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We study a Kuramoto model in which the oscillators are associated with the nodes of a complex

network and the interactions include a phase frustration, thus preventing full synchronization. The system

organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry

are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this

result, and we show how the frustration parameter affects the distribution of phases. An application to

brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining

correlated functional modules across distant locations.
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Synchronization of coupled dynamical units is a ubiq-

uitous phenomenon in nature [1]. Remarkable examples

include phase locking in laser arrays, rhythms of flashing

fireflies, wave propagation in the heart, and also normal and

abnormal correlations in the activity of different regions of

the human brain [2–5]. In 1975 Y. Kuramoto proposed a

simple microscopic model to study collective behaviors in

large populations of interacting elements [6]. In its original

formulation the Kuramoto model describes each unit of the

system as an oscillator which continuously readjusts its

frequency in order to minimize the difference between its

phase and the phase of all the other oscillators. This model

has shown very successful in understanding the spontane-

ous emergence of synchronization and, over the years,

many variations have been considered [7–9]. Recently,

the Kuramoto model has been also extended to sets of

oscillators coupled through complex networks [2,10,11],

and it has been found that the topology of the interaction

network has a fundamental role in the emergence and

stability of synchronized states [12,13]. In particular, the

presence of communities—groups of tightly connected

nodes—has a relevant impact on the path to synchroniza-

tion [14–18], and units that are close to each other on the

network, or belong to the same module or community [19],

have a higher chance to exhibit similar dynamics. This

implies that nodes in the same structural module share

similar functions, which is a belief often supported by

empirical findings [3,20]. However, various examples are

found in nature where functional similarity is instead asso-

ciated with morphological symmetry. In these cases, units

with similar roles, which could potentially swap their

position without altering the overall functioning of the

system, appear in remote locations of the network. Some

examples include cortical areas in brains [21], symmetric

organs in plants and vertebrates [22,23], and even atoms in

complex molecules [24]. Therefore, identifying the sets of

symmetric units of a complex system might be helpful to

understand its organization. Finding the global symmetries

in a graph, i.e., constructing its automorphism group, is a

classical problem in graph theory. However, it is still

unknown if this problem is polynomial or NP-complete

[25,26], even if there exist polynomial-time algorithms

for graphs with bounded maximum degree [27]. Recent

works have focused instead on defining and detecting local

symmetries in complex networks [28,29]. Nevertheless, the

interplay between the structural symmetries of a network

and the dynamics of processes occurring over the network

has been studied only marginally [30–32], or for specific

small network motifs [33–35].

In this Letter we show that network symmetries play a

central role in the synchronization of a system. We con-

sider networks of identical Kuramoto oscillators, in which

a phase frustration parameter forces connected nodes

to maintain a finite phase difference, thus hindering the

attainment of full synchronization. We prove that the

configuration of phases at the synchronized state reflects

the symmetries of the underlying coupling network. In

particular, two nodes with the same symmetry have iden-

tical phases, i.e., are fully synchronized, despite the dis-

tance between the two nodes on the graph. Such remote

synchronization behavior is here induced by the network

symmetries and not by an initial ad hoc choice of different

natural frequencies [30].

Let us consider N identical oscillators associated to the

nodes of a connected graph GðN ;LÞ, with N ¼ jN j
nodes and K ¼ jLj links. Each node i is characterized, at
time t, by a phase �iðtÞ whose time evolution is governed

by the equation
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_�i ¼ !þ �
X

N

j¼1

aij sinð�j � �i � �Þ: (1)

Here ! is the natural frequency, identical for all the oscil-

lators, and A � faijg is the adjacency matrix of the cou-

pling graph. The model has two control parameters: � > 0

accounting for the strength of the interaction, and �, the
phase frustration parameter ranging in [0, �=2]. When

� ¼ 0, the model reduces to a network of identical

Kuramoto oscillators. In this case, the fully synchronized

state is globally stable for a set of initial conditions having

finite measure [6,9] and the transient dynamics closely

reflects the structure of the graph, so that nodes belonging

to the same structural module evolve similarly in time [14].

However, the synchronized state can coexist with other

nontrivial attractors, e.g., uniformly twisted waves, espe-

cially if the coupling topology is regular and sparse

(see Ref. [12] for a discussion about the size of the sync

basin). Instead, if the oscillators are not identical the

frequency distribution tends to separate their phases and,

as a result, there is a transition from an incoherent state

(with order parameter r ¼ 1

N
j
P

N
j¼1

ei�j j equal to 0) to a

synchronized one (r � 0) at a critical value �c of the

coupling strength.

The introduction of a phase frustration � � 0 forces

directly connected oscillators to maintain a constant phase

difference [36]. In particular, we found that for a wide

range of �> 0 the dynamics in Eq. (1) reaches a stationary

state in which the oscillators at two symmetric nodes have

exactly the same phase, and this phase differs from the

phases of nodes with different symmetries. Let us first

illustrate this behavior and the effect of � on the three

graphsGa,Gb andGc shown in Fig. 1. In the three topmost

panels of Fig. 2 we report the results of the numerical

integration of Eq. (1) on the graph Ga for three different

values of �. We find that, after a transient, the system

settles into a stationary state in which, at any time t, the
phases are grouped into four different trajectories: �1ðtÞ,
�2ðtÞ ¼ �3ðtÞ, �4ðtÞ ¼ �7ðtÞ and �5ðtÞ ¼ �6ðtÞ. In general,

by increasing � up to a certain value �c we better separate

the four trajectories.

The four clusters of nodes obtained for �< �c are

identified by a color code in Fig. 1. We notice that each

cluster groups together all the nodes with the same sym-

metry. In this way two distant nodes of the graph, e.g., node

4 and node 7, are fully synchronized even if the other nodes

in the paths connecting them have different phases. In this

respect, what we observe is a remote synchronization [30].

We have found similar results for the linear chain and for

the Bethe lattice (see nodes with the same colors in Gb and

Gc in Fig. 1).

Notice that if the system reaches a synchronized state

and � is small enough, Eq. (1) can be linearized by

replacing the sinus with its argument. We obtain

_�i ¼ !� �

�

X

N

j¼1

Lij�j þ �ki;

�

(2)

where ki ¼
P

jaij is the degree of node i, Lij are the entries

of the Laplacian matrix of the graphL � D� A, andD is a

diagonal matrix such that Dii ¼ ki. Without loss of gen-

erality, we can set � ¼ 1, ! ¼ 0. If the system is synchro-

nized then _�i ¼ �, 8i, so that the phases must satisfy

the equations
P

N
j¼1

Lij�j ¼ �½hki � ki� at any time, or

equivalently,

L� ¼ �½hki1� k� (3)

where hki ¼ N�1
P

iki is the average degree of the network.
This corresponds to a synchronization frequency _�i ¼
� ¼ ��hki8i. In a connected graph the Laplacian matrix

has one null eigenvalue and the system of Eq. (3) is

singular. Consequently, at each time t we can solve the

system by computing the phase difference between each

node and a given node chosen as reference. For instance, if

in Ga we define �jðtÞ ¼ �jðtÞ � �1ðtÞ, j ¼ 2; . . . ; 7, by

solving Eq. (3) we obtain �2 ¼ �3 ¼ �½hki � 2�, �4 ¼
�7 ¼ 2�½hki � 2� and �5 ¼ �6 ¼ 3�½hki � 2�. This is in
agreement with the results of the simulations: the phases

are clustered into four groups, with nodes with the

same symmetry having the same phase, and nodes with

different symmetries being separated by a phase lag that

depends on � as in the relations found above. An analo-

gous analytical expression can be derived for a finite chain

(graph Gb in Fig. 1), for which we obtain �n � �n�i ¼
��n � ��nþi ¼ ½ðiðiþ 1Þ=2Þhki � i2�� and �n � �0 ¼
��n � �0 ¼ ½ðnðnþ 1Þ=2Þhki � n2��. Consequently, two

FIG. 1 (color online). The presence of frustration reveals clus-

ters of symmetric nodes. The color code represents the phases of

nodes at a given time in the stationary state. (a) In the first graph

(Ga), node 2 is synchronized to node 3, node 4 to node 7, and

node 5 to node 6. (b) In a finite chain (Gb), pairs of nodes

symmetrically placed with respect to the central node are per-

fectly synchronized. (c) In a finite Bethe lattice (Gc) all the

nodes placed at the same distance from the center have equal

phases.
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nodes symmetrically placed with respect to node 0 will

have identical phases.

We now provide a general argument to explain why the

synchronization of Eq. (1) is related to graph symmetries.

A graph GðN ;LÞ has a symmetry if and only if it is

possible to find a bijection �: N ! N which preserves

the adjacency relation ofG, i.e., which is an automorphism

for G. Formally, this means that there exists a permutation

matrix P ¼ Pð�Þ such that PAP�1 ¼ A. If P corresponds

to an automorphism of G then P commutes with A, i.e.
PA ¼ AP, and PAP�1 performs a relabeling of the nodes

of the original graph which preserves the adjacency matrix

[37]. In general a graph can admit more than one automor-

phism. For instance, graph Ga in Fig. 1 has at least three

nontrivial bijections which preserve the adjacency matrix,

namely,

�1: ð1; 2; 3; 4; 5; 6; 7Þ ! ð1; 3; 2; 4; 5; 6; 7Þ

�2: ð1; 2; 3; 4; 5; 6; 7Þ ! ð1; 2; 3; 7; 6; 5; 4Þ

�3: ð1; 2; 3; 4; 5; 6; 7Þ ! ð1; 3; 2; 7; 6; 5; 4Þ:

Node 2 and node 3 are symmetric because we can relabel

the nodes of Ga (e.g., by means of either �1 or �3) so that

node 2 is mapped into node 3 and vice versa, and the

adjacency matrix of Ga is left unchanged. Similarly, for

the pairs f4; 7g and f5; 6g, there are two different relabelings
which preserve adjacency relations, i.e., �2 and �3. In

terms of symmetries, the graph G has the following four

different classes of nodes: C1 ¼ f1g, C2 ¼ f2; 3g, C3 ¼
f4; 7g, C4 ¼ f5; 6g. Now, if a permutation of the nodes

is an automorphism of G, then PLP�1 ¼ PDP�1 �
PAP�1 ¼ D� A ¼ L; i.e., the associated permutation

matrix P also commutes with the Laplacian matrix of the

graph. By left-multiplying both sides of Eq. (3) by P, we
get PL� ¼ �P½hki1� k�. Since PL ¼ LP (P commutes

with L) and Pk ¼ k (symmetric nodes have the same

degree) then we have

LP� ¼ �½hki1� k� (4)

Combining Eqs. (3) and (4), we finally obtain the linear

system,

LP� ¼ L�; (5)

which is singular, i.e., has one free variable. Again, it can

be solved by leaving free one of the N variables �i, setting
�j ¼ �j � �i and considering the new system ~L ~P� ¼
~L�. The matrix ~P is obtained from P by removing the row

and the column corresponding to node i. If P does not

permute node i with another node, then ~P is still a permu-

tation matrix. Similarly, ~L is the reduced Laplacian, i.e. the

matrix obtained from the Laplacian by deleting the i—th

row and the i—th column. By left-multiplying by ~L�1,

which is not singular, we obtain

~P� ¼ �: (6)

Since ~P� is a permutation of the phases of symmetric

nodes, Eq. (6) implies that the phases of symmetric nodes

will be equal at any time, whereas by solving Eq. (4) we

can get the values of the corresponding phases. This argu-

ment is valid for small values of �, since the linearization
of Eq. (1) is possible only if sinðx� �Þ ’ ðx� �Þ, but
as shown in Figs. 2(a)–2(c), we observe the formation of

the same perfectly synchronized clusters of symmetric

nodes for a wide range of �. However, when � becomes

larger than a certain value �c, the assumption _�i ¼ �, 8i
does not hold any more and the global synchronized state

loses stability. By looking at Figs. 2(d) and 2(e) we notice

that for �> �c, with �c ’ 1:05 for the graphGa, the value

of r steadily decreases while the dispersion of phases

increases, until it reaches the expected value ��� ’ 1:39
for a system of seven incoherent oscillators (see Fig. 2(d)

and Ref. [38]). Moreover, for �> �c the maximal

Lyapunov exponent of the system �max becomes positive

and the system enters a chaotic regime [see Fig. 2(e)].

Interestingly, the results reported in Figs. 3(a)–3(d) con-

firm that in this regime the coherence of symmetric nodes,

measured by the pairwise order parameter r2, is higher than
expected for incoherent oscillators (refer to Ref. [38] for

additional details). Figure 3(e) shows that for �> �c the

system exhibits metastable, partially synchronized states,

in which pairs of symmetric nodes alternates intervals of

perfect synchronization with intervals of complete inco-

herence. We point out that in this regime chimera states

FIG. 2 (color online). The figure refers to the coupling topol-

ogy Ga in Fig. 1(a). Panels (a)–(c): after an initial transient the

system reaches a phase-locked synchronized state in which

symmetric nodes have the same phase. The panels correspond

to three different values of the frustration parameter, respec-

tively, (a) � ¼ 0:1, (b) � ¼ 0:5, (c) � ¼ 0:8. Panel (d): for

�> �c the synchronized state becomes unstable, the order

parameter decreases while the dispersion of the phases ��

increases. Panel (e): the maximum Lyapunov exponent �max of

oscillators coupled throughGa becomes positive for �> �c, and

the systems enters a chaotic regime. The dashed yellow line

indicates the approximate position of �c.
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could potentially occur [39–42] and could even coexist

with remote synchronization for �< �c. Qualitatively

similar results are obtained for different

coupling topologies, but the actual value of �c seems to

depend on the structure of the coupling network in a non-

trivial way.

Application to the brain.—As an example, we investi-

gate here the role of symmetry in the human brain by

considering anatomical and functional brain connectivity

graphs defined on the same set of N ¼ 90 cortical areas

(see details in Ref. [38]). We have first constructed a

graph of anatomical brain connectivity as obtained from

DW-MRI data [43], where links represent axonal fibers,

and we used this graph as a backbone network to integrate

Eq. (1). We identified candidate pairs of anatomically

symmetric areas by means of agglomerative clustering,

i.e. grouping together nodes having close phases at the

stationary state (full dendrogram and details are provided

in Ref. [38]). Then, we considered the graph of functional

brain connectivity, in which links represent statistically

significant correlations between the BOLD fMRI time-

series of cortical areas (see details in Ref. [38]). Figure 4

illustrates the results for � ¼ 0:5 (we obtained qualita-

tively similar results in a wide range of �). Consider nodes
57 and 74, corresponding respectively to the green and blue

areas in panel (a). Not only the two areas are spatially

separated, but there is no edge connecting the two corre-

sponding nodes in the anatomical connectivity network.

However, the two nodes are detected as a candidate sym-

metric pair since at the stationary state of the Kuramoto

dynamics in Eq. (1) the oscillators associated to these two

nodes have very close phases (see dendrogram in

Ref. [38]). As shown in Fig. 4(b), the BOLD fMRI signals

corresponding to nodes 57 and 74 also are strongly syn-

chronized. We obtain remarkably different results when we

consider node 74 and node 76. These nodes correspond to

two spatially adjacent areas of the brain [the red and blue

regions in Fig. 4(a)] and are directly connected in the

anatomical connectivity network. However, at the station-

ary state of Eq. (1) the phase difference of the oscillators

associated to node 74 and 76 is quite large. Interestingly, in

this case the fMRI time-series associated to these nodes are

much less similar to each other [see the two bottom tra-

jectories reported in Fig. 4(b)].

To quantify this effect, we plot in Fig. 4(c) the average

functional correlation Z between the fMRI activity of pairs

of brain areas as a function of the phase differences ��
between the phases of the corresponding oscillators,

obtained from the dynamics of Eq. (1) on the anatomical

connectivity network. The fact that Z decreases with ��
suggests that structural symmetry plays an important role

in determining human brain functions. In fact, the func-

tional activities of anatomically symmetric areas can be

strongly correlated, even if the areas are distant in space.

These results suggest that the study of anatomical symme-

tries in neural systems might provide meaningful insights

about the functional organization of distant neural assem-

blies during diverse cognitive or pathological states [21].

Applied to other connectivity networks as a method to spot

FIG. 3 (color online). Chaotic regime in Ga when �> �c.

Panel (a)–(d): running averages of r (orange) and pairwise order

parameters r2 (black, red and green lines) for typical trajectories

of oscillators coupled through graph Ga, when � is, respectively,

equal to (a) 1.3, (b) 1.4, (c) 1.5 and (d) 1.55. The dashed lines

indicate the expected synchronization level for a system of two

(blue line, ~r2 ¼ 2=�) and seven incoherent oscillators (gray line,
~r7 ’ 0:338 . . . ). Panel (e): the plot of the phases of pairs of

symmetric nodes for � ¼ 1:4 in two different temporal intervals

(the shaded gray regions in panel (b)) reveal the existence of

metastable, partially synchronized states.

FIG. 4 (color online). (a) Brain areas with similar and dissimi-

lar phases of the frustrated Kuramoto model are colored and

superimposed onto an anatomical image. (b) Examples of func-

tional data from one subject recorded at the brain areas indicated

in panel (a). Colors are the same as those used in the anatomical

image. (c) Functional correlation Z between pairs of nodes as a

function of their phase differences �� according to the simulated

Kuramoto dynamics. The black solid curve corresponds to the

average value over all the subjects, while the gray area covers the

5th and the 95th percentiles of the distribution. The dashed

horizontal line indicates the threshold for statistical significant

correlations (p < 0:05, corrected for multiple comparisons).
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potential network symmetries, our study could provide

new insights on the interplay between structure and dy-

namics in complex systems.
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