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REMOVABILITY OF SINGULAR POINTS ON SURFACES
OF BOUNDED MEAN CURVATURE

ROBERT GULLIVER

In this note we shall be concerned with a continuous surface, or 2-sub-
manifold, which is smoothly immersed except perhaps at one point. A typical
example of such a surface would be a surface of revolution in euclidean space
whose generating curve meets the axis at an acute angle. If the curvature of
the generating curve is bounded near that point, then one may readily compute
that the mean curvature of the surface increases beyond bound as the singular
point is approached. That this must occur even when the generator has un-
bounded curvature is rather less obvious. We shall show that if there is no
limiting tangent plane at the singular point, then the length of the mean curva-
ture vector is unbounded. Observe, for contrast, that the gaussian curvature
may remain bounded, or even constant, near an isolated singularity.

This question was raised in connection with the study of ramified branched
immersions of surfaces of prescribed mean curvature with injective boundary
mapping (see [5]). If a ramified boundary branch point is not equivalent to an
interior point, then the unramified quotient surface has a corresponding deleted
interior point. In the general context of branched immersions with a unique
continuation property, this deleted point may well be a singular point of the
unramified quotient surface. If the original surface has prescribed smooth
mean curvature, however, it is now shown that the quotient surface extends
across the deleted point as a smooth branched immersion with prescribed mean
curvature. This fact will be exploited in a forthcoming study of ramification
of solutions to the Plateau problem for surfaces of higher topological type, [4].

We are indebted to Friederich Tomi for a stimulating discussion.
Notation. For a domain GoίRn, we write Ck(G), Ck>a(G) and Wk(G) for

the spaces of functions whose (weak) Λ th partial derivatives are continuous,
Holder continuous with exponent a, and of class LP(G), respectively. For a
vector function x(u, v), Dx == (xu,xv) denotes the matrix of its first partial
derivatives. A variable point (w, v) or (f, rj) of R2 is also denoted w = u + iv
or ζ = ξ + iη. Except as specified in Lemma 2, B denotes the open unit disk
of R2, and Br = B\{0}. In a riemannian manifold M,gtj are the components
of the metric tensor, and Γk

ά the components of the Levi-Civita connection F.
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Theorem. Suppose Σ is an immersed surface of class C2'β for some β > 0,
having the topological type of the annulus, in a riemannian manifold M of
class C3. Suppose that at one boundary component, Σ has a unique limit point
P in M, and that its mean curvature vector has bounded length. Then there
is a mapping x: B —> M of class Cha(B) for all a < 1, satisfying the con-
formality conditions

( 1 ) Σ gijixίxί - x'vxQ = Σ 8tjχlχί = ° >

and such that the restriction of x to Bf is a C2'β parameterization of Σ.
Remarks. 1. We shall prove, in fact, that x may be taken to be any con-

formal parameterization of Σ, and is a weak solution of system (4) below in
all of B.

2. It the mean curvature vector of Σ is given as a function of class Ca of
x(w) and of the tangent plane, then x is of class C2'a(B) and satisfies system
(4) below in the classical sense (cf. [9, p. 383]).

3. The conclusion of the theorem is that some parameterization extends
across the singularity as a smooth mapping, although not necessarily as an
immersion. However, it does enjoy those aspects of regularity associated with
branched immersions. For example, the tangent plane to Σ at a point Q tends
to a limiting plane as Q approaches P. In fact, x satisfies an asymptotic rela-
tion analogous to (6) below (see [6, proof of Theorem I]).

4. In the case H = 0 of a minimal surface in euclidean n-space, the
theorem follows from a result of Osserman [11, Theorem 1].

We will need to know that the area of Σ is finite. This is a consequence of
a general theorem of Harvey and Lawson [7, Theorem 3.1] we give a proof
here in the interest of completeness.

Lemma 1. Let P be a point of a riemannian manifold M, and suppose Σ
is a properly immersed k-submanifold of M\{P}. If Σ has bounded mean
curvature, then it has finite k-volume in some neighborhood of P.

Proof. Let H be the mean curvature vector of Σ, and Ho an upper bound
for its length. Denote by ρ(Q) the riemannian distance from P to Q in M.
Choose ε0 > 0 such that Uo — p~\[0, ε0]) is compact and p2 is smooth on Uo.
Write Y = grad^o. Let b2 be a positive upper bound, and a2 a lower bound
for sectional curvatures of M on Uo (a may be imaginary). Now choose ε1 < ε0

with bex < π and 2εγ(Ή.Q + 1) < 1. For ε < ε15 denote Sε = p'Kε). Given any
vector X tangent to 5,, let c(X) denote the normal curvature of Ss in the X
direction, with respect to the normal —Y. Then c(X) > a cotaε (cf. [1, p.
251]). In particular, if ελ is chosen small enough, then c(X) > ε"1 — 1 for all

* e ( 0 , £ l ) .
We shall examine the variation of λ -volume of Σ upon flowing along the

vector field T = pY. Let B denote one-half of the Lie derivative of the metric
tensor with respect to T. At any point of Σ, decompose T into orthogonal



REMOVABILITY OF SINGULAR POINTS 347

components: T = T + Tn, where T is tangential to Σ and Tn is normal.
Then for any tangential vector field X along Σ,

B(x, x) = <y
z
τ

9
 xy = <y

z
τ
9
 xy + <y

x
τ\ xy

Let E19 , Ek be an orthonormal frame field for Σ on some open subset.
Then the above formula gives

( 2 ) Σ B(Ei9 Et) = άivΣ T* - k<H9 Γ> ,
ί = l

where the divergence is the intrinsic divergence of Σ. The integral of this func-
tion over Σ is the first variation of k-volume.

Now suppose Z is a unit vector orthogonal to Y. Then

B(Z, z) = <Fz(pY)9 zy = p<yzγ, zy = Pc(z) > 1 - P .

Meanwhile, since Y = grad p is autoparallel and has unit length, we may

compute

B(Y,Z) = i«FzT9 Y> + <ΓFΓ,Z»

> + P<FTY9 zy + Y(Pχγ, z» = o .

Finally,

B(χ9 Y) = <yγτ9 r> - P(VYY, y> + YQ>χγ9 Y> - Y(P) =

Thus the symmetric bilinear form B has all eigenvalues > 1 — P.
In particular, (2) now implies

( 3 ) divj T > k{\ - p) - kP |ff I > Λ(l - e i - ε.Ho) > \k .

For some fixed η < ε1? denote Σe = Σ Π p-\(e9η)) and Γε = Σ Γi Sε. We
shall assume that η and e < η are regular values of the restriction of p to Σ
this allows arbitrarily small values of ε, according to Sard's theorem. Then Σε

is a compact manifold with smooth boundary Γε U Γη. Let v denote the
outward unit normal to Σε at its boundary then (T, i/> < 0 on Γε. Integrating
relation (3) with respect to / -volume over Σε, we have

f <r, vydvk_λ + f <r, γ >
2

where dVk_λ is the integrand of (k — l)-volume. This implies

f
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and hence is bounded as ε —» 0. Therefore vol*. (Σo) is finite, q.e.d.
We shall have need of a special case of the following lemma, which we state

in a natural degree of generality. Certain cases for / = 0 are well known (see,
for example, [10], Theorems 1 and 4, and Remark 2]). We give a direct proof
in the interest of simplicity.

Lemma 2. Consider x e W\(E) and f e Lλ(B), where 1 < p < oo and B is
a bounded domain in Rm. Denote Br = B\Rm~Q, where q > 1. Suppose f is a
weak Laplacian of x in B\ If p~] + q~ι < 1, then Δx = f holds weakly in B.

Proof. Since B has finite measure, we may decrease p if necessary to
obtain p~ι + q~ι = 1. For e > 0, let Ωε denote the set of points of Rm at
distance less than ε from Rm~q, and Bε = B Π Ωe. Choose an arbitrary test
function ψ e C£(B). There is a constant N such that \<p\ < N, \Dφ\ < N and
for all ε < 1, vol Be < (Nε)q. For each ε e (0,1), choose a smooth function η
with support in Ωε, such that η — 1 on Ωε/2, \η\ < 1 everywhere, and \Dη\ <
3/ε. Writing φx = φη, we have φ = <pλ + φ2, where φ2 e C^(βί). Therefore

/ = ί DxDψ + fφ=[ (Dx-Dφ, + fψι)
JB J B

/χ + /2 .ί (Dx.D<p2
J B

We need to show / = 0. Since Δx — f weakly in B', we have 72 = 0. Now
/ is independent of ε, so it suffices to show that Ix is arbitrarily close to zero
when ε is chosen small enough. We have

f # i = ί fφη < N ί I/I -* 0 ,
J B J B J Bε

as ε —> 0, since / e Lλ(B). Meanwhile, for ε < 1, we have

ί DxDψι < [ (\Dx Dφ\ + N\Dx'Dη\)<N(l + —) [ \Dx\
JB J Be \ £ / J Bε

< — | f \Dx\λ1/P{vo\Bεγ
/q <4Λf2ff \Dx\A1/P ,

which tends to zero as ε -^ 0, since x e W),(B). This shows that Iλ —> 0, which
forces 7 = 0.

Proof of the theorem. It follows from the uniformization theorem that there
is a conformal parameterization x of Σ, defined on a plane domain G of the
topological type of the annulus, x e C2'β(G). This may be seen as in [2, Chapter
II], where local uniformization is given by a classical theorem of Lichtenstein
(cf. [3, pp. 350-357]). By means of a further conformal mapping, we may
assume that G is the domain bounded by concentric circles Cx and C2 of radii
rλ and r2, respectively, where 0 < rx < r2 < oo, such that as w tends to C19
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x(w) approaches P. Observe that, since the conclusion of the theorem is a local
statement at P, we may take r2 as close to rλ as desired, thereby restricting
attention to a neighborhood of C1 in G. In particular, we may assume r2 < oo.
Now the area of Σ is given by one-half the Dirichlet integral of x over G,
which is therefore finite. Moreover, x e C°(G U CΊ), so that after reducing r2

slightly we see that x is uniformly continuous. In particular, x e W\(G).

We now introduce a system of coordinates for M at P, and write x = (x\
• , xn), where n is the dimension of M. The conformality conditions (1) hold,
and the components of x satisfy the system of partial differential equations

(4 ) Δxk = - Σ ΠjixUί + xfrQ + 2Hk \xu A xυ\

in G. Here Δxk = x\u + xk

vv Γkj(w) are the Christoffel symbols of M at x(w)
H1, , Hn are the components of the mean curvature vector H(w) of Σ at
x(w) and \xu Λ xv\ denotes the area of the parallelogram spanned by xu and
xυ. Since M is of class C3, the Christoffel symbols are of class C\M), and in
particular define bounded functions on G U Q . Since H is also bounded, x
satisfies in G a partial differential inequality of the form

( 5 ) \Ax\<K\Dx\2

for some constant K.
We shall now show that rx = 0. Supposing to the contrary that rλ > 0, we

choose a point w0 on Cλ. For any θ > 0, there is a one-to-one conformal
mapping p\ Zθ —> G, where

Z, = {φ:\φ\< 1, \φ- l\ < θ) , with p(l) = w0 ,

such that the arc {φ: \φ\ = 1, \φ — 1| < (9} is mapped onto an arc of Cx.
Moreover, p is a smooth diffeomorphism of Zθ with its image. Denote y =
Λ:O^. Then according to a result of Heinz [8, Hilfssatz], y e Clia(Zφ) for all
φ € (0, θ) and <x e (0,1). It follows that x is of class CUa and satisfies the con-
formality relations (1) on a neighbohood of w0 in G. But since all of CΊ is
mapped onto P, these relations imply Dx(w) = 0 for all w in a neighborhood
of w0 on Q . Thus in particular Dy(\) = 0, and it follows from the same result
of Heinz that y satisfies an asymptotic relation of the form

( 6 ) yξ + iyv = a(ζ-iy + o{ζ - 1)' ,

as ζ —> 1, ζ e Z0, for some nonzero fleC" and some integer r. But this implies
Dy(ξ) Φ 0 for ζ ^ 1 in some neighborhood of 1, which contradicts the fact
that Dy(ζ) = 0 for all ζ in a neighborhood of 1 on the unit circle. This shows
that rλ = 0.

Therefore, by a scale change if necessary, we may assume G = B''. Recall
that x is continuous in B and, moreover, is of class W\(Bf) = W\(B). In
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particular, the right-hand side of the partial differential equation (4) is a func-
tion of classs LX(JB). It now follows from the case p = q = m = 2in Lemma
2 that x is a weak solution of (4) in all of B. This implies that x € Cha(B) for
all a € (0,1) (see [12]).

Added in proof. Our theorem continues to hold if Σ is only a branched
immersion of bounded mean curvature. This may be seen from the proof of
Lemma 7.1 in [5, II].
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