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REMOVABLE SETS FOR HOLOMORPHIC
FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Epcar LEE STouT*

Abstract

We show that every closed subset of C% that has finite (2N —2)-dimensional
measure 1s a removable sel for holomorphic functions, and we obtain a re-
lated result on the ball.

1. Introduction

A colleague has remarked that Everybody knows thei a set toe small {6 be
variety is removable. The present paper is devoted to an explication of certain
cases of this general philosophy, which are motivated by a result of Shiffman
(11], [12], to the effect that a closed subset E of a domain £ in C¥ is remova-
ble for holomorphic functions in the sense that if f € O(I\F), then f extends
holomorphically to an f € O(R) provided A2V~2(E) = 0, A2N-2? denoting
(2N — 2)-dimensional Hausdorff measure.{ Because of the Hartogs phenorne-
non, this result is of interest only in the case that the set E is not compact.
Qur principal result is an extension of this theorem, in the case that ¢ is CV
itself, that replaces the hypothesis that A2N~2(E) = 0 by the hypothesis that
A?N-2{P) be finite.

2. The main result

We shall prove the {ollowing result.

1. Theorem. If EC CN, N > 2, is a closed set with A’V 2 (E) < oo, then
E s removable.

This is a global theorem 11 that the conclusion fails for closed sets in bounded
domains. For example, if {2 is a bounded domain that contains the origin, and
if E = QN {zy = 0}, then A?NM"2(E) < oo, but E is not removable, as the
function f(z} =z ! shows.

*Research supported in part by grant DMS-8801032 from the National Science Foundation.
tA version of the result of Shiffman had been found earlier by Caccioppoli [3].
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Proof of the Theorem: We pive a direct proof in the case of C* and then
argue by induction.

The preof in C? depends on a lemma, which is based on work of Alexander
[1].

Denote by By the unit ball in CV and by rBy the set {rz:z € By} when
r € {0, 00). The boundary brBy is the sphere in CV of radius r centered at the
origin.

The referee has kindly drawn the author's attention to Théoréme 4, p. 309,
of Sibony’s paper [15], which contains this lemma, with the constant 2 rather

than the constant /27, as a special case. It would be of interest to what the
best value of the constant is.

2. Lemma. IfY is o closed subset of brBy and if the polynomially convez
hull of Y contains the origin, then A1 {Y) > +/2xr,

Proof: First, let X C bB3 be a compact set with ) & X, X the polynomially .
convex hull of X. According to Theorem 1 of (1], if #; : €* — C is the
projection given by mi{zy,29) = 2;,t = 1,2 then

(1) AT (m (X)) + A% (m{ X)) 2w,

whence one of the summands, say the first, in {1) is at least /2.

Let Z denote the polynomially convex hull of the set m; (X), i.e., the union
of 71 (X) and the bounded components of C\m; (X)}. The boundary of Z is
the boundary of the unbounded component of the set C\m; (X), and the set
Z does not disconnect the plane. According to the isoperimetric inequality [2,
§§14.3, 14.6]

AL (bZ) > 27 [A2(2))}.

Every point of bZ 1s a peak point for the algebra P(Z),* and so for every
point p € bZ, the set «; ' {p) N X is a peak set for the algebra P(X), which
can be identified with P(X). Consequently, the set =] ' (p) meets the Silov
boundary for P(X), t.e., the set X : We have that m (X) 3 2. Asm isa
Lipschitz map witk Lipschitz constant one, we must have A} (X) > Al (82).
As A'(bZ) > /2m, we have A’ (X) > /27,

CInowY C brBy, define T: C2 2 €® by Tz = r 'z, and set X = TY. If
0eY,then 0 € X, s0 A} (X) > +/27 whence A} (Y) > +/2nr, and the lemma.
is proved.

The theorem, in case N = 2, is proved as follows. Fix a point 25 € E; we
prove that if f € O{C?\E), then f extends holomorphically into a neighborhood

*We use the customary notation that P(5) denotes the zlgebra of continuous functions on
the compact set § that can be approximated uniformly by holomorphic polynomials.



REMOVABLE SINGULARITIES 347

of zo. Without loss of generality, we can take 2y to be the origin. Let p: C? —
[8,c0) be the map p(z) = ||z|| = v/]21] + |22]?. According to [2, §13.3; 4], we
have .

] AV ENp {(2))dt < const. A2 (E) < 0.

[O,C!D)

This implies the existence of {; € (0, co) with #; < #; < ...,f; — 0o, such that

lim Al (En bijg) =0.

Fiands)

Fix a value of j large enough that £; > 1 and A’ (ENbt;B,) < 1.

The lemma implies that the origin does not lie in the polyromially convex
hull of the set E N bt;Bz. I @; denotes the restriction to b;B\E of the
function f, then ®; satisfies the tangential Cauchy-Riemann equations and so
((81,[7],[8, Appendix]) continues holomorphically into ¢;B;\(ENbt;B8;)", which

is a neighborhood of the origin. Denote this extension by &;. That $; is an

extension of f follows from the fact that f and ®; agree on an open subset of
bt,B,.

The theorem is proved now in the two—dimensional case. We next assume it
proved in the N-dimensional case and derive the (N + 1)-dimensional case. To
this end, it is of some nnportance to notice that the argument just given works
equally well granted only that AZ(EN{z: |z > 1}) is finite.

We consider in C¥+? & closed subset E with AV (E) < oo. Let f €
O(CV\E). Fix a point z € C¥*! and denote by Gnv41,n () the Grassmannian
of all complex affine N-planes in CV*! that pass through the point z. There
is a natural invariant measure on Gy 41, (2), which we shall denote by du{I1).
We assume this measure to be normalized so that it has total mass one. We
have by [12] that if E = EN{|z| > 1}, then

/ A =2 (B A Mdu(il) < enA (E) < oo
¢

Ny N

for a fixed constant ¢y. In particular, for almost every I € Gn4i n(2), A2V -2

(E) NII) < oo. Thus, for almost every II, f|(II\E) extends holomorphically
through all of II. Denote this extension by fn .. We define

F(z) = fn :(2).

This gives a well-defined value for F(z), because fij ,{z) is independent of the
choice of II: Two I's, say II, and Tl,, in Grns1,nv (2} intersect in an affine
subspace of € of positive dimension on which fn,,, and fn,,. agree. Thus they
agree at z. The function F defined in this way is defined on all of CV+! and
it agrees with f on CN+YI\ B,
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We have to see that F is holomorphic, and for this, it suffices to show that
it is continuous. To do this, let {7,125, be a sequence in €V that converges
to zp; we shall show that F(z,) ~» F(z). Fix a Iy € Gn41,n(20) with
A?Y-2(TI,N E) < oo and such that F is holomorphic on Il. For each n, choose
Oy € Gn1 v (Zg) such that A2V =41, N E) < oo, such that F is holomorphic
on II,, and such that II, — I,.

If 2 € C¥ and Il € Gnopi v {2), denote by PZ(H) the projective space of ali
complex lines in I through the point z. We have dimgP (I} = 2N — 2. There
are large values of R such that AZV =2 (4By41 (s, )N ENTl) < 0, soif 7 :
s\{ze} — P,,(Ils} is the standard projection, then 7 {dBy41{2z0, R)N E N 1lp)
is a set of measure zero in P, . Thus, there is a complex line Ay with 25 € Ay C
II; and with Ay N E N By (20, R) = 8. We may choose A, € P,, (II,} so
that A, —+ Ag. For large values of n, A N ENbBpyi{z, R} = B. If we apply
the Cauchy integral formula in A, and Ag to represent F(z,) and Fi(zp) as the
Cauchy integral of f over the circle A, N8B, (24, R) and of \g By 41 {20, B),
respectively, we find that as n — oo, F{z,) — F{2,) as desired,

Thus, F is continuous and so necessarily holomerphic.

This completes the proof of the theorem.

3. Variations on the theme

The first variation is to the effect that there is an analogue of the result for
submanifolds of CN: Let M be a k-dimensional complez submanifold of CV,
and let B C M be a closed subset with A2 (E) < 00.* If f € O(M\E), then
f continues holomorphically into all of M.

In the case that M is an algebraic manifold, we can inveke [10, Th. 19, p.
52] to find a projection 7 : € — CF that exhibits M as an analytic cover over
C*. Using symmetric functions and applying the result already established in
C* we can derive the result on M.

In the case of a general M, there will be no such projecticn, and, in essence,
it is necessary simply to rewrite the proof given above. The case n = 2 pro-
ceeds as before: Fix zp € E. For certain large values of §, AT (E N By (25,1))
will be small and 6By (24,¢) N M will be a smooth (2k — 1}-dimensional real
hypersurface that bounds the domain A, 25) = By(2,1) N M. By Lemma
2, the polynomially convex hull of E N8By {2pt) does not contain z,, and by
the extension theorem given by Laurent-Thiebeaut [8], f|bA(t, 20)\E extends
holomorphically into a neighborhood of zg. The rest of the argument in the
two-dimensional case is as before.

For the induction step we replace the affine hyperplanes used in the proof of
the theorem by intersections M N II, II a codimension one affine hyperplane

*Here, as above, we are computing Havsdorff measures with respect to the Euclidean metric
on UV = RN, Below we shail consider the Hausdorif measures associated fo certain other
metrics, but there we shall be quite explicit about the metrics involved.
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in C¥ that is transverse to M. The generic II is transverse to M and so,
generically, M NIl is a codimension one submanifold of M. In a bit more
detail, if z € M, then almost every II € Gy y_; (2) is transverse to M and,
by (12, Lemma 5] almost every 11 also satisfies A4 (1IN E) < co. Thus, the
mduction hypothesis applies to extend f{{M NII\E) to an f € O(M NII).
We define F{z) = fy(z); this is well-defined and gives the desired extension of
f throughout M.

A second variation of the theme is that the hypothesis that A2V ~2(F) be
finite can be replaced by the condition that A?M~2(E N rBy) not grow too
rapidly as a function of r, r — co. In fact if E 45 @ closed subset of C? that
satisfies A2 (ENrBy) < ar? for all large v, then E is removable provided

2
o < :W'

That the desired conclusion can be drawn may be seen as follows. Notice first
that A2V=2({E N rBy) < ar? for large r implies that A2V =2 (E N Bu(p, 7)) <
ar? for large r, no matter what center p is chosen. Next, we have by [2, 4] that

2) ar? > AL(ENrBy) > gf AVEN {[z] = ¢}) dt.
fer]

Consequently,

AV (BN {|z] = t}) < V2rt
for infinitely many arbitrarily large values of ¢, and this implies that the origin
is not in the polynomially convex hull of £ N {|z| = #} for such values of ¢.
Thus, by arguments we have used already, f continues holomorphically into
a neighborhood of the origin. Similarly, it continues holomorphically into a
neighborhood of every point of €2, and the result is established.

The example E = {(z,,0) : z; € C} shows that the result just derived cannot
be obtained under the hypothesis that A2(EnrB,) < nr?. It seemes probable
that if A2(E N rB;) < #r? for all large values of » then E is removable, but
no proof has presented itsell. The discrepancy between ﬁz‘ here arises in part
from the integral geometric inequality (2) and in part from Lemma 2.

4. A resnlt on the ball

We now turn to a result on the ball that is an analogue In the Bergman
geometry of the result we obtained above for CV.

The Bergman kernel on the ball in C¥ is given by
NI 1

K _ s

) M= IR T gy

if {, } denotes the Hermitian inrer product on €V, and the Bergman metric
is given by

N
ds’* = Y Tjedz; ® i

. k=1
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with coefficients T}z given by
52

B 623'65;‘

= N = {2, ) {(1 = (2,2) s+ 2255}

Tk In K(z,z2)

We shall denote by A% the a—dimensional Hausdorfl measure computed with
respect to the distance function on By derived from the Bergman metric. We
shall prove the following analogue of Theorem 1.

3. Theorem. If E C By is closed set with A%N_z (F) < oo, then E is
rernovable. '

4. Corollary. If £ C By is o subvariely of codimension one, then E has
imfinile aveq, area computed with respect {o the Bergman melric.

The corollary follows from the theorem, for codimnension—one subvarieties
of the ball are not removable: If ¥ is such a variety, then as we can solve the
second Cousin problem on By, there is f € O(By) with V' as its zero set. The
reciprocal of f shows V not to be removable.

As we shall see below, there is a straightforward calculation that shows that
if V C Bn'is a k~dimensional variety, then AF(V} is infinite.

Proof of the Theorem: The proof foliows the general lines of the proof in the
case of CV, but certain integral-geometric details require attention. We start
with the case that N = 2.

Let distp(z,w) denote the Bergman distance between the points z,w € By, -
Fix a peint 25 € B;, and define p: By — [, 00) by p(2) = distg{z, 25}. The
triangle inequality in the Bergman distance yields that p is a Lipschitz function:

[p(z) — p{2")] < distp(z, ).

As p satisfies a Lipschitz condition and AL{E) < o0, we have that

o0 > AL (E) > const./

[0,00)

AL {(En{z € By p(z) = t}) dt.

haad
i=1

This yields a sequence {t; with ; —» oo and with
Ag(En{zeBy p(z)=4}) >0,
and this implies that

AY(En{zeB;:p(z)=1t;})—0.
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(NB. As before, A' denotes the 1-dimensional Hausdorff measure computed
with respect to the Euclidean metric.)

Let D(t,z) = {z € By : p(z,29) = t}. This is a ball in the Bergman metric,
and its boundary is smooth,

Granted that f € O(B:\E), we know that f|bD(¢;,20)\£ continues holo-
morphically into a neighborhood of zy, at least when 7 is large, so the result in
the two—dimensional case is obtained as before.

To make the induction step work as before, we need two facts. First, we
need to know that if £ C Byy satisfies AYY (E) < oo, then for almost every

II € Grnsam, A%N_Z(H N E) < oo where we denote by E the set BN {z :
distg(z,0) > 1}. (AYY~2(II N E) denotes the Hausdorff measure computed
with respect to the Bergman metric on Byy,.) The second point we need is
that the finiteness of the quantity A%Nh? (II N E) implies the finiteness of the
{2N —2)—dimensional Hausdorfl measure of the set 1N E computed with respect
to the Bergman metric on the N-dimensional ball TN By,

The latter point is straightforward though, for the metric induced on I N
By from the Bergman metric on By 4, differs only by a constant factor from
the Bergman metric on the N-ball INBpy;.

That A% (E) < oo implies A2Y~2(II N E) < oo for almost all IT's is an
analogue in the Bergman metric of the result of Shiffman used above. We
prove the following integral-geometric fact.

5. Lemma. There is a constant ¢y such that if § C By\{z: distg (2,0) <
1}, then

en A THS) 2'/ A4 (S N IT)dp(IT).

Gn.w-_1

The proof of this lemma follows precisely the lines of the proof of Shiffman’s
Lemma 5 in (12] once we have the following estimate.

6. Lemma. There is a constant kn such that for small § > 04f T C By\{z:
distp(0,2} < 1} end T has diameter less than & in the Bergman distance, then

p{Il€ Gy vy TINT # B}) < kné.

For the convenience of the reader, we recall the argument in [12] that proves
Lemma 5. Denote by §{£) the diameter of the subset E of By computed with
respect to the Bergman distance. If E C By, then

/ SEN-HENdp(I) < 8V (Bl : 1IN E  ¢).
G on-1
I ECBy\{z: distg(2,0) < 1}, and if §(E) is small, then Lemma 6 implies

the estimate
p({Il: 1IN E # 8}) < const.§? (E),
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s0, for such an E, we have
f PN (BN Mdu(Il) < const.82V 2 (E).

Now given S as in Lemma 6, assume AYY2(S) < o0, Fixasmall e > 0, and
choose a covering of S by a sequence {5,}52, of sets with &6{(5,) < ¢ and

D ENT(S,) < APTH(S) + e

Here

ART2(S) = inf {D 8N 2(Qu) 1 § CUQ, and 6(Q) < e}

We have then that

*

/g AT (S NIdp(IT) < fg > AR (S, N T)dp(ID)

NN -1 NAN-1 n

<Y [ ARH(S.amaum)

< const. Z/ 621 (8, NINdu{Il)
< const. Z §2N-2(8.)

< const.(f\'z_g"i_2 {S)+¢)

As this is true for all ¢ and as A%Y 72(S) = lim Ag?':g (5}, we have the desired
inequality. )

Lemma 6 is a consequence of the corresponding Hermitian result, The Ber-
gman diameter of a set is not smaller than the Fuclidean diameter. Thus, if
T has small Bergman diameter d and is included in By\{z: distp(D,z) < 1},
then T is contained in a Euclidean ball B of Euclidean diameter 2d. As d is

small, B can be choose to lie in {2 : |z| > 1 — d}. Everything follows from the
estimate:

2
(4) w({I1: T AB(po, ) # 0}) < const. (I—f—l) ,

which is established in the next section.

It is worth noting that our Theorem 3 implies Shiffman’s result that for
domains in CV, closed sets of vanishing {2N — 2)-dimensional measure are
removable. Shiffman’s result is local, and if A2V~2(E) = 0, then for every
p € E and every ball By {p,r) centered al p, the set E N Bn(p,r) has zero
{2N —2)-dimensional measure with respect to the Bergman metric on By (p, 7).
Thus, E is locally removable and so removable.
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5. An integral-geometric computation

In the analysis above, we need to know the measure of the set of (N — 1)-
dimensional subspaces of C that meet a ball. In (4) we stated an estimate
that suffices; in this section, we shall evaluate this volume precisely. We shall,
in fact, work in a slightly more general context. {It seems probable that the
result obtained here exists somewhere in the published literature, but we know
no reference.)

We are denoting by Gy the Grassmannian of all k-dirnensional complex
subspaces of CV. {Thus, the elements of Gy ; pass through the origin). The
manifold Gy is 2 homogeneous space of the unmitary group U(N) : Ifg €
U(N) and IT € Gy x, then g-II = g(II} € Gy x. There is a unique measure p;
on Gn,i with px(Grr) = 1 that is invariant under the action of U(N). If we
denote by [Ig the element

{ZECN:ZH,l == ZN 20}

of Gy and if w : U(N) — Gw i 1s the map given by ng = g - [Tg, then pi can
be calculated by

wi( ) = v(z7H(E))
if v denotes the normalized Haar measure on U{N).

Our problem, precisely formulated, is the following: To determine

pr({IL € Gni - TNBN(z0, R) # 8}),

or, equivalently, to determine
v({g € U(N}: ¢g(Tlo) N Bn(ze, R) # 0}).

Here, 2 € CY and R > 0. If |R| > 2y, then 0 € Bwy{z0, R), so the measure
in guestion 15 one. In general, the answer will be a function of z; and R.
The problem is plainly invariant under the action of U{N), so without loss of
generality, we may suppose that 2o = p = (p,0,...,0) with p = ||

We have that g(Ilo) N By {p, R) # 0 if and only if the distance d(p, g (Ilp)) is
less than R.

We denote by {e),...,en} the standard orthonormal basis for C¥. Then
{e1,...,ex} is an orthonormal basis for Il and {ex4y,...,en} is an ortho-
normal basis for the orthogonal complement, II§, of Il. Consequently, if {,)
denotes the standard Hermitian inner product on €" then

N
dp,o(Te)) = ( > lipaleNP)*

J=hk+1

N
=( D lg et

J=k+1
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We identify U{N) with the group of unitary N x N matrices U = (g, 4)r s=1,...N-
If under this identification ¢ corresponds to U/, then

(g_lp:! ej) = Palj:
s6
N
L
dlp,g(Ilo)) = ( D PPlay,l*)?
i=k+1
If we set
N
Elkic) = {o €U : S laysl? < e,
=1 ’

then we have to determine v{&(k;¢)}. For ¢ > 1,E(k;¢c) = U{N); in general it
1s an open set.

For the computation of v{€(k;c)) we need to recall the explicit form of the
measure v. An mnvariant volume form on U{N) is the form ) given by

Q:( /\ w,-);/\d:,—_,-)/\ /\ Wik
1<igEN 1€E<N

where
N
Wiy = Z ﬁkgdakj.
k=0

The forms w;; are left-invariant on U{N). For the construction of §, see [9].
In particular, one finds there the evaluation

/Q_h.‘r 1(211'3)3"'"
=0 jl

LN}

We shall denote this value by (V). It follows then that the normalized Haar
measure v or U(N) is the measure derived from the form v(N)™*{2.
Introduce the forms w'(z) and w(z} on C"\_r by

N
w'(z) ZIZ(—I)"_Iz;dzI A AIA- - Adzy

=1
and
wl(Zy=dz A AdEn.

IfT:CY¥ - CV is a linear transformation, then T*w (%) = (det T)w(Z) and

T*w'(z} = (det The. Consequently, the form w(z) = w’ (z) Aw(Z) is unitarily
mvariant.
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We define 2 map # : U{N) — S*¥~! by g = g1 where by 1 we mean the
north pole 1= (1,0,...0). The fiber 572(1) is the subgroup of Z{( N ) isomorphic
to U(N — 1) that consists of the mairices of the form

1 G G
13 [#5:3] gz N
G apz ... ann

The form @ is invariant under the action of (N ) on $?¥~!, and it follows that
n*w is a left-invariant form on Y(N).

At the identify of U({N), we have
T?-LT) =dagy A Adany Adayy Adagy A Adapy,

and

N N
( N\ wsrogirwn ={ A O budag) A(D udas;)} Aday,

iCiAN 1< <N k=1 k=1
=( A (don, Aday;)) Adary
1<ianN

For a unitary matrix A, we have A" A =1, i.e,

N
E Grir; = bk
r=1

whence
N N
0= amdar;+ 9 arjdars.
r=1 r=1
Thus, wy; = —@;x. In particular, at the identity, day; = —da;;. This implies

that at the identity

(N (0 A Awyg = —( N\ daj Adaji) Aday,

1<j<N 1SN

We see then that for a suitable choice of constant ey = %1, at the identity of

U(N),n*w and ex( A {wij Adh )} Awy coincide. As each is left invariant,
15
they coincide on the whole U(N): On U{N),

7w =en{ N (w3 AG)) Awn.
1<EN
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We now proceed to the compuiation of v{E£({k;c)). For this purpose, it is
convenient to notice thai if £'(k;¢) = {g € U(N) : Z?szﬂ la;s|> < ¢} then
v{&(k; c)) = v(E{k;c)}. Under the projection n, £'(k; ¢} goes onto the subset

S ke ={ze S P+ + el < o}

of §2N-1 Tt follows from Fubini’s theorem-see [14] for a version suitable for
our purposes—that

]QZﬂ: f {] /\ Wiy A A /\ w,.,_}:.r.
£r{kic) B(kic) g-1(z) 2SSV 2LraN

Each of the fibers 71 (z) is a coset of the subgroup 77! {1) of U(N), and
accordingly, for each z,

=N -1).
n-t{z)
Thus,
Q= +u(N - 1) f w.
£7(kic) E{kic)
[t remains for vs to evaluate the integral on the right. Let us call it J{k;e}. It
will be convenient to introduce the notation that for z € €V, 2’ = (21,..., %),
2" = {zg31,...,2n). By Stokes’s theorem we have

~

Ikye} = ]05 - fw
Bunf|s e} Bynfla"|P=c}

Call the first of these integrals I’, the second I". If vy = 2(N? — N), then

I'=N JdayA---Adzn AdZ A Adiy
Byn{lz(? <c}
= (ul}"”"N/dzl Adz Ao Adey Adzy
Ban{|z"[?<e} _
={-1)"N f {fazz1 A AdEx}dzgar A--- AdEN

{lz"P<e} {Jr2<i—f2"|?}

Ak
= (—I)TNN—QE) / (1= 2" dzssr A+ Ad2n
{172 <e}
95 YN ok N3 ol
— (—1yw it z)k. - f (1— p*)rp? 214y
: 0
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. . . k
where Spx—) denotes the area of the unit sphere in R?* so that Sy, = (—E:”W.

If we expand (1 — p?)* with the binomial theorem and integrate term-by—term,

we reach
N k+r

e S Y SO P

For I" we compute as follows: On the path of integration, I', for the integral
I" we have |zgg1|? + - + |2n]? = ¢, so there

N
Z 2,d%, + Z,dz, = 0.
r=k+1

Off the set where zy #£ 0, we can solve this for dzpy:

M-
dey = ~Z5H Z zpdz, + Z z,d2, ).
r=k+1 r=k+1
This leads to the expression
N-1 _ N1
o=_ Z(_l)z—l zday A A[FIA - Adey_y A{ZR Z Zpdz, ) A w{Z)
=1 r=k+1
(-1 anda A Adayoy Aw(E).
== Z (_I)J_1+N—J_133’d31 Ao A d.Zj'_l A (Eilzjdzj) A dzj-+1
j=r+1

A Adzyog Aw(Z) (1Y eyda A Adznay Aw(E)

N
(DN D E)da A Adanoy Aw(E)
j=r+1

= =1yt dey AdE A Adzy oy AdEn_g Adin
The path of integration in " is specified by
|2/ =iz +- + |zl <1-c

and
zfl|

P a4+ e =
50 we reach
I" = c(—l)N"H”’”—‘(]dzl Adzy A Adzg Ady)
{l2"[7<1-c})
(f Iy dargr AdEryy A Adey_y Adzy oy Adzy),
e l=c}
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The value of the first integral on the right is £2—;::Lk(l —¢)*. The second integral
is evaluated as follows

Zy depgpy AdEys A Adaznoy AdEy_y Adzy
{lz")2=¢}

{ fff_\fldEN }d2k+1f\dfk+1f\- . -AdzN_lAdzﬁ_l

|22 4yl Hlznwor P <e lenE=c—[aegr i ——|zn s )?

For every choice of ¢, the inner integral has the value —27i. and

de.;.l M di?k.g.] A A dZN_.l A d'é_N—]
[zxpr P+ F|ew 1P <e
(zm)N - N1k
(N —-1- k)*

Thus
(2mi)¥
(N -1-k)
The guantity we are interested in is v(£{k; ¢}), which is given by

I":{_I)N'*"TN-:I. (l—c)kCN_k.

w{E(k; ) = v{N)™? / Q
Ef{k,cy
= 2o(NY " o N — DI (k;¢) — I"(k; ¢)).
Thus,

v(E(k;c)) =

: N k4T
iN!(ﬁ) [( 1)1~N(2L Z( 1)(}—-—N -

2miy
k!(!‘S' 1)— i e)fe™ k]

In the preceding section, we needed the special case of this in which k = N —1
and ¢ 1s small. we see that in this case,

(_1)N+'¥N—l

N N-1 N

5 T 0(c?) — (=1)N+om-2 oo

N TR e+ O(ch)

2(E(N —1;e)) = i% (—1)™
= 0(c},

and this gives us what we needed,
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6. Concluding remarks

The results on removable singulanties we have obtained above are surely not
the end of the story. The two results are of the general form: @ is a domain
in an N-dimensional complex manifold, ds? is a2 Hermitian metric on € and
A2¥ =2 denotes the (2N — 2)-dimensional measure derived from ds®. In two
special cases, we have that a closed set E in Q is removable provided A2V 2 (E)
is finite. One may pose the question: What conditions on the metric ds? suffice
for us to draw this conclusion? In particular, is it sufficient for ds? to be a
complete Kahler metric? Do the metrics of Carathéodory or Kobayashi play a
role here?

Another problem that arises is to stablish a projective version of the result
valid for meromorphic functions, Consider the Fubini-Study metric on the
complex projective space P™. With respect to this metric, the volumes of the
subvarieties of P form a countable set: the volume of a variety in P¥ is, to
within a normalizing constant, its degree. If E is a compact subset of P/ that
has (2N — 2}-dimensional measure (with respect to the Fubini-Study metric)
less than the smallest of the volumes of codimension—one hypersurfaces in P¥,
does it follow that E is removable for mercmorphic functions in the evident
sense that it F is a function meromorphic on PM\E, then F extends through
E to be meromorphic on the whole on P™?

Another question that is suggested by what we have deone is the following:
If D is a pseudoconvex domain in CV, must D have dimension at least 2N -
27 The removable singularity theorem of Shiffman implies that the Hausdorff
dimension or metric dimension is at least 2N — 2, and our Theorem 1 mmplies
that 4D must have infinite (2N —2)-dimensional measure. The present question
understands dimension in the sense of the topological theory of dimension for
which one may consuit [5].

Appendix

The Bergman area of varieties.
We now take up a matter to which we adverted above, the fact that subva-
rieties of the bail have infinite area in the Bergman metric.

Given a domain D in CV, the Bergman metric on D is given by

N
ds’ = Y Ty;dz ®dz;

1,7=1

with
2
T. .

Y 82,0z,

log A(z,z)
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if K denotes the Bergran kernel function. The associated fundamental form
is the {1, 1)-form w given by

w= Y Tidz Adz; = 08 log K(z,2),
%3

and if V € D is a2 k-dimensional variety, then the Bergman wolume of V is
. . : &
given by the integral (55) [y w*.
We fix a bounded domain ¥y C V with bV smooth enough that Stokes’s
theorem holds on it.*Then

]Vw*:fv d{(8 log K(z,2)) A (88 log K(z,2)* "}

= | Blog K(z,2) A (08 log K(z,2))* 1.
37
We have _ _
KOOK — 8K AN OK
Kz '
As the exterior product of a 1-form with itself is zero, we find that

80 log K =

8 log K A{d0 log K} = K~F8K A (B8BK )Y,
bip bV

IfV,.={z€D:K{(z,z)<r}, then we find
f wt=r"t | BK A(88K)?
VR

Vs
=r'*f (BOK .
Ve

In the case of the ball, where K is given by (3], a compuiation shows that
N

with CNy — v
_ _ _ AN 4+ 15 N _ ad k-
8K A(OOK(z,2)) ! = a —N((z z})k(?’\'—rz}(z zjdzj)/\(ZdzJ Adz)FL
? i=1 i=1

If W, = {z € V :|z] <}, then on bW,, K(z,2) = en(1 — r3)~(¥+1) 5o

/ Wb = (N 4+ 1)1 - rﬁ)-*/ (> dzi A dz)
aw, W,
= (208 (N + 1)F(L — r2) R AR (W),
where, as before, A%* denotes the 2k-dimensional Hausdorff measure computed
with respect to the Euchdean metric.

We have reached the result that if V € By 1s a k-dimensional variety, then
(N +1)f
(1-r2)*
In particular, V has infinite volume in the Bergman metric.

ATV nrBy) = A*(VnrBy).

*A discussion of a version of Stokes's theorem sufficient for our present needs is given in [13].



10.

11.

12

13.

14.

REMOVABLE SINGULARITIES 361

References

H. ALEXANDER, Projections of polynomial hulls, J. Funct. Anelysis 13
(1973}, 13-16. MRALH#3T5T.

BURAGC, YU.D., AND V.A. ZALGALLER, “Geomeiric Inequalities,”
Die Grundlehren der mathematischen Wissenschaften, vol. 285, Sprin-
ger-Verlag, Berlin, Heidelberg, New York, 1988. xiv + 331 pp.
B.CACCIOPPOLI, Sul prolungamento analitico delle funzioni di due varia-
bili complesse, Boil. Un. Mat. Ial. (I} 13 (1934}, 209-212. Opere, vol. 2,
1433-145,

H. FEDERER, “Geometric Measure Theory,” Die Grundlehren der ma-
thematischen Wissenchafien, vol. 133, Springer—Verlag, 1960. xiv + 670
pp-

W. HUREWICZ AND H. WALLMAN, Dimension Theory, Princeton Uni-
versity Press, Princeton, 1948.

C. LAURENT-THIEBAUT, Sur l'extension des fonctions CR dans une
variété de Stein, Ann. Mai. Pura Appl., (IV) 150 (1888}, 141-151.

G. LuPACCIOLU, A theorem on holomorphic extension of CR-{unctions,
Pacific J. Math. 124 (1986), 177-191.

J.-P. RosAY AND E.L. STOUT, Radd’s theorem for CR-functions,
Proc. Amer. Math. Soc. to appear.

L.A. SANTALO, Integral peometry in Hermitian spaces, Amer. J. Math,
74 (1952), 423-434.

I.R. SHAFEREVICH, “Basic Algebraic Geometry,” Die Grundlehren der
mathematischen Wissenschaften, vol. 213, Springer-Verlag, New York,
Heidelberg, Berlin, 1974. xv + 439 pp.

B. SHIFFMAN, On the Removal of Singularities in Several Complex Va-
riables, Ph. D). disseriaiton, University of California, Berkeley, 1968. 51
pPp- :

B. SHIFFMAN, On the removal of singularities of analytic funclions, Mich.
Math. J. 18 (1968), 111-120. MR37#464

G. STOLZENBERG, “Volumes, Limits and Fziensions of Analytic Varie-
ties,” Lecture Notes in Mathematics, vol. 19, Springer—Verlag, Berlin, Hei-
delberg, New York, 1966,

R. SULANKE AND P. WINTGEN, “Differentialgeometric und Faserbindle,”
Birkhaiiser Verlag, Basel, 1572.



362 E.L. STour

15. N. SIBONY, “Les valeurs au bord de fonctions holomorphes el ensem-
bles polynomialement convezes,” Seminaire Pierre Lelong {Analysis) Aunée
1975/76. Lecture Notes in Mathematics, vol 878, Springer- Verlag, Berlin,
Heidelberg, New York, 1977, pp. 300-313.

The University of Washington
Department of Mathematics
Seattle, Washington 98195 USA

Rebut €l 14 de Marg de 1989



