special importance, in particular, related to the issue of

inferring the network topologies from measured time series.

Our example demonstrates that by using simple PS measures

(as for instance r) the network’s physical connectivity is

obfuscated, but choosing other measures or—even better—

combinations of different measures improved statements about

the true connectivity of networks can be made.

VI. CONCLUSIONS

Our findings shed some new light on the issue of func-

tional versus structural topology in networks of interacting

dynamical systems, which is of high importance, especially in

the field of neuroscience. We have shown that the measured

topology via a “naive” PS measure gives a wrong picture

of the underlying network structure and explained this by a

mechanism, which we call RS. Nodes can “speak” with each

other through a transmitting nodes without synchronizing with

this one, given that the transmitter has a sufficiently different

frequency.

We verified that RS also occurs in real experiments by

designing a network of five coupled oscillators showing

the regime of RS for coupling strength values which are

intermediate between the case of no synchronization and that

of PS of the whole network. Therefore, not purely phase

oscillators may reveal phenomena that can be experimentally

observed and that purely phase models are not able to explain.

Detailed analysis of RS has been carried out in the hub motif

only, but preliminary studies in complex topologies show the

occurrence of RS there as well. However, in such a scenario

more complicated dynamics are possible and a detailed study

with different analysis approaches has to be carried out.

RS might also find applications in several fields, such

as neuroscience, in understanding information transmission

inside the brain or in helping design new, more efficient

artificial neural networks, as described in Ref. [6]. Another

application might be in climate research, in particular in

understanding teleconnections (i.e., long-range connections)

such as between the Indian monsoon and El Niño-Southern

Oscillation [10,11,26].
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APPENDIX: CIRCUIT

An assembly of coupled electronic circuits was used to

test RS in real physical systems. In this Appendix, the

electronic oscillator used and the coupling circuitry between

the oscillators are briefly described.

The circuit that was built is governed by a rescaled version

of Eqs. (2), that is, d
dt

→ τ d
dt

, where τ is a time scaling

factor (τ = 10−5s in our circuit). The other circuit parameters

were set to the values discussed in Sec. II. Figure 9 shows a

schematic of the circuit. The values of the circuit components

have been chosen in order to match Eqs. (2). In particular,

the relationships between the parameters α and ω and the

component values are given by

α =
R6

R1

− 1 =
R13

R10

− 1, ω =
R6

R4

=
R13

R11

. (A1)

Equations (A1) have been used to set the component

values for the hub circuit and for the peripheral nodes. The

FIG. 9. Schematic of the circuit described by Eqs. (2) (rescaled

in time with τ ). The component values are R1 = 500 �, R3 = R4 =

R5 = R6 = 1 k�, R6 = 100 �, R8 = R9 = 4 k�, R10 = 2 k�,

R11 = 4 k�, R12 = 1 k�, R13 = 4 k�, R14 = 100 �, R15 = 1 k�,

R16 = 7.2 k�, R17 = 1 k�, R18 = 7.2 k�, R19 = R20 = R21 =

R22 = 1 k�, R23 = R24 = 2 k�, R25 = 1 k�, R26 = 2 k�, R27 =

R28 = R29 = R30 = R31 = R32 = 1 k�, C1 = C2 = 100 nF. The op-

erational amplifiers U1, . . . ,U9 are all type TL084. The analog

multipliers M1, . . . ,M4 are all type AD633. Power supply is ±9 V.
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component values listed in the caption of Fig. 9 refer to

a peripheral node. The hub components differ from that of

a peripheral node for the following resistors: R3 = 667�,

R4 = 400�, R11 = 1.6k�, R12 = 727�. Resistors with 1%

tolerances and capacitors with 5% tolerances have been

used.

The experimental coupled oscillator setup consisted of five

circuits arranged in a starlike network. The coupling terms

κ(xj − xi) and κ(yj − yi) are produced by adding the x

(respectively y) signals and multiplying them for a tunable

gain factor through an operation amplifier in algebraic adder

configuration. The tuning of the coupling coefficient is realized

by using as feedback resistor a potentiometer. The coupling

terms are then added into the equations of the electronic

oscillator through the operational amplifier adders U1 [term

κ(xj − xi)] and U2 [term κ(yj − yi)].
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