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India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in

India has increased substantially after the Green revolution and both surface and groundwater have been

extensively used. Under warming climate projections, irrigation frequency may increase leading to

increased irrigation water demands. Water resources planning and management in agriculture need

spatially-explicit irrigated area information for different crops and different crop growing seasons. However,

annual, high-resolution irrigated area maps for India for an extended historical record that can be used for

water resources planning and management are unavailable. Using 250m normalized difference vegetation

index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56m land use/land

cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for

the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from

ground surveys and were compared with the previously developed irrigation maps. High resolution (250m)

irrigated area maps showed satisfactory accuracy (R2= 0.95) and can be used to understand interannual

variability in irrigated area at various spatial scales.

Design Type(s) data integration objective • observation design • time series design

Measurement Type(s) land irrigation

Technology Type(s) remote sensing
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Sample Characteristic(s) India • irrigated land region • agricultural feature
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Background & Summary
Demands for fresh water during the twenty first century will continue to increase to meet the needs of a
growing global population. Irrigation water use is projected to increase under climate warming to
maintain or increase agricultural production. Irrigation is estimated to use about 70% of world’s total
available freshwater for food production using 18% of cultivated area globally1,2. Irrigation practices can
play a significant role in agriculture production to meet the projected food demand in several parts of the
world by maintaining or increasing crop yields under changing climatic conditions. As a result, accurate
information of irrigated agricultural water use and its spatial extent and variation is essential for water
resource and crop productivity assessments.

In India, agriculture is the largest sector of employment and a significant fraction of total population
depends on it for sustenance and economic livelihood through both traditional and modern agricultural
practices3. However, agricultural production and food security are highly influenced by short-term
weather anomalies, episodic extreme events, and long-term changes in air temperature and precipitation3.
An increase in winter temperature, erratic monsoon season rainfall, extensive use of ground water
resources, and absence of effective adaptation strategies are likely to negatively affect crop productivity4,5.
In the future, the Indian region may experience stress to meet its water demand due to extreme weather
and climate events such as droughts and heat waves, specifically in arid and semi-arid regions, where
groundwater extraction is prominent for irrigation3–5. A remarkable change in agriculture practices
occurred in India after 1970, with a massive agricultural expansion called the ‘green revolution’

4,6. This
revolution resulted in the agriculture sector benefiting from the introduction and expansion of different
types of irrigation, fertilizers, and high yield crop varieties4,6,7.

Monitoring irrigation water demands and consumption requires mapping irrigated areas either
through agricultural census or using remotely sensing data. The current spatiotemporal extent of irrigated
lands and inter-annual change at regional scales in India is still relatively uncertain and available maps
are often outdated or prepared with spatially-coarse resolution data. The primary sources of irrigation
data in India are the Directorate of Economics and Statistics of the Ministry of Statistics (DES), Ministry
of Water Resources (MoWR), and Food and Agricultural Organization of United Nations (FAO). During
the past few years, several spatial data sets of irrigated area at global scale have been developed. For
instance, the USGS Global Land Cover Map8 was developed using 1 km monthly composite of NDVI
obtained from Advanced Very High Resolution Radiometer (AVHRR). The Global Map of Irrigation
Areas (GMIA) published by the FAO was developed by Siebert, et al.9 using approximate information of
total irrigated area from national information and other data sources (irrigated area per national
statistical unit, irrigated area from point, polygon, and raster maps of land cover and other satellite data)
at a spatial resolution of 5-arc minutes. Recently, International Water Management Institute (IWMI)
released global irrigated area map for a 10-km grid resolution using methods described in Thenkabail,
et al.10. Moreover, Zhao and Siebert11 developed crop class based irrigated area maps for India using net
sown area and extent of irrigated crops from the census and land use land cover data at 500 m spatial
resolution for year 2005. For the Indian region, a high resolution (250–1000 m) irrigation map based on
remote sensing data was completed10,12 for the Ganga, Indus, and Krishna River basins. Siddiqui, et al.13

developed irrigated area map for Asia and Africa regions using canonical correlation analysis and time
lagged regression, which is available at 250 m resolution for the year 2000 and 2010 and can be obtained
from the International Water Management Institute (IWMI, http://waterdata.iwmi.org/applications/
irri_area/) portal. However, high resolution (250 m) irrigated area maps that cover the period of
2000–2015 and all the agroecological zones of India are unavailable, which are required for estimation of
irrigation water use and hydrologic modelling. Here, we develop annual irrigated area maps at a spatial
resolution of 250 m for the period of 2000–2015 using data from the MODIS and high resolution land
use/land cover (LULC) information in India.

Methods
Irrigated area in this study refers to the partial or full application of water at least once to meet minimum
annual water requirements for crops in the agricultural area. In India, about 94% of farmers have land
holdings smaller or equal to 4 ha (ref. 14). Based on the Cultivable Command Area (CCA), which is an
area that is physically irrigated from an irrigation scheme (based on surface or groundwater sources) and
is fit for cultivation, irrigation schemes are categorized into major (area more than 10000 ha), and
medium (area between 2000 and 10000 ha) projects utilizing surface water sources and minor (area less
than 2000 ha)7 projects tapping into groundwater resources. Irrigated binary maps are developed in this
work where each cell of 250 m resolution represents an approximate area of 6.25 ha and in case of partial
or full irrigation, a grid cell was considered 100% irrigated. In India, irrigation expansion has changed
remarkably during the last few decades increasing from 20.6 mha in 1950–1951 to nearly 56 mha in
2002–2003 (ref. 7). Due to variations in agro-climatic conditions there is large inequality in the irrigation
potential of different states. For instance, south Indian states such as Andhra Pradesh, Karnataka, Kerala,
and Tamil Nadu generally have low irrigation potential compared to the other regions, which can
attributed to availability of surface and groundwater resources. Additionally, states like Tamil Nadu,
Punjab, Rajasthan, Maharashtra, West Bengal and Haryana have already developed over 70% of its major
and moderate irrigation potential. Moreover, states like Orissa, Madhya Pradesh, and Gujarat have
utilized over 80% of their irrigation potential. States of Haryana, Uttar Pradesh, Bihar, and Tamil Nadu
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have irrigated area more than 50% of cropped area, while 95% of arable land in the state of Punjab is
irrigated. Wheat, sugarcane, and banana are the major irrigated crops in the country with other crops
occupying relatively less irrigated area include groundnuts, pulses, cotton, and coarse cereals.

Normalized difference vegetation index (NDVI) data from MODIS
The Normalized Difference Vegetation Index (NDVI) can be used as an indicator for irrigated area12,15–17

as it represents the amount of green biomass with index values varying in response to changes in
vegetation conditions18–20. MODIS data products are available at different spatial and temporal
resolutions providing a daily global coverage of observations with enhanced spatial, spectral, radiometric,
and geometric quality for improved mapping and monitoring of vegetation dynamics21,22 and can be
used to detect unique multi-temporal, spectral vegetation signatures for crop-type mapping21–24. The
MODIS NDVI composite data are currently available with enhanced vegetation sensitivity with minimal
influences from the atmosphere, view and sun angles, clouds, and inherent non-vegetation influences of
canopy background and litter. To separate irrigated and non- irrigated areas, MODIS NDVI data with a
spatial resolution of 250 m and a 16-day temporal composite period were used to ensure the highest
spatial resolution and least amount of cloud contamination. For each year during the study period of
2000–2015, MODIS-NDVI data were projected to the geographic coordinate system and mosaicked using
the NASA reprojection tool (mrtweb.cr.usgs.gov). The16-day composite NDVI data were used without
any smoothing as smoothing techniques typically result in only subtle increases in overall classification
accuracy and some of these techniques lead to large inconsistencies in previous classification efforts2,25.

Irrigated and non-irrigated crops show considerable differences in NDVI for the same crop type or
cropping pattern. For instance, irrigated crops exhibit higher NDVI especially for corn and wheat16,17,20,26,
which can be used to separate those from the non-irrigated crops10,17,21 (Fig. 1c). Increased soil moisture
availability from irrigated water applications during the growing season helps the agricultural crops to
attain maximum NDVI exceeding the peak NDVI of non-irrigated crops16. The temporal NDVI profile
also reflect variations from sowing to harvest and different types of vegetation indices can depict
biophysical characteristics of a particular crop type27,28. Colombo, et al.29 showed that Leaf Area Index
(LAI) has a positive correlation with NDVI of different crop types, which can be used to identify crops
from their phenological phases of vegetation dynamics such as green up, maturity, and senescence28,30–33.
In addition, NDVI and LAI are strongly correlated, with NDVI saturating (reduced sensitivity) when LAI
reaches a value of 4 or more, which is identified as non-crop vegetation. LAI rarely approaches such a
value for crop and this would be no issue for irrigation classification therefore NDVI alone can be used to
differentiate irrigated from non-irrigated areas as well as crop types. In rainfed areas, NDVI may not
achieve saturation during the crop growing period, which also provides a basis to map irrigated areas
using NDVI. Moreover, NDVI helps to segregate classes of same crops within an agricultural area, which
in turn can be used to differentiate between irrigated and non-irrigated areas due to difference in peak
value of NDVI.

Identifying potential agricultural area and defining cropping schedule
The methodology consists of two main steps as shown in Supplementary Fig. 1: 1) classifying crop types
using spectral similarity along the n-dimensional space vectors based on decision rules of physically-
interpretable thresholds selected from spectral features, and 2) a decision tree model formulated using the
vegetation condition index (VCI)34,35 for each pixel in the selected agroecological region to accommodate
the weather component in separating irrigated and non-irrigated areas. A LULC map derived from the
Indian Remote Sensing (IRS)—P6 AWiFS available at 56 m resolution was used to map agriculture areas
under different seasons (Kharif, Rabi and Zaid). Agricultural land located on slopes of 8% or less are
suitable for surface irrigation16. As a result, areas with a slope greater than 20%, as well as non-
agricultural areas were masked from the composite NDVI data. Agroecological zones (http://www.fao.
org/docrep/009/a0257e/A0257E02.htm) in India are well defined and mapped using the ArcGIS shape
files. The analysis was performed for each zone separately to account for variations in climate, soil types,
and phonological cycle of crops. More information on the input data used in our work can be obtained
from Table 1.

The crop calendar and growth stages are prepared for each agro-ecological zones using the data from
the National Food Security Mission (http://nfsm.gov.in/nfmis/RPT/CalenderReport.aspx). However,
natural variations in sowing and harvesting dates may differ because of other factors related to varying
topographic conditions, soil moisture in the earlier growth stages, soil salinity intrusion during the dry
season, flooding in wet season, general weather conditions, and farmer management decisions. Since
vegetation health depends on the region of growth, data preparation and decision tree model
development was carried out separately for each agro-ecological zone. A lookup table consisting of
average height of crop and major crop types for different agroecological zones was prepared as discussed
in Gajbhiye and Mandal36. Here average height refers to the difference in crop type value of NDVI
achievable during its time of growth in an agroecological zone. Average height data were prepared based
on visual analysis of different crops profiles of peak NDVI value for rain fed and irrigated time period
from published literature. Since locations of specific crop type were not available NDVI height were
prepared from published literature. Thus each threshold value was assigned for each crop type based on
the NDVI in hierarchal manner. The scheme of implementation at first was based on three broad
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grouping of crops in the Kharif, Rabi, and Zaid seasons. Identification of each crop (Rice, Wheat, Cotton,
Maize, Sorghum, Pulses, Barley, Soybean, Sugarcane, Pearl Millet, Jowar, Groundnut, Sesamum, Bean,
Gram and Berseem) was done on the basis of crop-specific average height at the time of sowing, seedling
growth, tillering, flowering, ripening and harvest.

Multi-temporal NDVI profiles were extracted from the time-series MODIS data of each selected area
for each 250 m pixel over agricultural land, while n-dimensional temporal NDVI data were used to
separate probable crop type using a lookup table. Emergence and senescence periods for a crop were
identified using cumulative NDVI departure (departure was estimated against the mean value and when
cumulative departure is minimum the date was identified) for a water year (i.e., from month of June of
current year to the month of May next year (June to May)). A NDVI composite (NDVIC) was created for
every water year by layer stacking MODIS images. The NDVIC selected samples were used to define crop
type based on their NDVI temporal profiles. For each NDVIC sample, the start of growing season,
duration and height information were used to assign the crop type based on the condition prepared in the
corresponding lookup table. The obtained crop type class information was then used as a training sample
to segregate crops of spectral similarity, which was finally used in the irrigated/non-irrigated classification
algorithm. Since each pixel may represent more than one crop type because most of the crop fields are
small in comparison with the pixel size of the data, a spatial sample size of 250 m which is equivalent to a
pixel of MODIS NDVI was selected uniformly throughout the entire agro-ecological zone. Considering
the boundary of each district, the selected pixels were spaced at an average distance of 4 km. Maximum

Figure 1. Variation of NDVI in irrigated and non-irrigated areas. (a,b) Space-time spiral curves (ST-SCs) to

study subtle changes in LULC spectral separability for 2001 and 2002 (Julian Day) and (c) Temporal profile of

NDVI during 2001 and 2002 for irrigated and non-irrigated areas for seasonal pools of complete season(CMS),

first season (FS), intermediate season (IS), and second season (SS).
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attainable NDVI value range considered for cropped area is normally in range between 0.1 and 0.8, and
corresponding height was scaled in a range between 1 and 100. The created crop classes were used as an
end member signature for further crop type classification of the entire agroecological-zone. Classification
of NDVIC (Normalized Difference Vegetation Index Composite) was performed using Spectral
Correlation Mapper (SCM) where each end member defined as a crop is considered as a spectrum
representative of the spectral class property of n-dimension space vector. The SCM is a modification of
the Spectral Angle Mapper (SAM) approach37 with the major difference from latter technique being that
the data are standardized and centered on two spectra, i.e., the reference and the image spectrum, which
allows a better spectral difference by using pairs of deviation and by detecting false positive. The basic
limitation of the SAM is its inability to distinguish negative and positive correlations because only
absolute values are considered. The SCM is a derivative of the Pearson correlation coefficient that
excludes negative correlation and varies between −1 and 138. Hence SCM presents a more accentuated
contrast between targets of interest (i.e., irrigated and non-irrigated crops) and highlights pixels
representing negative correlations allowing the algorithm to distinguish the targets of interest more
accurately.

Decision tree irrigation model
Shahriar Pervez, et al.16,20 and Ozdogan, et al.15 demonstrated that the NDVI threshold approach was
promising for identifying irrigated areas. A decision tree classifier was developed by applying a NDVI
threshold for individual class clusters (crop type belong to same class obtained from the SCM)
(Supplementary Fig. 2). The framework was based on the fact that individual ‘seasonal pools’ (refers to
growing stages of a specific crop) of crop type (i.e., spectral subclasses of individual crop and rotating
crop) were assessed and used to establish a NDVI threshold to differentiate irrigated from non-irrigated
areas. This approach addresses the temporal dynamics of cropping frequency, which has an unique
advantage in that it does not require calibration to match the reported irrigated area from agricultural
census data using a technique such as that of Shahriar Pervez, et al.16. Moreover, the NDVI threshold was
obtained by transforming the original NDVI into the Vegetation Condition Index (VCI; Kogan34). VCI is
generally used for drought monitoring which needs separation of short-term weather related fluctuations
from long-term ecosystem changes in vegetation. Since VCI can provide information on stressed or
unstressed condition of a crop, it can be used to separate irrigated and unirrigated areas. Normalized VCI
can be used to identify NDVI differences between irrigated and non-irrigated areas. To date, the VCI has
mainly been used to monitor weather impacts on vegetation such as drought detection and
monitoring34,35,39. VCI of every individual crop class was analyzed for each year to get the mean VCI
(MVCI). Here, the VCI is considered a key proxy for separating an irrigated and a rainfed crop from the
same crop system because it includes weather-related information expressed by NDVI fluctuations in the
intra- and inter-annual NDVI time-series data.

A NDVI threshold (NDVIirclass) value was identified for each crop type. Initially, maximum value of
NDVIiclass i.e., NDVIimclass was segregated based on each crop class obtained from SCM for the every
seasonal pools. The mean NDVI was obtained for each class (NDVIiclass) using maximum of NDVIiclass
from every seasonal pool of the crop growing period. Here irrigated area separation is based on crop type
of the same class or cropping pattern. Moreover, it is evident that the stress condition can be identified
using the maximum vegetation index value of a particular crop class compared to the index value of the
same crop class in a water-stressed condition. MVCI was estimated using equation ii and multiplied by
100 to measure percentage change of the current NDVImp from the NDVIiclass. The percentage variation
was then used as a proxy for the stressed condition for the same class types. This stressed percentage was

Data Source Spatio-temporal resolution Remarks

MODIS-NDVI mrtweb.cr.usgs.gov 250 m, 16 day composite To Develop Crop Mask, VCI threshold
for irrigation

Crop Calendar nfsm.gov.in/nfmis/RPT/
CalenderReport.aspx

Federal state wise, Seasonal(Kharif, Rabi
and Zaid)

To segregate different crop based on
season

Agroecological Zones www.fao.org/docrep/009/a0257e/
A0257E02.htm

1:5172413 Scale, 20 Zones To Separate regions with different
climate, soil type and crop rotation

Land Use Land Cover -IRS—P6
AWiFS

bhuvan.nrsc.gov.in/bhuvan_links.
php

56Meter To remove classes other than Crop

SRTM—DEM earthexplorer.usgs.gov/ 90Meter To exclude areas with greater than 20%

DES—Irrigation eands.dacnet.nic.in/ Federal state and country wise irrigated
area data for the period of 2000–2012

For validation with obtained irrigation
Data

IWMI—Irrigation data waterdata.iwmi.org/applications/
irri_area/

250 m, 2000 and 2010 For comparison with obtained irrigation
Data

Landsat −7 ETM + earthexplorer.usgs.gov/ 30Meter To show ground condition of growing
season

Table 1. Data sets used for irrigated area mapping as input and validation.
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then used as a multiplier coefficient to separate irrigated from non-irrigated area, which was given in
equation (1). Therefore, NDVIirclass was best suited to separate cropped area under irrigation.

NDVIirclass ¼ MVCI ´NDVImp

� �

þ NDVImp ð1Þ

where

MVCI ¼
NDVImp -NDVImclass

NDVImclass

� �

and NDVImclass ¼
1

n

X

n

i¼1

NDVIimclass ð2Þ

where NDVIirclass is a threshold for separating irrigated class NDVIiclass value present in each class of
SCM, NDVIimclass mazimum value of NDVIiclass, NDVImp is the minimum value of NDVIimclass, MVCI is
the Mean Vegetation Condition Index, and NDVImclass is the mean NDVI value for particular class. Each
seasonal pool and each crop type was evaluated separately and using a minimum NDVIirclass value
equivalent or greater than 0.2 of NDVI for irrigated area. The irrigated area uses NDVIirclass as threshold
when a minimum difference of 0.15 or greater exists between values of NDVIiclass, and NDVImp. The
details of decision tree classification are presented in Supplementary Fig. 2.

For post classification analysis, Space Time Spiral Curves (ST-SCs) were used to verify irrigated area
for spatial and temporal consistency which further differentiate irrigated and non-irrigated crops even
both falls in same region as explained below (Fig. 1c). ST-SCs use two-dimensional feature space (i.e.,
NIR and RED reflectance) of the MODIS data to track near continuous changes in class spectral
behaviour over time and space. As presented in Thenkabail, et al.10 ST-SCs curve demarcate the class
territory as for each class that is rain-fed in ‘brightness territory’, the water class in ‘wetness territory’ and
the irrigated class in ‘greenness territory’. Nonetheless, it can categorize changes in magnitude difference
of features like built-up, forest, and crop growth. The ST-SCs can identify when two classes have similar
spectra and provide excellent class separability on most dates from different classes and even show
differences in irrigated and non-irrigated crop class for one or more dates (Fig. 1a,b). In addition to this
the time series trend in irrigation with respect to rainfall was also analyzed for agro-ecological zones
and states.

Data Records
The study area extends spatially from 68° E to 97° E and 6° S to 37° N, which covers the entire Indian
region. Irrigation data sets are available to the public through an unrestricted repository in a Geotiff
format (Data Citation 1). The data is in binary format i.e., 0 and 1. The value 1 represents irrigated area
with a pixel size of 250 m. The data provide a static representation of irrigation during a water year and
cover the entire period of 2000–2015. The data repository delivers only irrigation raw data obtained for
the entire Indian region. The repository updates of irrigated area will be done every year upon the
availability of new data set.

Technical Validation
The application of the model over the 15-year study period resulted in 15 annual irrigation maps for the
time period of 2000 to 2015 (Figs 2 and 3). The validation section presents two sets of results: 1) temporal
validation of irrigated area with agricultural statistics data for the entire country and for each state (DES)
and 2) an irrigated area comparison of the Ganga River Basin. Since no ground based observed irrigated
area data are available, we provide accuracy assessment against the DES data for each state, which is
based on ground based survey for irrigated area. Moreover, we selected the Ganga basin for the analysis as
it is one of the most irrigated basins in the world. Both surface and groundwater based irrigation is being
used in the Ganga basin, which can provide us an excellent case for the evaluation of our approach. The
irrigated area for the Ganga basin during 2001–2002 was developed by Thenkabail et al.10 using a series
of 500 m MODIS images. The Ganga Basin irrigated area comparison was done using space time spiral
curves (SC-STs) introduced by Thenkabail, et al.10 to check near continuous changes in class behaviour
over time and space to match the irrigation area obtained for the years 2001 and 2002. The accuracy of
irrigated area obtained from 500 m MODIS reported by Thenkabail, et al.10 is based on fuzzy approach
and the produced six irrigated-area classes had an accuracy of 100, 75, 84, 56, 79 and 100 (%) with a mean
accuracy of 82%. The accuracy assessment of these maps was challenging due to lack of ground truth and
site-specific information on irrigated areas, however, better information on accuracy can be achieved
through direct comparison with DES data based on ground survey of irrigated areas. These comparisons
allow us to examine the accuracy in terms of temporal correlation and spatial variability of irrigated class
at the 250-m resolution. Since the irrigated area maps were developed for a water year, the evaluation
represents the same period.

Irrigated area comparison for the Ganga River basin using SC—STs curve
The irrigated area for the Ganga River basin was reported to have an area of 26.9 mha during the period
of 2001–2002 based on the 500-m resolution data developed by Thankbeil et al.10. Our estimate for the
same period for the Ganga River basin for irrigated area was 30.75 mha. Some differences in the two
estimates can be attributed to classification errors and difference in spatial resolutions (250 and 500 m)
between the two classified maps. Moreover, uncertainties in irrigated area estimation in 500 and 250 m
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Figure 2. Changes and variability in irrigated area in the Indo-Gangetic Plain. Temporal variation of

irrigated area in the Indo-Gangetic Plain for water years for the period of 2000–2015.
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maps may also be due to insufficient ground reference points that are needed to avoid misclassificiation.
Spatial resolution may be an important factor as a 500 or 250 m pixel is considered fully irrigated if there
is partial irrigation in small fields within a pixel. We adopted the space- time spiral curves method for
validating irrigated area, were ST-SCs have the capability to demarcate spectral class territory and the
validation was carried out for ‘greenness territory’, which contains the irrigated and non-irrigated areas.
Irrigated and non-irrigated areas were well separated during different time period of growth for the years
2001 and 2002 (Fig. 1a,b). Figure 1 shows a good agreement between our estimates and results in other
reports that show a similar trend, where ST-SCs during 2001 and 2002 of irrigated area significantly
overlap one another for most of dates. Given that 2002 was a drought year, the greenness of agricultural
land was reduced because of less water availability in non-irrigated areas compared to 2001, which was
evident in the results shown in the Fig. 1. For instance, a noticeable difference can be seen in both images
on 241th day, which may be due to the fact that 2002 was a drought year with low greenness as discussed
in Thenkabail, et al.10.

Multiyear irrigated area
A multi-year irrigated area for different states was estimated using statistics data of Net Irrigated Area
(NIA) obtained from DES (http://www.aps.dac.gov.in/LUS/Index.htm) for the period of 2000–2013.
A detailed description of data used as input for validation are given in Table 1. To our knowledge, the
DES dataset is the most reliable and provides areal information on the temporal variation of irrigated area
to validate our result. Moreover this dataset is used by several government agencies for adoption and
mitigation efforts in response to weather fluctuations and extremes6,40. The temporal variation in
irrigated area in the DES data and MODIS 250 m irrigated area maps for all India is shown in Table 2.
Our results showed an overestimation in irrigated area estimated using 250 m MODIS NDVI data
(Table 2). Since our estimates are based on 250 m spatial resolution, irrigated area may be overestimated
due to small land holdings in India. This highlights the need of higher resolution irrigated area maps in
India that can resolve the boundaries of majority of small land holdings.

The effect of classification algorithm, and threshold considered here for irrigation mapping are
somewhat subjective and may have uncertainty associated with them, hence it is important to
communicate to users this information before using these irrigated agricultural land data sets. The
misclassification may introduce positional uncertainties even in the cropping area, which could result in

Figure 3. Irrigated area in India during the selected drought years. (a–c) Irrigated (green) and non-irrigated

(brown) areas in India for 2000, 2012, and 2015, and (d–f) taluk based irrigated area (%) estimated by

aggregating the 250 m irrigated area based on MODIS NDVI for 2000, 2012 and 2015.
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selecting the incorrect NDVI threshold for defining irrigation. Another source of potential error could be
attributed to the 250-m spatial resolution of the MODIS source data, where non-irrigated areas smaller
than the pixel size are often classified as irrigated and can only be distinguished with higher spatial
resolution data. However, the multi-year irrigation data set produced in this study was robust enough to
capture the overall decline of irrigation during drought years (Fig. 3), which can be attributed to less
shown area during drought years. The results validated with published literature10 using a different
technique give substantiate evidence in support of the representative of the accuracy of the overall
irrigation patterns obtained using our methods (Tables 2 and 3).

Since ground based survey data of irrigated area are available at state level, we compared estimated
mean irrigated area between 2000 and 2013 from the 250 m MODIS data against the DES for each state
(Table 3). Using the 250 m MODIS NDVI, the irrigated area for all the states showed root mean square
error (RMSE) of 0.83 mha and coefficient of determination (R2) of 0.95. These results indicate the
effectiveness of our approach to map irrigated area against ground based survey of DES. We notice that
the states of Andhra Pradesh, Assam, Jharkhand, Orissa, Rajasthan and Uttar Pradesh showed an
overestimation in estimated irrigated area that ranged between 1.02 and 2.31 mha. The bias in our
estimates is random as in some states irrigated area was overestimated while in other it was
underestimated. However, in most of the states, our results provided better estimates of irrigated area in
comparison to the product developed by the International Water Management Institute13 (IWMI)
[R2

= 0.76 and RMSE= 7.99 mha] at the same resolution (Table 3). Apart from the spatial resolution
(250 m), which may not be able to resolve boundaries of small land holdings41,42, bias in estimated
irrigated area may also be caused due to variation in peak NDVI. Since NDVI is an indicator of
vegetation health, the effectiveness of our approach may be higher in semi-arid or arid regions, where
water is a limiting factor for crop growth. For instance, in humid and sub-humid regions, the difference
in peak NDVI, that is used as a threshold to identify irrigated and non-irrigated areas may not be high
leading to errors and bias in the classification. Since a majority of agroecological zones of India fall in
water limited conditions, we assume that our method is effective for India. Other than these factors
(resolution and difference in peak NDVI), management related factors (differences in soil productivity,
fertilizer application, and sowing time) can also influence the classification of irrigated and non-irrigated
regions in India. Notwithstanding sources of uncertainty, our results provide better estimates of irrigated
area in comparison to the other existing dataset (IWMI).

Standardized anomalies in rainfall and irrigated area
A comparison of the first difference time series of rainfall and irrigation is presented to show the trend
and response of irrigation to rainfall variations. The areas were grouped by agroecological region, state,
and country and the time series difference data were evaluated at a spatial scale of 250 m. Supplementary
Fig. 3 presents the temporal irrigation pattern and first difference map of rainfall with irrigation for the
Indian region. The latter were normalized by subtracting the mean from the actual value and dividing it
by corresponding standard deviation using annual average of rainfall and irrigation area for a particular
region. Declines in irrigated area were fairly constant for some years with values ranging between −1.46
and −2.60 mha, however, other years 2003–2004, 2005–2006 and 2012–2013 showed a larger decrease in
irrigated area with values ranging from −6.21 to −13.38 mha. One reason for the latter case is that the
preceding year had a pronounced rainfall deficit as illustrated in Supplementary Fig. 3c. In addition,

SL. no Water year DES net irrigated area (mha) MODIS 250m irrigated area (mha)

1 2000-01 55.31 77.56

1 2001-02 56.93 76.16

2 2002-03 53.89 82.14

3 2003-04 57.06 73.96

4 2004-05 59.22 74.71

5 2005-06 60.69 65.51

6 2006-07 62.60 76.52

7 2007-08 63.18 73.92

8 2008-09 63.63 73.18

9 2009-10 61.93 71.50

10 2010-11 63.59 75.19

11 2011-12 65.26 78.71

12 2012-13 66.10 64.75

Table 2. Comparison of all India irrigated area (mha) from of statistical data (DES) and developed

data at 250 m spatial resolution using the MODIS NDVI in this study.
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Panda and Wahr43 reported during 2012 year that the GRACE-derived negative water storage anomaly
for the post monsoon and monsoon were less compared to previous years. In addition to that post
monsoon of 2012 (October to December) and pre monsoon (January to May) of 2013 having a consistent
temporal behaviour of groundwater level anomaly was noticed by in situ data for the years 2011 and
2012. Terrestrial and ground water storages withdrawal were also less during 2012 drought year (may be
because of less sown area), which could be a possible reason to decrease irrigation for this time period.

A notable finding in the Indo-Gangetic plain is shown in Fig. 2 for irrigation during the 2002 water
year where irrigation was not affected by the observed rainfall deficit, which was calculated as a positive
difference of 2.15 mha from other obtained techniques as discussed in Thenkabail, et al.10. Other studies
also showed the same trend for the same water year10, which can be attributed to substantial
groundwater-based irrigation in the region. In contrast, for the Indo-Gangetic plain, the spatial extent of
irrigated area was reduced during the 2012 drought year because of a decline in net cropped area due to
rainfall deficit in the early monsoon season (June) [Figs 2 and 3]43. Interestingly for the state of Punjab,
a negative anomaly in irrigated area was seen for most of the years since 2008 (Supplementary Fig. 3b),
and had almost recovered to a comparable pre-2008 irrigated area by 2015. Reports claim this state had
faced consecutive dry years43, which may have attributed to such trend.

SL. no Federal state DES net irrigated area (mha) MODIS IWMI

250m irrigated area (mha) 250m irrigated area (mha)

1 Andhra Pradesh 4.40 6.08 19.60

2 Arunachal Pradesh 0.05 0.12 0.11

3 Assam 0.15 1.17 1.65

4 Bihar 3.29 2.71 10.71

5 Chandigarh 0.001 0.001 0.002

6 Chhattisgarh 1.25 3.34 10.05

7 Dadra & Nagar Haveli 0.006 0.005 0.037

8 Delhi 0.02 0.02 0.07

9 Goa 0.03 0.05 0.14

10 Gujarat 3.79 4.42 12.06

11 Haryana 2.98 3.09 5.56

12 Himachal Pradesh 0.11 0.28 0.72

13 Jammu & Kashmir 0.31 0.36 2.12

14 Jharkhand 0.13 1.40 6.70

15 Karnataka 2.99 3.95 13.55

16 Kerala 0.39 0.58 0.59

17 Madhya Pradesh 6.19 5.60 27.00

18 Maharashtra 3.25 3.59 23.26

19 Manipur 0.05 0.06 0.12

20 Meghalaya 0.06 0.12 0.24

21 Mizoram 0.01 0.07 0.005

22 Nagaland 0.07 0.12 0.01

23 Orissa 1.66 3.37 10.65

24 Pondicherry 0.02 0.02 0.04

25 Punjab 4.06 4.38 6.44

26 Rajasthan 6.03 8.34 20.6

27 Sikkim 0.01 0.03 0.01

28 Tamil Nadu 2.75 3.27 10.34

29 Tripura 0.06 0.13 0.29

30 Uttaranchal 0.34 0.48 1.00

31 Uttar Pradesh 13.19 14.28 28.13

32 West Bengal 3.08 2.57 8.28

Total 60.75 74.14 220.22

Table 3. State wise mean irrigated area from DES, MODIS NDVI (250), and IWMI (250) for the

period of 2000–2010.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160118 | DOI: 10.1038/sdata.2016.118 10



A more detailed view of irrigation at different time period is shown in Fig. 3, which shows irrigation
condition during water surplus year and water deficit years of 2012 and 2015 to represent recent periods.
A clear difference in irrigated area estimated using 250m MODIS NDVI can be noted from Fig. 3a,b, in
which most of northern and eastern plain have higher variability in irrigated area, whereas in southern
belt and all over the country there was an increase in irrigation during 2015 year compared to 2000
(Fig. 3). A Taluk-based irrigation map (political boundary of India, which divides a district into smaller
regions) was prepared to show the applicability of our data for agencies interested in seeing how
irrigation was affected at a regional scale. Figure 3d–f well represent severe drought year of 2012, which
was the lowest irrigated area during the period of 2000–2015. The entire eastern and lower northern plain
was affected by severe drought. For the three targeted time periods, temporal variations due to rainfall
anomalies were reflected in our irrigation maps.

More detailed regional representation of irrigation mapping results for four locations with different
climatic and regional LULC patterns across India are shown in Fig. 4. We considered Landsat (Table 1)
satellite data collected during the 2000–2001 crop growing season to show surface conditions (at higher
spatial resolution) of the obtained irrigated area and LULC for more specific thematic image information.
The 250-m irrigated area estimates from the MODIS NDVI and IWMI data (250 m) were used to
compare irrigated area in the selected locations in the north, south, east and western parts of India with
respect to different LULC types to check whether any of these irrigated area data (250 m MODIS and
IWMI) were subjected to under or over estimation (Fig. 4). A noticeable difference in the MODIS-based

Figure 4. Comparison of irrigated area developed using 250m MODIS NDVI and data from IWMI at the

same spatial resolution for specific land use land cover classes. (a) Irrigated area developed using the 250 m

MODIS NDVI, (b) irrigated area from 250 m resolution map from IWMI, (c) Regional views depicted by

Landsat ETM data, and (d) AWiFS Land Use Land Cover (LULC). Each column from left to right represent

north, east, central and southern region of India.
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250 m data and that obtained from IWMI was found suggesting an overestimation of irrigated area in the
IWMI data, which is consistent with the comparison against the ground based DES data (Fig. 4).
A substantial decline in irrigation was shown in MODIS 250 m results compared to the IWMI data.
Disparities in both the datasets can be primarily attributed to classification approaches13. We also
considered central and south regions where the majority of area under either forest and agriculture, and
IWMI based irrigated area maps overestimated the irrigated areas in several of these forested locations
that were none, whereas the 250 m MODIS-derived maps were free from such effect due to removal of
such area prior to the irrigation classification phase. Availability of ground reference data of irrigated area
can be used for accuracy assessment of irrigated area maps developed at higher resolution. These findings
highlight the importance of moderate resolution 250 m irrigated area maps for a country like India that
has small irrigated land holdings. The irrigated area maps developed using the moderate resolution
satellite information and the classification methodology outlined in this paper can be used to estimate
irrigation water demands and water resources planning. It is also important to emphasize that irrigated
area estimation should be conducted annually to get better understanding of influence of climatic
variations on irrigation.

Usage Notes
A simple but effective classification method for mapping irrigated areas was presented in this paper that
uses seasonal peaks of NDVIiclass in a hierarchal decision model for mapping irrigated area for India
annually between 2000 and 2015. The classification method was calibrated separately for each
agroecological region considering the region’s ecological potential and short-term weather fluctuations.
The SCM classification for crop mapping along with the application of decision tree model produced
relatively accurate irrigated maps that were comparable with irrigated area reported by other studies for
Indian region during the same period and also well depicted its inter-annual variability during water
deficit years. Due to the lack of traditional ground reference data of known irrigated fields, areal statistical
data were used to verify the classified irrigated area between 2000 and 2013 and SC-ST curves for cross
verifying the published result for the 2001–2002-time period. Irrigation area results from the maps
produced in this study were consistent with the irrigated area of the DES and other published reports,
which provides confidence that our technique is robust enough to be applied in other parts of the south
Asian region. Uncertainty and bias in the estimated irrigated area can be further reduced by using a high
resolution NDVI data that can capture the variability in the small land holdings in India.

In general, high resolution irrigation data are required to study irrigation water requirement, for
applications such as cropping pattern changes, combining hydrologic modeling to determine ground
water recharge in arid and semi-arid regions, assessment of water demands at catchment scale,
characterizing spatial and temporal variation of crop yields caused by irrigation, temporal and spatial
pattern of evapotranspiration in highly irrigated area. For example, high resolution maps can be used to
assess the fraction of areas under irrigation in Taluks in India as displayed in Fig. 3. Figure 3 highlights
the substantial irrigation fluctuations in areas of north and southern regions. Around 19% decline in
irrigated area was noticed during 2012 drought year as compared to the previous years, which shows that
the region was affected by this severe drought event. A sub-region scale irrigation climatology can also be
developed using this annual times-series irrigation data set. The dataset can also be used to estimate
irrigation water demands and water management under the water stress conditions. The irrigated area
maps can be used for planning in water resources and agriculture in India.

Irrigated area maps are presented in tiff format for each water year (2000–2001, 2001–2002 and
2014–2015). The maps can be easily imported in ArcGIS for analysis of irrigated area in any region
in India.
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