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Abstract

As satellite images are widely used in a large number of applications in recent years, content-based image retrieval

technique has become important tools for image exploration and information mining; however, their performances

are limited by the semantic gap between low-level features and high-level concepts. To narrow this semantic gap,

a region-level semantic mining approach is proposed in this article. Because it is easier for users to understand

image content by region, images are segmented into several parts using an improved segmentation algorithm,

each with homogeneous spectral and textural characteristics, and then a uniform region-based representation for

each image is built. Once the probabilistic relationship among image, region, and hidden semantic is constructed,

the Expectation Maximization method can be applied to mine the hidden semantic. We implement this approach

on a dataset consisting of thousands of satellite images and obtain a high retrieval precision, as demonstrated

through experiments.
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1. Introduction

The information in remotely sensed images plays an

important role in environmental monitoring, disaster fore-

casting, geological survey, and other applications. With the

steadily expanding demand for remotely sensed images,

many satellites have been launched, and thousands of

images are acquired every day [1]. This leads to an expo-

nential increase in the quantity of remotely sensed images

in database. Therefore, how to retrieve useful images

quickly and accurately from a huge and unstructured

image database becomes a challenge.

Traditional image query techniques retrieve images by

matching keywords [2], such as geographic location, sen-

sor type, and time of acquisition. But, the content of the

image which is much more important than attributes is

not considered in these techniques [3]. In order to over-

come this shortcoming of these techniques, image retrie-

val techniques are strongly focused on content-based

image retrieval (CBIR). In a CBIR system, low-level fea-

tures are used to represent image content and retrieve

image from database, such as spectrum, texture, and

shape [4-6]. Although low-level features can accurately

be extracted by various methods, they cannot easily be

utilized to describe user’s perception of an image [7,8].

Semantic feature is a high-level hidden concept, which is

meaningful to user’s perception. The difference between

low-level feature and high-level semantic feature, caused

by the absence of a direct relationship between low-level

features and high-level concepts [9-13], is called the

“semantic gap” [7]. To narrow this gap, a semantic-based

image retrieval system should be built, in which high-

level semantic features can automatically be extracted

from low-level image features.

Semantic feature mining is essential to semantic-based

image retrieval technique. The process of semantic feature

mining can be divided into two steps: low-level feature

extraction and high-level semantic feature extraction. At

present, most studies on low-level feature extraction are

based on pixel characteristics. Li and Narayanan [14] iden-

tified ground-cover information based on spectral charac-

teristics using supervised classification and extracted

textural features by characterizing spatial information

using Gabor wavelet coefficients. Li et al. [15] developed

an approach based on pixel-level textural information to

extract global semantic features. But, pixel does not facili-

tate understanding of the image, thus it is often replaced
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by region. It can be assumed that region-level description

of visual information is more comprehensible for users

than pixel-level image description. However, most of the

existing high-level semantic feature mining methods are

based on pixel-level features. Datcu et al. [16] and Daschiel

and Datcu [17] developed a Bayesian classifier to retrieve

images from a remotely sensed image database by approxi-

mating the probabilities of images belonging to different

classes using pixel-level probabilities. Aksoy et al. [1] pro-

posed a pixel-based Bayesian framework for a visual gram-

mar to narrow the gap between low-level features and

high-level concepts. Therefore, in this article, a novel

approach is proposed to achieve region-level semantic fea-

ture mining. First, a region-level image content description

is developed to facilitate users’ understanding of image.

Based on region-level features, a probabilistic relationship

among image, region, and hidden semantic is developed.

Then, the Expectation Maximization (EM) method is used

to mine the hidden semantic features. Finally, remotely

sensed image retrieval is performed using region-level

semantic features.

The rest of the article is organized as follows. In Sec-

tion 2, details of the region-level image representation

are provided. In Section 3, semantic mining using the

EM method is discussed. In Section 4, experiments are

presented to demonstrate the effectiveness of region-

level semantic features. Finally, conclusions are pre-

sented in Section 5.

2. Region-level image representation
Region-level image representation includes the following

components: image segmentation, regional information

description, and codebook extraction. Figure 1 shows a

flowchart of the region-level image representation

process.

2.1 Image segmentation

The JSEG algorithm [18] is a region-based segmentation

method that provides robust segmentation results for a

large variety of images and videos [19-21]. In this article,

the JSEG algorithm is improved to make it applicable to

multi-spectral remotely sensed image segmentation.

The JSEG algorithm consists of two parts: color quan-

tization and spatial segmentation. Figure 2 shows a

schematic diagram of the original JSEG algorithm.

In color quantization step, the general Lloyd algorithm

(GLA) [22] is used to quantize the image. In this algo-

rithm, the distortion D can be represented as Equation (1)

D =
∑

i

Di

∑

i

∑

n

ν(n)
∥

∥x(n) − ci

∥

∥

2
, x(n) ∈ Ci (1)

where Ci is the ith cluster in the image, ci is the center

pixel of cluster Ci, x(n) and v(n) are the color vector and

the perceptual weight for pixel n, and Di is the total dis-

tortion for cluster Ci.

Since multi-spectral Thematic Mapper (TM) images

are used as experimental data, x(n) is defined as x(n) =

{an1, an2,...,anj} in this algorithm, where j is the number

of bands in the image and anj is the value of the nth

pixel in the jth band of the image.

In spatial segmentation step, region growing method is

used to segment image based on J-image, in which a

threshold controls region growing result. In this

research, 0.4 is chosen as an empirical value.

Remotely sensed images present complex spatial

arrangement and spectral heterogeneity. It has been

demonstrated that combing spatial and spectral informa-

tion can improve land cover information extraction from

satellite image data [23]. Therefore, in this research,

Normalized Difference Vegetation Index (NDVI) [24],

Normalized Difference Built-up Index (NDBI) [25], and

textural features are substituted for the original spectral

features to increase land cover separability. NDVI provides

a standardized method of assessing whether the land cover

being observed contains live green vegetation or not; it can

be calculated as Equation (2)

NDVI =
(NIR − R)

(NIR + R)
(2)

where R and NIR stand for the spectral reflectance

measurements acquired in the visible (red) and near-

infrared regions, respectively. NDBI serves to compare

urban areas with built-up areas between satellite images;

Figure 1 Flowchart of region-level image representation.
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it can be calculated as Equation (3)

NDBI =
(MIR − NIR)

(MIR + NIR)
(3)

where MIR and NIR stand for the spectral reflectance

measurements acquired in the middle-infrared and

near-infrared regions, respectively. Texture reflects the

local variability of grey level in the spatial domain and

reveals the information about the object structures in

the natural environment [26]. In this research, the mean

texture is used and extracted using Grey-Level Co-

occurrence Matrix (GLCM), which is commonly applied

in statistical procedure for interpreting texture. Finally,

the pixels in original image can be represented as Equa-

tion (4)

f =
{

fNDVI, fNDBI, ftexture

}

(4)

As described above, a flowchart for the improved seg-

mentation algorithm is shown in Figure 3.

2.2 Regional information description

In this research, regional information is described using

spectral and textural features. Spectral feature is the ori-

ginal pixel value, and textural feature is extracted using

GLCM. These two features are extracted separately for

each region in all images.

GLCM is a commonly used method in texture analy-

sis. It describes the frequency at which one grey tone

appears in a specified spatial linear relationship with

another grey tone in the area under investigation. Four-

teen statistical parameters [27] can be extracted using

GLCM. However, in the retrieval system, the more fea-

tures, the lower the efficiency is. The correlation matrix

of the eight common parameters, namely mean, var-

iance, homogeneity, contrast, dissimilarity, entropy, sec-

ond angular moment, and correlation, is presented in

Table 1.

The correlation matrix shows the correlation of the

two parameters. The higher value indicates the higher

correlation of the two parameters. In Table 1 there are

two correlations over 0.8. The correlation value between

contrast and variance is 0.80; the correlation value

between dissimilarity and contrast is 0.87. These indi-

cate that variance and dissimilarity are highly correlated

with contrast. Therefore, variance and dissimilarity can

be replaced by contrast, while the other six parameters

describe textural features.

2.3 Codebook extraction

After the images have been segmented into several

parts, a number of regions are generated and stored in

the database. It will be time-consuming to calculate the

similarity between two regional features for all pairs of

regions.

However, many regions on different images are very

similar in terms of spectral and textural features. There-

fore, GLA is used to classify the low-level features into a

set of codes based on which a codebook will be gener-

ated (as shown in Figure 4).

Figure 4 presents the principle of codebook extraction

when image feature is two-dimensional feature space. In

Figure 4, the blue point is a low-level feature, the black

circle is a cluster, and the red point is the center of the

cluster called code. Codej is the mean of all features in

corresponding cluster. All codes form a codebook.

Then, each region can be represented by a code. For an

image I, its ith region Ri can be represented by Codej.

3. Semantic feature extraction

In this step, a probabilistic method is used to mine the

relationship among semantic features, regions, and

Figure 2 Schematic diagram of the original JSEG algorithm.
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images automatically. Then the EM method [28,29] is

used to analyze the relationship and extract the latent

semantic concepts.

First, various parameters are defined as follows:

(a) Image data: dj is an image in the database, dj Î

{d1,...,dM}; M is the total number of images.

(b) Regional feature data: ri is the ith region feature

in the feature codebook, ri Î R = {r1,...,rN}, where N

is the total number of regional features.

(c) Hidden semantic features: sk is the hidden seman-

tic feature, sk Î S = {s1,...,sK}, where K is the total

number of semantic features.

where j is the number of images, j Î {1,...,M}; i is the

number of region features, i Î {1,...,N}; k is the number

of semantic features, k Î {1,...,K}.

P(dj) denotes the probability that an image will occur

in a particular image database. P(ri|sk) denotes the class-

conditional probability of region ri given the hidden

semantic feature sk. P(sk|dj) denotes the class-condi-

tional probability of the hidden semantic feature sk
given a particular image dj. dj and ri are independently

defined on the state of the associated hidden semantic

feature. According to conditional probability formula,

the joint probability of dj and ri can be described by

Equation (5)

P(ri, dj) = P(dj)P(ri|dj) (5)

Then, applying total probability formula, Equation (5)

can be transformed to Equation (6):

P
(

dj

)

P
(

ri

∣

∣dj

)

= P
(

dj

)

K
∑

k=1

P (ri |sk ) P
(

sk

∣

∣dj

)

(6)

The class-conditional probability of semantic feature

sk, P(sk|ri,dj), depends on image dj and region feature ri.

Using the Bayesian formula, this class-conditional prob-

ability can be described by Equation (7)

Figure 3 Flowchart of improved image segmentation algorithm.

Table 1 The correlation matrix of the eight common parameters

Mean Variance Homogeneity Contrast Dissimilarity Entropy ASM Correlation

Mean 1.00 0.62 -0.51 0.58 0.77 0.55 -0.29 -0.13

Variance 0.62 1.00 -0.44 0.80 0.76 0.32 -0.25 0.04

Homogeneity -0.51 -0.44 1.00 -0.46 -0.70 -0.39 0.74 0.14

Contrast 0.58 0.80 -0.46 1.00 0.87 0.30 -0.24 0.03

Dissimilarity 0.77 0.76 -0.70 0.87 1.00 0.56 -0.41 -0.04

Entropy 0.55 0.32 -0.38 0.31 0.56 1.00 -0.57 -0.34

ASM -0.29 -0.25 0.74 -0.24 -0.42 -0.57 1.00 0.28

Correlation -0.13 0.04 0.14 0.03 -0.04 -0.34 0.28 1.00
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P
(

sk

∣

∣ri, dj

)

=
P

(

ri, dj |sk

)

P (sk)

P
(

ri, dj

) (7)

Since dj and ri are independent, referring to Equation

(6), Equation (7) can be transformed to

P
(

sk

∣

∣ri, dj

)

=
P

(

dj |sk

)

P (ri |sk ) P (sk)

P
(

dj

)

K
∑

k=1

P (ri |sk ) P
(

sk

∣

∣dj

) (8)

where l is the number of semantic features, l Î {1,...,

K}.

Referring to Bayesian formula, Equation (8) can be

transformed to

P
(

sk

∣

∣ri, dj

)

=
P

(

dj |sk

)

P (ri |sk ) P (sk)

P
(

dj

)

K
∑

k=1

P (ri |sk ) P
(

sk

∣

∣dj

)

=
P (ri |sk ) P

(

sk

∣

∣dj

)

K
∑

l=1

P (ri |sl ) P
(

sl

∣

∣dj

) (9)

Then, refering to the likelihood principle, P(dj), P(ri|

sk), and P(sk|dj) can be determined by maximizing the

log-likelihood function:

L = log (P (R, D, S)) =

N
∑

i=1

M
∑

j=1

n
(

ri, dj

)

K
∑

k=1

P
(

sk| ri, dj

)

log
[

P
(

sk| dj

)

P ( ri| sk)
]

(10)

where n(ri,dj) indicates the number of occurrences of

region ri in image dj.

The standard procedure for maximum likelihood esti-

mation is the EM algorithm. This method has two steps:

expectation step (E-step) and maximization step (M-

step). The E-step can be interpreted as mining the rela-

tionship between current estimates of the parameters

and the latent variables by computing posterior prob-

abilities. The M-step can be interpreted as updating

parameters based on the so-called expected complete-

data log-likelihood.

According to the EM method, the process of obtaining

Equation (8) can be considered as the E-step, and the

process of obtaining Equation (9) can be considered as

the process of log-likelihood estimation. Then, Equation

(9) is maximized using Lagrange multipliers. Equations

(11) and (12) can then be derived

P ( ri| sk) =

∑M
j=1 n

(

ri, dj

)

P
(

sk| ri, dj

)

∑N
m=1

∑M
j=1 n

(

rm, dj

)

P
(

sk| rm, dj

)
, (11)

P
(

sk| dj

)

=

∑N
i=1 n

(

ri, dj

)

P
(

sk| ri, dj

)

∑N
n=1 n

(

rn, dj

)
(12)

where n is the number of regions and region features,

n Î {1,...,N}.

The E-step and M-step equations are calculated alter-

nately until a local maximum of the expectation in Equa-

tion (9) is found. Because the distributions of P(R|S), P(S|

D), and P(S|R,D) are uniform, their initial values can be set

equal to P(R|S). The number of iterations depends on

experience; in this research, it is set to five.

Each image can then be represented by the posterior

probability P(sk|dj) instead of by the original image

feature.

4. Experiments

In the experiments, TM images of Kii Peninsula (Japan),

Wuhan (China), and Yancheng (China) are used. Each

image is split into 256 × 256 subimages, and the total

number of images is 2,000. Each image could manually be

classified into eight land-cover types, namely sea, river,

lake, farmland, urban area, cloud, forest, and bare soil.

4.1 Image segmentation

Experiments on TM image are performed to test this seg-

mentation algorithm. For a comprehensible comparison,

we use original JSEG algorithm and the well-established

eCognition. The results are shown in Figure 5 (boundaries

are highlighted by red lines).

Figure 5a shows two original TM images, both covering

urban area and forest. The textural characteristics are

clear in the forest area; because of the modest resolution

of the TM sensor, spectral characteristics are more pro-

minent than textural characteristics in the urban area.

Figure 5b presents the results from the original JSEG

method. Note that the JSEG method produces good

results, but sometimes it cannot separate two different

regions very well due to the complex spectral characteris-

tics of remotely sensed image. Compared with the JSEG

method, the proposed method (Figure 5c), which takes

NDVI, NDBI, and textural features into consideration,

makes the difference between the ground covers more

obvious and generates much better segmentation results.

Figure 4 Schematic diagram of codebook extraction.
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Figure 5d presents the results obtained from eCognition.

Although the boundary is clear in Figure 5d, the result

contains many fragments and some oversegmentation.

These experimental results prove that the proposed

method outperforms the other two methods in terms of

visual evaluation. It not only produces a good segmenta-

tion boundary, but also avoids oversegmentation.

4.2 Semantic feature extraction

In this experiment, semantic features are extracted from

spectral and textural features. To determine the optimal

number of semantic features, different numbers of

semantic features are used to retrieve images. Without

considering time requirements, the retrieval precisions

obtained for the initial 20(40) result images (denoted as

Top (20(40))) are shown in Figure 6.

The result indicates the general trend that the larger

the number of semantic features, the higher the retrieval

precision is. This occurs because more semantic features

are used to describe the image content, more details can

be described. However, a larger number of semantic fea-

tures will lead to greater computational complexity for

hidden semantic feature extraction and time require-

ments for computing similarity for image retrieval. The

first turning point in Figure 6 is 100; there is no change

when the number of semantic features is larger than 100.

Therefore, the number of semantic features is set to 100.

4.3 Differences between semantic features

In this experiment, two groups of original remotely

sensed image and their corresponding semantic features

are shown in Figures 7 and 8, respectively.

Figure 7a shows an image covering forest and urban

area; Figure 7b shows the semantic features of these two

kinds of ground cover. In Figure 7b, the cyan column

presents semantic feature of mountain, while the red

column presents semantic feature of urban area; each

column indicates the value of corresponding semantic

feature dimension. The higher the column, the larger

the semantic feature value is. The total number of

semantic features is 100.

In the original image (Figure 7a), it is clear that

mountainous and urban areas present obviously differ-

ent features; in Figure 7b, this difference is also clearly

presented. For examples, in the 18th semantic feature,

   

   

(a) (b) (c) (d) 

Figure 5 Images and corresponding segmentation results using different methods. (a) The original TM images with forest, urban area, and

sea. (b-d) The results that are separately segmented by original JSEG algorithm, the proposed method, and eCognition, respectively.

Figure 6 Retrieval precision for different numbers of semantic

features.
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the cyan column is extremely higher than the red, while

in the 88th semantic feature, the red column is extre-

mely higher than the cyan. This indicates that semantic

features can be used as a replacement for low-level fea-

tures to distinguish between different ground covers.

Figure 8a, b presents two images both covering sea

area. Figure 8c shows the semantic features of these two

sea images. In Figure 8c, the red column presents

semantic features of the sea area of image a, while the

cyan column presents semantic features of the sea area

of image b; each column indicates the value of the

corresponding semantic feature dimension. The higher

the column, the larger the semantic feature value is, and

the total number of semantic features is 100.

Although the characteristics of the sea area in these

two images are same, the concept is different because

the area adjacent to sea in Figure 8a is urban while in

Figure 8b it is mountain. This different concept between

two sea areas is clearly presented in Figure 8c. For

examples, in the 26th semantic feature, the red column

is extremely higher than the cyan while in the 86th

semantic feature, the cyan column is extremely higher

 

 

 

 

(a) (b) 

Figure 7 Different land cover types and corresponding semantic features. (a) Original image. (b) Semantic feature of mountain and urban

areas.

 

(a) 

(c) 

 

(b) 

Figure 8 Similar land cover types and corresponding semantic features. (a) Original image. (b) Original image. (c) Semantic feature of sea

of (a) and (b).
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than the red. This indicates that these semantic features

can also well describe the high-level semantic concepts

hidden in images.

These two experiments lead to the conclusion that the

extracted semantic features can well describe not only

low-level image characteristics, but also high-level hid-

den concepts.

4.4 Image retrieval experiments

Once the semantic features have been extracted, each

image can be represented. The Euclidean distance

method is used to calculate the similarity between two

images. The following two experiments present the dif-

ferent specimen images and the top 20 retrieved results.

4.4.1 Experiment A

In this retrieval experiment, the specimen image is

shown in Figure 9a, with the corresponding retrieval

results consisting of the most similar images presented

in Figure 9b. Specimen image covers mountain area and

urban area, in which low-level features (spectral and

textural) are clearly seen, and semantic perception is

that urban area is on the foot of a mountain.

The analysis of spectral and textural features shows

that most of these 20 retrieval results are similar with

the specimen image covering not only mountain, but

also urban areas. The analysis of high-level semantic fea-

tures shows that 14 images are similar with the speci-

men image in which urban area is surrounded by

mountain, but others are different in which mountain

and urban areas are adjacent.

4.4.2 Experiment B

In this experiment, an image covering cloud and moun-

tain is chosen as the specimen image. The semantic per-

ception in this image is that clouds float above

mountain. The top 20 retrieval results, consisting of the

most similar images, are shown in Figure 10b. The ana-

lysis of low-level features shows that most of results are

similar to specimen image. However, according to

semantic perception, 16 of them are similar to the speci-

men image.

                                             

 

Figure 9 Image retrieval results. (a) Specimen image covers mountain and urban area. (b) The top 20 retrieval results.
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4.4.3 Image retrieval precision and recall

According to the results as shown in Figures 9 and 10,

retrieval precision and recall are calculated. The preci-

sion and recall used in this analysis are defined as Equa-

tions (13) and (14)

Precision =
Irelevant ∩ Iretrieved

Iretrieved
(13)

Recall =
Irelevant ∩ Iretrieved

Irelevant
, (14)

where Irelevant is the total number of relevant images,

and Iretrieved is the total number of retrieved images.

Figures 11 and 12 present the precision and recall

results when the numbers of total retrieved images are

10, 20, 30, and 40, respectively. Although the precision

and recall of experiment B are much higher than those

of experiment A, both of them exhibit a slow drop in

precision by increasing the number of retrieved images

while the recall increases. It is consistent with normal

trend of precision and recall. For a comprehensible

comparison, low-level features of specimen images are

 

        (a) 

 

   

    

    

    

    

(b) 

Figure 10 Image retrieval results. (a) Specimen image covers cloud and mountain. (b) The top 20 retrieval results.
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used to retrieve image. Precision and recall results are

shown in each figure. It can be noticed that the pro-

posed method obtains higher precision and recall.

5. Conclusions

In this article, a region-level semantic-based satellite

image retrieval system is described between low-level

Figure 11 The precision results for different number of total retrieved images.

Figure 12 The recall results for different number of total retrieved images.
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information and high-level concepts. Regional and

semantic features are combined to narrow the semantic

gap. An improved image segmentation algorithm is

introduced which can obtain much better segmentation

results than earlier algorithms. Semantic features are

extracted using a probabilistic method, and experiments

indicate that the new semantic features can represent

not only low-level information, but also high-level con-

cepts. Image retrieval experiments on two different spe-

cimens attain better retrieval precision and recall. The

major limitation of this approach, however, is that a

computationally expensive regeneration of the derived

semantic model is required if new satellite images are

added to the database.
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