
USENIX Association

Proceedings of the

12th USENIX Security Symposium

Washington, D.C., USA

August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

12th USENIX Security Symposium USENIX Association 1

Remote Timing Attacks are Practical

David Brumley Dan Boneh

Stanford University Stanford University

dbrumley@cs.stanford.edu dabo@cs.stanford.edu

Abstract

Timing attacks are usually used to attack weak comput-

ing devices such as smartcards. We show that timing

attacks apply to general software systems. Specifically,

we devise a timing attack against OpenSSL. Our exper-

iments show that we can extract private keys from an

OpenSSL-based web server running on a machine in the

local network. Our results demonstrate that timing at-

tacks against network servers are practical and therefore

security systems should defend against them.

1 Introduction

Timing attacks enable an attacker to extract secrets

maintained in a security system by observing the time

it takes the system to respond to various queries. For

example, Kocher [10] designed a timing attack to ex-

pose secret keys used for RSA decryption. Until now,

these attacks were only applied in the context of hard-

ware security tokens such as smartcards [4, 10, 18]. It

is generally believed that timing attacks cannot be used

to attack general purpose servers, such as web servers,

since decryption times are masked by many concurrent

processes running on the system. It is also believed that

common implementations of RSA (using Chinese Re-

mainder andMontgomery reductions) are not vulnerable

to timing attacks.

We challenge both assumptions by developing a remote

timing attack against OpenSSL [15], an SSL library

commonly used in web servers and other SSL applica-

tions. Our attack client measures the time an OpenSSL

server takes to respond to decryption queries. The client

is able to extract the private key stored on the server. The

attack applies in several environments.

Network. We successfully mounted our timing attack

between two machines on our campus network.

The attacking machine and the server were in

different buildings with three routers and multi-

ple switches between them. With this setup we

were able to extract the SSL private key from

common SSL applications such as a web server

(Apache+mod SSL) and a SSL-tunnel.

Interprocess. We successfully mounted the attack be-

tween two processes running on the same machine.

A hosting center that hosts two domains on the

same machine might give management access to

the admins of each domain. Since both domain are

hosted on the same machine, one admin could use

the attack to extract the secret key belonging to the

other domain.

Virtual Machines. AVirtual MachineMonitor (VMM)

is often used to enforce isolation between two Vir-

tual Machines (VM) running on the same proces-

sor. One could protect an RSA private key by stor-

ing it in one VM and enabling other VM’s to make

decryption queries. For example, a web server

could run in one VM while the private key is stored

in a separate VM. This is a natural way of protect-

ing secret keys since a break-in into the web server

VM does not expose the private key. Our results

show that when using OpenSSL the network server

VM can extract the RSA private key from the se-

cure VM, thus invalidating the isolation provided

by the VMM. This is especially relevant to VMM

projects such as Microsoft’s NGSCB architecture

(formerly Palladium). We also note that NGSCB

enables an application to ask the VMM (aka Nexus)

to decrypt (aka unseal) application data. The appli-

cation could expose the VMM’s secret key by mea-

suring the time the VMM takes to respond to such

requests.

Many crypto libraries completely ignore the timing at-

tack and have no defenses implemented to prevent it. For

example, libgcrypt [14] (used in GNUTLS and GPG)

and Cryptlib [5] do not defend against timing attacks.

OpenSSL 0.9.7 implements a defense against the tim-

ing attack as an option. However, common applications

such as mod SSL, the Apache SSL module, do not en-

12th USENIX Security Symposium USENIX Association2

12th USENIX Security Symposium USENIX Association 3

inputs g the attacker can expose information about bits

of the factor q. We note that a timing attack on sliding

windows is much harder than a timing attack on square-

and-multiply since there are far fewer multiplications by

g in sliding windows. As we will see, we had to adapt

our techniques to handle sliding windows exponentia-

tion used in OpenSSL.

2.3 Montgomery Reduction

The sliding windows exponentiation algorithm performs

a modular multiplication at every step. Given two inte-

gers x, y, computing xy mod q is done by first multiply-

ing the integers x ∗ y and then reducing the result mod-

ulo q. Later we will see each reduction also requires a

few additional multiplications. We first briefly describe

OpenSSL’s modular reduction method and then describe

its integer multiplication algorithm.

Naively, a reduction modulo q is done via multi-

precision division and returning the remainder. This is

quite expensive. In 1985 Peter Montgomery discovered

a method for implementing a reduction modulo q us-

ing a series of operations efficient in hardware and soft-

ware [13].

Montgomery reduction transforms a reduction modulo

q into a reduction modulo some power of 2 denoted by

R. A reduction modulo a power of 2 is faster than a

reduction modulo q as many arithmetic operations can

be implemented directly in hardware. However, in order

to use Montgomery reduction all variables must first be

put into Montgomery form. The Montgomery form of

number x is simply xR mod q. To multiply two num-

bers a and b in Montgomery form we do the following.

First, compute their product as integers: aR∗bR = cR2.

Then, use the fast Montgomery reduction algorithm to

compute cR2 ∗ R 1 = cR mod q. Note that the result
cR mod q is in Montgomery form, and thus can be di-

rectly used in subsequent Montgomery operations. At

the end of the exponentiation algorithm the output is put

back into standard (non-Montgomery) form by multiply-

ing it by R 1 mod q. For our attack, it is equivalent to
use R and R 1 mod N , which are public.

Hence, for the small penalty of converting the input g to

Montgomery form, a large gain is achieved during mod-

ular reduction. With typical RSA parameters the gain

from Montgomery reduction outweighs the cost of ini-

tially putting numbers in Montgomery form and convert-

ing back at the end of the algorithm.

q 2q 3q p 4q 5q

#
 o

f
e

x
tr

a
 r

e
d

u
c
ti
o

n
s
 i
n

 M
o

n
tg

e
ry

’s
 a

lg
o

ri
th

m

values g between 0 and 6q

discontinuity when
g mod q = 0

discontinuity when
g mod p = 0

Figure 1: Number of extra reductions in a Montgomery

reduction as a function (equation 1) of the input g.

The key relevant fact about a Montgomery reduction is

at the end of the reduction one checks if the output cR
is greater than q. If so, one subtracts q from the out-

put, to ensure that the output cR is in the range [0, q).
This extra step is called an extra reduction and causes a

timing difference for different inputs. Schindler noticed

that the probability of an extra reduction during an ex-

ponentiation gd mod q is proportional to how close g is

to q [18]. Schindler showed that the probability for an

extra reduction is:

Pr[Extra Reduction] =
g mod q

2R
(1)

Consequently, as g approaches either factor p or q from

below, the number of extra reductions during the expo-

nentiation algorithm greatly increases. At exact mul-

tiples of p or q, the number of extra reductions drops

dramatically. Figure 1 shows this relationship, with the

discontinuities appearing at multiples of p and q. By de-
tecting timing differences that result from extra reduc-

tions we can tell how close g is to a multiple of one of

the factors.

2.4 Multiplication Routines

RSA operations, including those using Montgomery’s

method, must make use of a multi-precision integer mul-

tiplication routine. OpenSSL implements two multipli-

cation routines: Karatsuba (sometimes called recursive)

and “normal”. Multi-precision libraries represent large

integers as a sequence of words. OpenSSL uses Karat-

suba multiplication when multiplying two numbers with

an equal number of words. Karatsuba multiplication

takes time O(nlog
2
3) which is O(n1.58). OpenSSL uses

12th USENIX Security Symposium USENIX Association4

12th USENIX Security Symposium USENIX Association 5

When the i’th bit is 0, the “large” difference can ei-

ther be negative or positive. In this case, if t1 t2 is

positive then DecryptTime(g) > DecryptTime(ghi), and

the Montgomery reductions dominated the time differ-

ence. If t1 t2 is negative, then DecryptTime(g) <
DecryptTime(ghi), and the multi-precision multiplica-

tion dominated the time difference.

Formatting of RSA plaintext, e.g. PKCS 1, does not af-

fect this timing attack. We also do not need the value of

the decryption, only how long the decryption takes.

3.1 Exponentiation Revisited

Wewould like |tg1
tg2

| ≫ |tg3
tg4

|when g1 < q < g2

and g3 < g4 < q. Time measurements that have this

property we call a strong indicator for bits of q, and those
that do not are a weak indicator for bits of q. Square and
multiply exponentiation results in a strong indicator be-

cause there are approximately
log

2
d

2
multiplications by

g during decryption. However, in sliding windows with

window size w (w = 5 in OpenSSL) the expected num-

ber of multiplications by g is only:

E[# multiply by g] ≈
log2 d

2w 1(w + 1)

resulting in a weak indicator.

To overcome this we query at a neighborhood of values

g, g+1, g+2, ..., g+n, and use the result as the decrypt
time for g (and similarly for ghi). The total decryption

time for g or ghi is then:

Tg =

n∑

i=0

DecryptTime(g + i)

We define Tg as the time to compute g with sliding win-

dows when considering a neighborhood of values. As

n grows, |Tg Tghi
| typically becomes a stronger indi-

cator for a bit of q (at the cost of additional decryption

queries).

4 Real-world scenarios

As mentioned in the introduction there are a number

of scenarios where the timing attack applies to net-

worked servers. We discuss an attack on SSL applica-

tions, such as stunnel [23] and an Apache web server

with mod SSL [12], and an attack on trusted comput-

ing projects such as Microsoft’s NGSCB (formerly Pal-

ladium).

During a standard full SSL handshake the SSL server

performs an RSA decryption using its private key. The

SSL server decryption takes place after receiving the

CLIENT-KEY-EXCHANGE message from the SSL client.

The CLIENT-KEY-EXCHANGE message is composed on

the client by encrypting a PKCS 1 padded random bytes

with the server’s public key. The randomness encrypted

by the client is used by the client and server to compute

a shared master secret for end-to-end encryption.

Upon receiving a CLIENT-KEY-EXCHANGE message

from the client, the server first decrypts the message with

its private key and then checks the resulting plaintext for

proper PKCS 1 formatting. If the decrypted message

is properly formatted, the client and server can com-

pute a shared master secret. If the decrypted message

is not properly formatted, the server generates its own

random bytes for computing a master secret and con-

tinues the SSL protocol. Note that an improperly for-

matted CLIENT-KEY-EXCHANGE message prevents the

client and server from computing the samemaster secret,

ultimately leading the server to send an ALERT message

to the client indicating the SSL handshake has failed.

In our attack, the client substitutes a properly format-

ted CLIENT-KEY-EXCHANGE message with our guess

g. The server decrypts g as a normal CLIENT-KEY-

EXCHANGE message, and then checks the resulting

plaintext for proper PKCS 1 padding. Since the decryp-

tion of g will not be properly formatted, the server and

client will not compute the same master secret, and the

client will ultimately receive an ALERT message from

the server. The attacking client computes the time dif-

ference from sending g as the CLIENT-KEY-EXCHANGE

message to receiving the response message from the

server as the time to decrypt g. The client repeats this

process for each value of of g and ghi needed to calcu-

late Tg and Tghi
.

Our experiments are also relevant to trusted computing

efforts such as NGSCB. One goal of NGSCB is to pro-

vide sealed storage. Sealed storage allows an applica-

tion to encrypt data to disk using keys unavailable to the

user. The timing attack shows that by asking NGSCB

to decrypt data in sealed storage a user may learn the

secret application key. Therefore, it is essential that the

secure storage mechanism provided by projects such as

NGSCB defend against this timing attack.

12th USENIX Security Symposium USENIX Association6

Asmentioned in the introduction, RSA applications (and

subsequently SSL applications using RSA for key ex-

change) using a hardware crypto accelerator are not vul-

nerable since most crypto accelerators implement de-

fenses against the timing attack. Our attack applies to

software based RSA implementations that do not defend

against timing attacks as discussed in section 6.

5 Experiments

We performed a series of experiments to demonstrate the

effectiveness of our attack on OpenSSL. In each case we

show the factorization of the RSA modulus N is vul-

nerable. We show that a number of factors affect the

efficiency of our timing attack.

Our experiments consisted of:

1. Test the effects of increasing the number of decryp-

tion requests, both for the same ciphertext and a

neighborhood of ciphertexts.

2. Compare the effectiveness of the attack based upon

different keys.

3. Compare the effectiveness of the attack based upon

machine architecture and common compile-time

optimizations.

4. Compare the effectiveness of the attack based upon

source-based optimizations.

5. Compare inter-process vs. local network attacks.

6. Compare the effectiveness of the attack against two

common SSL applications: an Apache web server

with mod SSL and stunnel.

The first four experiments were carried out inter-process

via TCP, and directly characterize the vulnerability of

OpenSSL’s RSA decryption routine. The fifth exper-

iment demonstrates our attack succeeds on the local

network. The last experiment demonstrates our attack

succeeds on the local network against common SSL-

enabled applications.

5.1 Experiment Setup

Our attack was performed against OpenSSL 0.9.7,

which does not blind RSA operations by default. All

tests were run under RedHat Linux 7.3 on a 2.4 GHz

Pentium 4 processor with 1 GB of RAM, using gcc

2.96 (RedHat). All keys were generated at random via

OpenSSL’s key generation routine.

For the first 5 experiments we implemented a simple

TCP server that read an ASCII string, converted the

string to OpenSSL’s internal multi-precision representa-

tion, then performed the RSA decryption. The server re-

turned 0 to signify the end of decryption. The TCP client

measured the time from writing the ciphertext over the

socket to receiving the reply.

Our timing attack requires a clock with fine resolution.

We use the Pentium cycle counter on the attacking ma-

chine as such a clock, giving us a time resolution of

2.4 billion ticks per second. The cycle counter incre-

ments once per clock tick, regardless of the actual in-

struction issued. Thus, the decryption time is the cycle

counter difference between sending the ciphertext to re-

ceiving the reply. The cycle counter is accessible via

the “rdtsc” instruction, which returns the 64-bit cycle

count since CPU initialization. The high 32 bits are re-

turned into the EDX register, and the low 32 bits into

the EAX register. As recommended in [7], we use the

“cpuid” instruction to serialize the processor to prevent

out-of-order execution from changing our timing mea-

surements. Note that cpuid and rdtsc are only used by

the attacking client, and that neither instruction is a priv-

ileged operation. Other architectures have a similar a

counter, such as the UltraSparc %tick register.

OpenSSL generates RSA moduli N = pq where q < p.
In each case we target the smaller factor, q. Once q is

known, the RSA modulus is factored and, consequently,

the server’s private key is exposed.

5.2 Experiment 1 - Number of Ciphertexts

This experiment explores the parameters that determine

the number of queries needed to expose a single bit of

an RSA factor. For any particular bit of q, the number

of queries for guess g is determined by two parameters:

neighborhood size and sample size.

Neighborhood size. For every bit of q we measure the

decryption time for a neighborhood of values g, g+
1, g+2, ..., g+n. We denote this neighborhood size

by n.
Sample size. For each value g + i in a neighborhood

we sample the decryption time multiple times and

compute the mean decryption time. The number of

times we query on each value g + i is called the

sample size and is denoted by s.

The total number of queries needed to compute Tg is

then s ∗ n.

12th USENIX Security Symposium USENIX Association 7

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 2 4 6 8 10 12 14

T
im

e
 v

a
ri
a
ti
o
n
 i
n
 C

P
U

 c
y
c
le

s

of samples for a particular ciphertext

Decryption time converges

(a) The time variance for decrypting a particular ciphertext

decreases as we increase the number of samples taken.

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 100 200 300 400 500 600 700 800 900 1000

T
im

e
 d

if
fe

re
n
c
e
 i
n
 C

P
U

 c
y
c
le

s

Neighborhood size

zero-one gap

zero-one gap when a bit of q=0
zero-one gap when a bit of q=1

(b) By increasing the neighborhood size we increase the zero-

one gap between a bit of q that is 0 and a bit of q that is 1.

Figure 2: Parameters that affect the number of decryption queries of g needed to guess a bit of the RSA factor.

To overcome the effects of a multi-user environment, we

repeatedly sample g+k and use the median time value as

the effective decryption time. Figure 2(a) shows the dif-

ference between median values as sample size increases.

The number of samples required to reach a stable de-

cryption time is surprising small, requiring only 5 sam-

ples to give a variation of under 20000 cycles (approxi-

mately 8 microseconds), well under that needed to per-

form a successful attack.

We call the gap between when a bit of q is 0 and 1 the

zero-one gap. This gap is related to the difference |Tg

Tghi
|, which we expect to be large when a bit of q is 0

and small otherwise. The larger the gap, the stronger the

indicator that bit i is 0, and the smaller chance of error.

Figure 2(b) shows that increasing the neighborhood size

increases the size of the zero-one gap when a bit of q is

0, but is steady when a bit of q is 1.

The total number of queries to recover a factor is 2ns ∗
log2 N/4, where N is the RSA public modulus. Unless

explicitly stated otherwise, we use a sample size of 7

and a neighborhood size of 400 on all subsequent exper-

iments, resulting in 1433600 total queries. With these

parameters a typical attack takes approximately 2 hours.

In practice, an effective attack may need far fewer sam-

ples, as the neighborhood size can be adjusted dynami-

cally to give a clear zero-one gap in the smallest number

of queries.

5.3 Experiment 2 - Different Keys

We attacked several 1024-bit keys, each randomly gen-

erated, to determine the ease of breaking different mod-

uli. In each case we were able to recover the factoriza-

tion of N . Figure 3(a) shows our results for 3 different

keys. For clarity, we include only bits of q that are 0,

as bits of q that are 1 are close to the x-axis. In all our

figures the time difference Tg Tghi
is the zero-one gap.

When the zero-one gap for bit i is far from the x-axis we
can correctly deduce that bit i is 0.

With all keys the zero-one gap is positive for about the

first 32 bits due to Montgomery reductions, since both

g and ghi use Karatsuba multiplication. After bit 32,

the difference between Karatsuba and normal multipli-

cation dominate until overcome by the sheer size differ-

ence between log2(g mod q) log2(ghi mod q). The

size difference alters the zero-one gaps because as bits

of q are guessed, ghi becomes smaller while g remains

≈ log2 q. The size difference counteracts the effects of
Karatsuba vs. normal multiplication. Normally the re-

sulting zero-one gap shift happens around multiples of

32 (224 for key 1, 191 for key 2 and 3), our machine

word size. Thus, an attacker should be aware that the

zero-one gap may flip signs when guessing bits that are

around multiples of the machine word size.

12th USENIX Security Symposium USENIX Association8

12th USENIX Security Symposium USENIX Association 9

12th USENIX Security Symposium USENIX Association10

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
 v

a
ri
a

ti
o

n
 i
n

 C
P

U
 c

y
c
le

s

Bits guessed of factor q

OpenSSL patched (bit=0)
OpenSSL patched (bit=1)

Unpatched (bit=0)
Unpatched (bit=1)

Figure 5: Minor source-based optimizations change the

zero-one gap as well. As a consequence, code that

doesn’t appear initially vulnerable may become so as the

source is patched.

One conclusion we draw is that users of binary crypto

libraries may find it hard to characterize their risk to our

attack without complete understanding of the compile-

time options and exact execution environment. Com-

mon flags such as enabling debugging support allow our

attack to recover the factors of a 1024-bit modulus in

about 1/3 million queries. We speculate that less com-

plex architectures will be less affected by minor code

changes, and have the zero-one gap as predicted by the

OpenSSL algorithm analysis.

5.5 Experiment 4 - Source-based Optimiza-
tions

Source-based optimizations can also change the zero-

one gap. RSA library developers may believe their code

is not vulnerable to the timing attack based upon test-

ing. However, subsequent patches may change the code

profile resulting in a timing vulnerability. To show that

minor source changes also affect our attack, we imple-

mented a minor patch that improves the efficiency of

the OpenSSL 0.9.7 CRT decryption check. Our patch

has been accepted for future incorporation to OpenSSL

(tracking ID 475).

After a CRT decryption, OpenSSL re-encrypts the re-

sult (mod N) and verifies the result is identical to the

original ciphertext. This verification step prevents an in-

correct CRT decryption from revealing the factors of the

modulus [2]. By default, OpenSSL needlessly recalcu-

lates both Montgomery parameters R and R 1 mod N
on every decryption. Our minor patch allows OpenSSL

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
 v

a
ri
a

ti
o

n
 i
n

 C
P

U
 c

y
c
le

s

Bits guessed of factor q

Internetwork (bit=0)
Internetwork (bit=1)

Interprocess bit of (bit=0)
Interprocess (bit=1)

Figure 6: The timing attack succeeds over a local net-

work. We contrast our results with the attack inter-

process.

to cache both values between decryptions with the same

key. Our patch does not affect any other aspect of the

RSA decryption other than caching these values. Fig-

ure 5 shows the results of an attack both with and with-

out the patch.

The zero-one gap is shifted because the resulting code

will have a different execution profile, as discussed in the

previous experiment. While our specific patch decreases

the size of the zero-one gap, other patches may increase

the zero-one gap. This shows the danger of assuming a

specific application is not vulnerable due to timing at-

tack tests, as even a small patch can change the run-time

profile and either increase or decrease the zero-one gap.

Developers should instead rely upon proper algorithmic

defenses as discussed in section 6.

5.6 Experiment 5 - Interprocess vs. Local Net-
work Attacks

To show that local network timing attacks are practical,

we connected two computers via a 10/100 Mb Hawk-

ing switch, and compared the results of the attack inter-

process vs. inter-network. Figure 6 shows that the net-

work does not seriously diminish the effectiveness of

the attack. The noise from the network is eliminated

by repeated sampling, giving a similar zero-one gap to

inter-process. We note that in our tests a zero-one gap

of approximately 1 millisecond is sufficient to receive

a strong indicator, enabling a successful attack. Thus,

networks with less than 1ms of variance are vulnerable.

12th USENIX Security Symposium USENIX Association 11

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 0 50 100 150 200 250

T
im

e
 v

a
ri
a

ti
o

n
 i
n

 C
P

U
 c

y
c
le

s

Bits guessed of factor q

Apache+modSSL
Stunnel

Simple RSA server

(a) The zero-one gaps when attacking Apache+mod SSL

and stunnel separated by one switch.

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 50 100 150 200 250

T
im

e
 v

a
ri
a

ti
o

n
 i
n

 C
P

U
 c

y
c
le

s

Bits guessed of factor q

Apache+mod_SSL - campus backbone
Apache+mod_SSL - one switch

(b) The zero-one gap when attacking Apache+mod SSL

separated by several routers and a network backbone.

Figure 7: Applications using OpenSSL 0.9.7 are vulnerable, even on a large network.

Inter-network attacks allow an attacker to also take ad-

vantage of faster CPU speeds for increasing the accu-

racy of timing measurements. Consider machine 1 with

a slower CPU than machine 2. Then if machine 2 at-

tacks machine 1, the faster clock cycle allows for finer

grained measurements of the decryption time on ma-

chine 1. Finer grained measurements should result in

fewer queries for the attacker, as the zero-one gap will

be more distinct.

5.7 Experiment 6 - Attacking SSL Applications
on the Local Network

We show that OpenSSL applications are vulnerable to

our attack from the network. We compiled Apache

1.3.27 + mod SSL 2.8.12 and stunnel 4.04 per the re-

spective “INSTALL” files accompanying the software.

Apache+mod SSL is a commonly used secure web

server. stunnel allows TCP/IP connections to be tun-

neled through SSL.

We begin by showing servers connected by a single

switch are vulnerable to our attack. This scenario is rel-

evant when the attacker has access to a machine near

the OpenSSL-based server. Figure 7(a) shows the result

of attacking stunnel and mod SSL where the attacking

client is separated by a single switch. For reference, we

also include the results for a similar attack against the

simple RSA decryption server from the previous experi-

ments.

Interestingly, the zero-one gap is larger for

Apache+mod SSL than either the simple RSA de-

cryption server or stunnel. As a result, successfully

attacking Apache+mod SSL requires fewer queries

than stunnel. Both applications have a sufficiently large

zero-one gap to be considered vulnerable.

To show our timing attacks can work on larger net-

works, we separated the attacking client from the

Apache+mod SSL server by our campus backbone. The

webserver was hosted in a separate building about a half

mile away, separated by three routers and a number of

switches on the network backbone. Figure 7(b) shows

the effectiveness of our attack against Apache+mod SSL

on this larger LAN, contrasted with our previous experi-

ment where the attacking client and server are separated

by only one switch.

This experiment highlights the difficulty in determining

the minimum number of queries for a successful attack.

Even though both stunnel and mod SSL use the exact

same OpenSSL libraries and use the same parameters for

negotiating the SSL handshake, the run-time differences

result in different zero-one gaps. More importantly, our

attack works even when the attacking client and applica-

tion are separated by a large network.

6 Defenses

We discuss three possible defenses. The most widely

accepted defense against timing attacks is to perform

RSA blinding. The RSA blinding operation calculates

x = reg mod N before decryption, where r is random,

e is the RSA encryption exponent, and g is the ciphertext

12th USENIX Security Symposium USENIX Association12

to be decrypted. x is then decrypted as normal, followed

by division by r, i.e. xe/r mod N . Since r is random,

x is random and timing the decryption should not reveal

information about the key. Note that r should be a new

random number for every decryption. According to [17]

the performance penalty is 2% 10%, depending upon

implementation. Netscape/Mozilla’s NSS library uses

blinding. Blinding is available in OpenSSL, but not en-

abled by default in versions prior to 0.9.7b. Figure 8

shows that blinding in OpenSSL 0.9.7b defeats our at-

tack. We hope this paper demonstrates the necessity of

enabling this defense.

-8e+06

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 0 50 100 150 200 250

T
im

e
 d

if
fe

re
n

c
e

 i
n

 C
P

U
 c

y
c
le

s

Bits guessed of factor q

Apache with blinding (bit=0)
Apache with blinding (bit=1)

Figure 8: Our attack against Apache+mod SSL using

OpenSSL 0.9.7b is defeated because blinding is enabled

by default.

Two other possible defenses are suggested often, but are

a second choice to blinding. The first is to try and make

all RSA decryptions not dependent upon the input ci-

phertext. In OpenSSL one would use only one multipli-

cation routine and always carry out the extra reduction

in Montgomery’s algorithm, as proposed by Schindler

in [18]. If an extra reduction is not needed, we carry

out a “dummy” extra reduction and do not use the result.

Karatsuba multiplication can always be used by calcu-

lating c mod pi ∗ 2m, where c is the ciphertext, pi is one

of the RSA factors, and m = log2 pi log2 (c mod pi).
After decryption, the result is divided by 2md mod q to

yield the plaintext. We believe it is harder to create and

maintain code where the decryption time is not depen-

dent upon the ciphertext. For example, since the result is

never used from a dummy extra reduction during Mont-

gomery reductions, it may inadvertently be optimized

away by the compiler.

Another alternative is to require all RSA computations

to be quantized, i.e. always take a multiple of some pre-

defined time quantum. Matt Blaze’s quantize library [1]

is an example of this approach. Note that all decryp-

tions must take the maximum time of any decryption,

otherwise, timing information can still be used to leak

information about the secret key.

Currently, the preferred method for protecting against

timing attacks is to use RSA blinding. The immedi-

ate drawbacks to this solution is that a good source of

randomness is needed to prevent attacks on the blinding

factor, as well as the small performance degradation. In

OpenSSL, neither drawback appears to be a significant

problem.

7 Conclusion

We devised and implemented a timing attack against

OpenSSL — a library commonly used in web servers

and other SSL applications. Our experiments show that,

counter to current belief, the timing attack is effective

when carried out between machines separated by multi-

ple routers. Similarly, the timing attack is effective be-

tween two processes on the same machine and two Vir-

tual Machines on the same computer. As a result of this

work, several crypto libraries, including OpenSSL, now

implement blinding by default as described in the previ-

ous section.

8 Acknowledgments

This material is based upon work supported in part

by the National Science Foundation under Grant No.

0121481 and the Packard Foundation. We thank the re-

viewers, Dr. Monica Lam, Ramesh Chandra, Constan-

tine Sapuntzakis, Wei Dai, Art Manion and CERT/CC,

and Dr. Werner Schindler for their comments while

preparing this paper. We also thank Nelson Bolyard, Ge-

off Thorpe, Ben Laurie, Dr. Stephen Henson, Richard

Levitte, and the rest of the OpenSSL, mod SSL, and

stunnel development teams for their help in preparing

patches to enable and use RSA blinding.

References

[1] Matt Blaze. Quantize wrapper library.

http://islab.oregonstate.edu/

documents/People/blaze.

12th USENIX Security Symposium USENIX Association 13

[2] Dan Boneh, Richard A. DeMillo, and Richard J.

Lipton. On the importance of checking crypto-

graphic protocols for faults. Lecture Notes in Com-

puter Science, 1233:37–51, 1997.

[3] D. Coppersmith. Small solutions to polynomial

equations, and low exponent RSA vulnerabilities.

Journal of Cryptology, 10:233–260, 1997.

[4] Jean-Francois Dhem, Francois Koeune, Philippe-

Alexandre Leroux, Patrick Mestre, Jean-Jacques

Quisquater, and Jean-Louis Willems. A practical

implementation of the timing attack. In CARDIS,

pages 167–182, 1998.

[5] Peter Gutmann. Cryptlib. http://www.cs.

auckland.ac.nz/˜pgut001/cryptlib/.

[6] Intel. Vtune performance analyzer for linux

v1.1. http://www.intel.com/software/

products/vtune.

[7] Intel. Using the RDTSC instruction for perfor-

mance monitoring. Technical report, 1997.

[8] Intel. Ia-32 intel architecture optimization refer-

ence manual. Technical Report 248966-008, 2003.

[9] P. Kocher, J. Jaffe, and B. Jun. Differential power

analysis: Leaking secrets. In Crypto 99, pages

388–397, 1999.

[10] Paul Kocher. Timing attacks on implementations

of diffie-hellman, RSA, DSS, and other systems.

Advances in Cryptology, pages 104–113, 1996.

[11] Alfred Menezes, Paul Oorschot, and Scott Van-

stone. Handbook of Applied Cryptography. CRC

Press, October 1996.

[12] mod SSL Project. mod ssl. http://www.

modssl.org.

[13] Peter Montgomery. Modular multiplication with-

out trial division. Mathematics of Computation,

44(170):519–521, 1985.

[14] GNU Project. libgcrypt. http://www.gnu.

org/directory/security/libgcrypt.

html.

[15] OpenSSL Project. Openssl. http://www.

openssl.org.

[16] Rao, Josyula, Rohatgi, and Pankaj. Empowering

side-channel attacks. Technical Report 2001/037,

2001.

[17] RSA Press Release. http://www.otn.net/

onthenet/rsaqa.htm, 1995.

[18] Werner Schindler. A timing attack against RSA

with the chinese remainder theorem. In CHES

2000, pages 109–124, 2000.

[19] Werner Schindler. A combined timing and power

attack. Lecture Notes in Computer Science,

2274:263–279, 2002.

[20] Werner Schindler. Optimized timing attacks

against public key cryptosystems. Statistics and

Decisions, 20:191–210, 2002.

[21] Werner Schindler, Franois Koeune, and Jean-

Jacques Quisquater. Improving divide and conquer

attacks against cryptosystems by better error detec-

tion/correction strategies. Lecture Notes in Com-

puter Science, 2260:245–267, 2001.

[22] Werner Schindler, Franois Koeune, and Jean-

Jacques Quisquater. Unleashing the full power of

timing attack. Technical Report CG-2001/3, 2001.

[23] stunnel Project. stunnel. http://www.

stunnel.org.

