
T ( p )  2 iZ. With these properties and based on the 
direct method of the Lyapunov stability theory, a new 
sliding vector and two significant Lyapunov functions 
are introduced in the controller design and system 
stability analysis. Besides, the convergent rate of the 
error signal can be determined by suitably choosing 
the sliding vector. As for the chattering problem, the 
saturation functions have been suggested to replace the 
sign functions in the control laws. Finally, the example 
of spacecraft driven by pairs of opposing thrusters 
verifies the success and robustness of the sliding-mode 
controller. 
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Removal of Alignment Errors in an Integrated 
System of Two 3-D Sensors 

An algorithm is presented to relatively align two 3-D sensors 

using targets that are tracked by both sensors. The algorithm 

estimates a d  removes sensor biases and sensor frame orientation 

errors. For illustrative purposes, the alignment algorithm is 

applied to simulated track data from two sensors. 

1. INTRODUCTION 

Interest in integrating stand-alone sensors into 
multisensor systems for command, control, and 
communications (C3) has been increasing in recent 
years. Rather than develop new sensors to achieve 
more accurate tracking and improved surveillance 
in c3 systems, it is less costly to integrate existing 
stand-alone sensors into a single system to obtain 
performance improvements and enhanced capabilities 
for tracking and surveillance. However, before the 
benefits of multisensor integration can be realized, 
the sensor registration (or alignment) problem must 
be addressed. Registration refers to the process 
of expressing the multisensor data in a common 
reference frame, where the data is free from errors 
due to improper alignment of the sensors, orientation 
errors in the reference frames of the sensors, and 
sensor location errors [l]. That is, the data from each 
sensor must be transformed to a common reference 
frame that is free from errors in the transformation 
process. Unfortunately, attempts to integrate multiple 
sensors into a single system for C3 have had limited 
success, due largely to a failure to solve the registration 
problem [l, 21. 

One source of registration errors is sensor 
calibration errors (i.e., offsets). Although the 
sensors are usually calibrated in an initial calibration 
procedure, the calibration may deteriorate over time. 
Another source of registration errors is attitude (or 
orientation) errors in the reference frames of the 
sensors. Attitude errors can be caused by bias errors 

Manuscript received January 26, 1993. 

IEEE Log NO. T-AESl29l4Il0994. 

This work was supported by the Independent Research Program at 
the Naval Surface Warfaare Center Dahlgren Division (NSWCDD), 
Dahlgren, VA. 

U.S. Government work not protected by U.S. copyright. 

CORRESPONDENCE 1333 



in the gyros in the inertial measurement unit (IMU) 
of the sensor. Other sources of registration errors 
include sensor location errors caused by bias errors in 
the navigation systems associated with the sensors, and 
timing errors caused by bias errors in the clocks of the 
sensors. Sensor misalignment in a system of land-based 
sensors has been documented with real data collected 
during experiments [ l ,  3-51. 

Some work has been done on the removal of 
registration errors [l-111. Offset errors, attitude errors, 
location errors, and timing errors for a netted system 
of widely separated radars were considered in [ l ] .  
However, all of the individual registration errors could 
not be determined because of the coupling between 
the errors. Most of the other work includes only 
sensor offset errors [2-51 or only attitude errors [7, 81. 
The inclusion of both offset and attitude errors was 
considered in [ l l ] ,  but their method first removes the 
offset errors assuming there are no attitude errors, and 
then removes the attitude errors. This approach ignores 
the coupling between the angular offset errors and the 
attitude errors; that is, the offset errors are treated 
independently of the attitude errors. Sensor location 
errors were considered in [9, 101 and the registration of 
dissimilar sensors in [6]. 

The purpose of this work is to include both offset 
and attitude errors simultaneously in the formulation of 
the registration problem for 3-D sensors, where a 3-D 
sensor measures range, azimuth, and elevation. For 
example, this problem occurs in the integration of 3-D 
radars. An algorithm is developed to relatively align 
two 3-D sensors using common targets that are tracked 
by both sensors. This algorithm uses the difference 
in the position of a target, as reported by the two 
sensors, to compute a set of bias parameters. These 
bias parameters are then applied to one of the sensor’s 
track positional data to align it in the reference frame 
of the other sensor. This algorithm is applicable to 
those situations where there are no sensor location 
errors, the distance between the sensors is small (e.g., 
sensors located on the same platform), the magnitude 
of the attitude and sensor offset errors are small, and 
these errors do not change with time or vary slowly 
with time. It is also assumed that the sensors are 
synchronized in time and have the same update rates. 

This paper is organized as follows. In Section 11, 
a mathematical model is developed for this problem. 
The alignment algorithm is developed in Section 111, 
and it is tested in Section IV with simulated track 
data. Finally, Section V summarizes the results of this 
study. 

11. MATHEMATICAL DEVELOPM ENT 

The problem addressed in this work can be stated 
as follows. Given the position measurements from two 
3-D sensors over time for a specific target, estimate 

the parameters that will align one sensor relative to 
the other one. In this problem, it is assumed that the 
locations of the sensors are known (i.e., no location 
errors) and the relative distance between the sensors is 
small. Also, it is assumed that the alignment errors are 
small. This allows the use of a first-order Thylor series 
approximation, and it results in a linearized version 
of the alignment problem. Below, the transformation 
between the reference frames of the sensors will be 
considered first. This is followed by the inclusion of 
attitude and sensor offset errors. 

A. Transformation Between Reference Frames of 
Sensors 

Consider a particular sensor, say the kth sensor, 
where k = 1,2. A reference frame is necessary in 
describing the measurements of the kth sensor. The 
reference frame in which the measurements of this 
sensor are made is called the measurement frame of 
the sensor. There is also a stabilized frame associated 
with this sensor. The stabilized frame is aligned to the 
true north-south horizontal line, the true east-west 
horizontal line, and the axis that is orthogonal 
to the horizontal plane formed by the north-south 
and east-west lines. Both frames have the same 
origin, but one frame is tilted with respect to the 
other one. 

The stabilized frame at the kth sensor can be 
represented by the three mutually orthogonal unit 
vectors exlk,  ey!k, and erlk. The subscript k denotes 
the kth sensor, and the subscripts x ’ ,  y’ ,  and z’ refer 
to the directions of east, north, and up, respectively. 
Similarly, the measurement frame can be represented 
by the three mutually orthogonal unit vectors exk, e,k, 
and erk. The transformation between these frames 
can be described by a set of Eulerian angles. The 
xyz-convention [12] is employed in this paper. In the 
x y  z-convention, the transformation from the stabilized 
frame to the measurement frame is accomplished by 
first rotating about the z-axis of the stabilized frame by 
the yaw angle $ k ,  then rotating about the intermediate 
y-axis by the pitch angle qk, and rotating about the 
final x-axis by the roll angle ?bk (see Fig. 1). It is 
assumed that the yaw, pitch, and roll angles at 
each sensor are known, e.g., from the IMUs of the 
sensors. 

Let the column vectors r k  = [xkYkZkIT and 
rl, = [xl,yl,ziJT (the superscript T denotes matrix 
transposition) represent the rectangular coordinates 
of a point in the measurement and stabilized frames, 
respectively, of the kth sensor. The transformation 
from the measurement frame to the stabilized frame 
is given by 

rl, = & r k  ( 1 )  

where & is the 3 x 3 orthogonal matrix given by 
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Fig. 1. Stabilized and measurement frames for kth sensor. 

Let the second sensor (k = 2) be located at the 
point t = [t,tytZ]T in the stabilized frame of the first 
sensor (k = 1). Since there are no location errors, the 
vector t is assumed to be known. The transformation 
from the stabilized frame of the second sensor to the 
stabilized frame of the first sensor is given by 

ri2 = r; + t (3) 
where r; is a position vector in the stabilized frame 
of the second sensor, and ri2 is the corresponding 
position vector in the stabilized frame of the first 
sensor. Using (1) in (3) gives 

Rlr12 = R2r2 + t (4) 

where r2 and r12 are the corresponding position 
vectors in the measurement frames, respectively, of 
the second and first sensor. Since R1 is an orthogonal 
matrix, (4) can be expressed as 

r12 = Rr2  + RFt ( 5 )  

R = RTR2. (6) 
where 

Equation (5) represents the transformation from 
the measurement frame of the second sensor to the 
measurement frame of the first sensor. 

It is convenient to assume that the tilt of the 
measurement frame with respect to the stabilized 
frame is small (i.e., the yaw, pitch, and roll angles 
are small). This simplifies the development of the 
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alignment equations below. Assuming that the yaw, 
pitch, and roll angles describing the orientation of 
the measurement frame in the stabilized frame are 
small, the transformation matrix & in (2) can be 
approximated by the first-order Taylor series 

where I is the 3 x 3 identity matrix, and d& is the 
matrix differential of &, which is given by 

0 -@k Vk 

= [ @ k  0 (8) 

-% lC'k 

Here, all of the partial derivatives are evaluated at 
(f$k,qk,qk) = (o,o,o). Substituting (7) into (6) gives the 
first-order approximation of R by 

(9) R % I + d R  

where dR is the matrix differential of R and it is given by 

dR = dRT + dR2 

('$1- '$2) * 

4771 - 772) 

(10) 

1 [ O  (771 - 772) -(q1 - '$2) 

($1 - $2) 
= 4 4 1 - 4 2 )  0 

0 

Using these results in (5),  the first-order approximation 
of the transformation from the measurement frame of 
the second sensor to the measurement frame of the 
first sensor is given by 

Although this transformation does not hold if the yaw, 
pitch, or roll angles are large, it serves as the model 
for developing the alignment equation below. 

B. Attitude and Sensor Offset Errors 

The attitude bias errors are modeled as additive 
constant biases to the reported values of the yaw, 
pitch, and roll angles. That is, 
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rk = range 
er = azimuth (bearing) 

ck = elevation 

J 
exk 

Elg. 2. Measurements in measurement frame of kth sensor. 

where &true, r]k,me, and are the true values of 
the yaw, pitch, and roll angles of the kth sensor, and 
A$k, Aqk, and A$k are the bias errors in these angles. 
The kth sensor measures the range rk, azimuth 6k, 
and elevation Ek of a target. These measurements are 
obtained in the measurement frame of the sensor (see 
Fig. 2). The sensor offset errors are also modeled as 
additive constant biases to the measurements, 

rk,true = rk + Ark; 

ok,true = o k  + Aok; (13) 

Ek,true = Ek + AEk. 

Here, the effects of random errors in the 
measurements are being ignored; they are included 
later when estimating the biases. 

The transformation from the measurement 
frame of the first sensor to the measurement frame 
of the second sensor using the reported values of 
the yaw, pitch, and roll angles is given in (11). The 
transformation using the true values is given by 

r12 = r2 + t + dRt~er2 + dRTtNet (14) 

where dRl,tNe and dRtNe are the matrices defined in 
(8) and (lo), respectively, but evaluated using the true 
values of the yaw, pitch, and roll angles. Equation 
(14) represents the transformation from the true 
measurement frame of the first sensor to the true 
measurement frame of the second sensor. 

Let qtrue denote the true position vector of the 
target in the first sensor’s true measurement frame of 
the first sensor, and rztrue is the true position vector 
of the target in the true measurement frame of the 
second sensor. Equation (14) can be used to transform 
rzme to the true measurement frame of the first 
sensor, 

rlztrue = r2,me + t + dRtruer2,tlue + dR;tmet. (15) 
By definition, 

r1,true = flztrue. (16) 

This gives 

r1,true = Q t N e  + t -t dRtruer2,true dRTtruet (17) 

which is used below to obtain a transformation to align 
the sensors. 

None of the quantities in (17), except for t is 
known. The true values of these quantities must 
be related to the measured values and the biases. 
This is accomplished by assuming that the biases are 
small quantities and using first-order Taylor series 
approximations. Using (S), (lo), and (12), the matrices 
dRl,true and dRtNe are approximated by 

dR1,true E dR1 + AI; dRtNe E dR + A (18) 

where the matrix differentials A1 and A are given by 

and 
A$ = 4- 4 2 ;  

AV A71 - A72; (21) 

A$ A$l - A$2. 

The rectangular coordinates Xk, Yk,  and Zk of a 
position vector rk = [XkYkzkIT are related to the range 
rk, azimuth 6k, and elevation &k by (see Fig. 2) 

xk = rkCOSEkSh6k; 

Yk = rk cos Ek cos 6k; (22) 
zk = rksinEk. 

Using (13), the position vector rk,tNe is approximated 

(23) 
by 

rk,true E rk + drk 

where the vector differential drk is given by 

Here, all of the partial derivatives are evaluated at the 
target measurements of the k th sensor. 

Using the results from the previous paragraph in 
(17) gives the following first-order approximation 

rl = (r2 + t + dRr2 + dRTt) 

+ (dr2 - drl + Ar2 + ATt). (25) 
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From (ll), the terms in the first set of parentheses 
are r12, which represents the measured position of 
the target, r2, of the second sensor, transformed 
to the frame of the first sensor using the reported 
values of the yaw, pitch, and roll. The terms in the 
other set of parentheses represent the effects of the 
bias errors on the transformation. The term A:t in 
(25) is negligible under the assumptions made for 
this problem. Assuming that the maximum values of 
the yaw, pitch, and roll bias errors are lo, and the 
maximum separation between the sensors is 100 m, 
it can be shown that IlA:tlI < 6 m. Thus, this term is 
ignored and (25) becomes 

rl = 1-12 + a  (26) 

where the alignment vector a is defined by 

a = dr2 - drl + AQ. 

If the bias errors are known, then a is known and (26) 
represents the transformation that aligns the second 
sensor to the first sensor. Conversely, if the bias errors 
are not known, but the position vectors of the target 
are measured, then (26) could be used to determine 
the biases. Thus, (26) is the basic equation for both 
aligning the sensors and also estimating the biases. 
For reasons discussed below, (26) is not used for this. 
Rather, it is used to derive other equations that serve 
this purpose. 

Using (20) and (24) in (27), and some 
manipulations, the alignment vector a can be 
expressed in terms of the biases by 

a = c1A4 + c2Aq + c3Aq 

(27) 

where 
c1 = [y2 -x2 OIT; 

c2 = [-22 0 4 T ;  (29) 

c3 = [O 2 2  -y2]T, 

Since the sensors are close to each other (much closer 
than the distances to targets of interest) and the biases 
are assumed to be small, it is difficult to separate the 
effects of the individual biases in the data. That is, 
observability problems are encountered if an attempt is 
made to estimate all of the biases. This occurs because 
some of the vectors multiplying the biases in (28) are 
nearly the same. In particular, drl/arl x dr2/dr2, 
arl/aOl M ar2/ae2, and arl/a&l M ar2/ac2. Also, 
it can be shown that c1 = ar2/aO2. Thus, a can be 
approximated by 

a M clAO + c2Aq + c3Aq + c4A& + c5Ar (30) 

where 

Ar = Ar2 - Arl 

and 

ar2 
ac2 

cq = - 

= 1 - r2 s i n ~ 2  sin02 -r2 s i n ~ ~ c o s e 2  r2 COW:! lT 

The alignment vector a depends on five 
parameters: the azimuth bias AO, pitch bias Aq, roll 
bias A@, elevation bias A&, and range bias Ar. The 
definitions of these five biases imply that the individual 
bias errors cannot be determined, e.g., the individual 
azimuth and yaw biases cannot be separated and they 
are lumped together in the azimuth bias AO. Similarly, 
the individual elevation biases cannot be separated, 
nor the individual range biases, nor the individual pitch 
biases, nor the individual roll biases. The alignment 
vector a in (30) can be expressed in matrix notation as 

a = Cb (33) 

where b = [A8 AV AI) A& ArIT is the bias 
vector and C is the matrix given by 

C = [ci c2 c3 c4 C5] 

The basic alignment equation in (26) can be expressed 
as 

rl = r12 + Cb (35) 

The matrix C is evaluated using the measurements 
of the second sensor and they are expressed in the 
frame of the second sensor. Only a small amount of 
error is introduced in (35) if C is evaluated using the 
measurements of the second sensor, but expressed 
in the frame of the first sensor. That is, C will be 
evaluated as 

C =  [Ci C2 c3 c4 cs] 

y12 -z12 0 -212sin812 x12/r12 

--x12 0 z12 -z12cosO12 y12/112 
0 xi2 -y12 ~ I ~ C O S E I ~  z12/r12 
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This has the advantage of expressing all of the 
positional data in (35) in the frame of the first 
sensor. 

Assuming that the bias vector b is known, the 
alignment of the second sensor to the first sensor is 
accomplished by the following procedure. First, (11) is 
used to transform the measured target position, r2, of 
the second sensor, to the measurement frame of the 
first sensor, using the reported values of the yaw, pitch, 
and roll angles; this produces r12. Then, the matrix 
C in (36), which depends only on 1-12, is calculated. 
Finally, (35) is used to compute rl, which represents 
r2, but aligned to the measurement frame of the first 
sensor. This alignment can be performed even if the 
first sensor is not tracking this particular target. Of 
course, a common target must be used to estimate the 
bias vector b. 

range bias estimation problem from the angular bias 
estimation problem. 

The vector equation presented in (37) can be 
expressed as the following three scalar equations 

- (212sin012)(A& + e , )  + %(Ar + e,)  (40) 
112 

Y l  = Y12 - x12(A0 + eo) + 2 1 2 4 5  

- (zl~cos012)(A& +e,)  + g ( A r  + e,)  (41) 
r12 

21 = 212 + X l 2 4  - Yl2A$ 

+ ( ~ ~ ~ c o s E ~ ~ ) ( A E  + e,) + s ( A r  + e , ) .  (42) 
r12 

The decoupling is obtained by simple manipulations 
of these three equations. First, the range bias is 
decoupled from the angular biases by multiplying (40) 
by x12, (41) by y12, (42) by 212, and adding the results. 
This gives 

Ill. ALGORITHM DEVELOPMENT 

An algorithm to estimate b is presented in this 
section. Assuming that both sensors are tracking a 
common target (so that r l ,  r12, and C are known), (35) 
can be thought of as a measurement of the bias vector x1x12 + YlYl2  + 21212 
b, which can be expressed as Ar  +e r  = - 7.12 

r12 
y = C b + e  (37) 

where y = rl - r12 is the measurement of b and 
e is the random measurement error. Following a 
procedure similar to the one outlined in the previous 
section for the bias errors, the random vector e can be 
approximated by 

e x cleo + cqe, + cse, 

eo = e62 - eel; 

(38) 

where 

e, = er2 - e,l. 

Here, it is assumed that all of the measurement noise 
adds to the measurements of the sensor, and erk, eok, 
and denote the random errors in the measured 
value of range, azimuth, and elevation, respectively, 
of the kth sensor. These random errors are assumed to 
be zero-mean errors with known standard deviations 
(Trk, g e k ,  and (T,k, and they are also assumed to be 
mutually uncorrelated. 

Kalman filtering techniques using (37) can be 
applied to estimate b. However, simulations have 
shown that there is a problem in estimating the range 
alignment parameter Ar using this approach. The 
problem occurs when lArl << r21A01, lAr( << r2 lA~J .  
etc.; that is, when the alignment error due to the range 
bias is much less than that caused by the angular 
biases. This problem can be avoided by decoupling the 

(43) = rT (%) - r12. 

This result was obtained by noting that r12 is 
orthogonal to c1, c2, cg, and c4. Since dr12/ar12 = 
r12/~12,  arl/arl = n/r1, and ar l /a r i  = h / / d r 1 2 ,  
(43) can be approximated by the simpler equation 

Ar + e, M rl - 112. 

The angular biases can also be decoupled from the 
range bias. Multiplying (40) by ~ 0 ~ 0 1 2 ,  (41) by - sin012, 
and adding the results give 

(44) 

( T ~ ~ C O S E ~ ~ ) ( A O  + eo) - (z12cos812)A~ - (212sin012)AlC, 

= (x1 - Xl2)COS012 - (Yl - Yl2)Sin012. (45) 

Finally, multiplying (40) by sin~12sin012, (41) by 
sin~lzcos012, (42) by - C O S E ~ ~ ,  and adding the results 
give 

- r12(A& + e,) - ( ~ i n 0 1 2 ) A q  + (r12cos@12)A$ 

= [(x1- X12)Sin012 + (y1- y12)cos~12] 

x Sin&12 - (21 - 212)COSE12. (46) 

These last two results were obtained by noting 
that the vectors [cos012 -sin012 0IT and 
[sin~12sin0~2 s ~ ~ & ~ ~ c o s ~ ~ ~  - C O S E ~ ~ ] ~  are 
orthogonal to c5. These equations can be simplified 
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by using (22), which gives vector, H is the matrix given by 

-cos812 1 

(56) 

O 1  

(A8 + ee) - ( tan~12~0~812)Aq - (tan~12sin812)A+ 1 - tan~12cos8~2 -tan~12sin812 
H =  [ 

0 sin812 rl cosEl 
r12COSE12 

sin(81 - 812) - - 

and v = [eo 
which is a zero-mean error with covariance 

e, IT is the random measurement error, 
M 81 - 812 (47) 

(A& + e,) + (sin812)Aq - (cos812)A+ 

rl 
r12 

= - C O S E ~ S ~ ~ E ~ ~ C O S ( ~ ~  - el,)) 

M E l  - E12. (48) 

The last lines in (47) and (48) were obtained by using 
the approximations r1/r12 M 1 and cosE1/cosE12 M 1, 
and assuming that 81 - 812 and ~ 1 -  €12 are small 
quantities. 

In addition to being used in the estimation of the 
biases, (44), (47), and (48) can also be used to align 
the spherical measurements from the sensors. In this 
case, the equations are expressed as 

1: ,921 w = cov(v) = (57) 
e -  

where 

0s = os1 + a&; 0," = gzl + c&. (58) 

Since the biases are assumed to be constants, the 
dynamics for the biases are modeled as constants that 
are driven by zero-mean white noise. The dynamical 
equation for the range bias Ar is given by 

Arj  = Arj-1+ wj-1 (59) 

rl  = r12 + Ar and the dynamical equation for the angular bias vector 
(49) d is given bv 

- (tancl2 sin814 AlC) (50) 
~1 = ~ 1 2  + AE + (~in812) Aq - (~0~812) A+ (51) 

where the random error terms have been ignored. 
Assuming the biases are known, the alignment is 
accomplished by transforming the measured target 
position r2 of the second sensor to the frame of the 
first sensor using (11). This produces r12, which is 
used to calculate the spherical coordinates r12, 812, 
and 612. Then, (49)-(51) are used to calculate 11, 81, 
and c1, which represent 1-12, 012, and ~ 1 2 ,  respectively, 
but aligned to the frame of the first sensor. Equation 
(22) can then be used to obtain rl. In simulations, this 
approach has produced better performance than by 
directly using the alignment equation in (35). 

Equations (44), (47), and (48) are also used 
as the measurement equations for the biases. The 
measurement equation for the range bias is given by 

m, = A r  + e, (52) 

where the measurement m, is defined by 

The indices j - 1 and j refer to the times at which 
the ( j  - 1)th and j th  samples or measurements of the 
target occur. The process noise terms w j  and uj are 
assumed to be zero-mean white noise processes with 
positive-definite covariances s, and Q,, respectively. 

The range alignment parameter Ar can be 
estimated using a first-order Kalman filter designed 
for the system with measurements and dynamics 
given by (52) and (59). The angular bias vector d 
can be estimated using a fourth-order Kalman Fiter 
designed using (55) and (60). If two or  more common 
targets are being tracked by the sensors, then the 
measurement equations describing the range bias and 
the angular biases can be augmented into two larger 
measurement equations. Then, the estimates of the 
biases can be obtained by applying Kalman filtering 
techniques to the dynamical equations above and the 
augmented measurement equations. 

Inspection of the equations for the range bias 
shows that Ar is observable. That is, an estimate of 
the range bias can be obtained. For the angular biases, 
one needs to consider the observabihty grammian [13]. 

m, = rl - r12. (53) For a single target, the system describing the angular 
bias vector has the following observability grammian 

The error e, is a zero-mean error with variance c,, 
which is given by -T-- 1- N 

M = CH?W;'H~ = H w H (61) 
a; = + 4. (54) j=1 

The measurement equation for the angular biases is 
given by 

where d = [ A8 Aq A+ A&IT is the angular bias 
vector, z = [ (81 - 812) (&I - &12)IT is the measurement 

where Hj and wj are the matrices in (56) and (57) 
evaluated at the j th  sample period, and the augmented 

z = H d + v  (55) matrices E and are defined by = [HTHT.. . H$lT 
and = diagPlW2.. .wN]. The angular bias vector 
is observable provided that M is positive definite for 
some finite N .  Here, N must be at least two because 
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the measurement equation in (55) represents two 
equations with four unknowns. That is, for a single 
target, it takes at least two sample periods to estimate 
the angular biases. 

Since the Wjs are assumed to be positive definite, 
M is not positive definite provided that a does not 
have full column rank (i.e., some of its columns are 
linearly dependent). Such a situation occurs when the 
target is radially inbound or radially outbound; that 
is, 612 = constant. In this case, the second, third, and 
fourth columns of a are dependent. It can be shown 
that the only angular parameters that can be estimated 
are AO, a, and p, where 

a = (cosOl2) AV + (sinO12) A$; 

p = A& + (sinOl2) Aq - (cosO12) A$. 
(62) 

If, in addition to moving along a radial line, the 
elevation angle of the target is also constant, the first, 
second, and third columns of are dependent as are 
the second, third, and fourth columns. In this case, the 
only angular parameters that can be estimated are p 
and y, where 

y = A0 - (tan&&. (63) 

The above discussion implies that there should be 
no problems in estimating the range bias, but potential 
problems can occur in estimating the angular biases. 
For a radially inbound or radially outbound target, 
all four of the angular biases cannot be determined; 
only linear combinations of the angular biases can be 
estimated. If the alignment is performed using a target 
of opportunity, it may not be possible to overcome 
these difficulties if the target is moving along a radial 
line. However, if one has control of the target, these 
problems can be overcome by choosing the trajectory 
of the target so that the azimuth varies significantly 
with time. Another possible solution to this problem is 
to use more than one target to estimate the biases. 

IV. SIMULATION RESULTS 

The alignment algorithm was tested by generating 
two common tracks and including alignment and 
random errors in the track data. One of the common 
tracks was used to generate the estimates of the five 
bias parameters, which were then applied to both 
tracks. The second common track was included to see 
how well the algorithm performs when another track is 
used to generate the bias estimates. 

is located at t ,  = t ,  = 25 m and tz = 10 m relative to 
the stabilized frame of the first sensor. The reported 
values of the yaw, pitch, and roll angles at both sensors 
were taken to be zero. The standard deviations in the 
measurements of the sensor are given by 

Both sensors are stationary and the second sensor 

The bias errors at the first sensor were given by 

and the second sensor had the following bias errors 

Using these in (21) and (31) gives the following values 
for the five bias parameters, 

Ar = 25 m; A0 = 4"; A& = 1"; 
(67) 

AV = 2"; A$ = -2". 

The first target is a closing target that is undergoing 
a simple maneuver in the xy-plane. The true 
z-coordinate of the target is 3 km and constant. The 
azimuth and elevation angles vary significantly with 
time, and this target is used to estimate the five biases. 
The second target is a closing target that is moving 
at constant velocity. The true z-coordinate of this 
target is 1 km and constant. The bias and random 
errors above were included in the measurements of the 
sensors. The data are assumed to be time coincident 
and both sensors are reporting data at regular intervals 
of T = 0.5 s. The Kalman filters described in the 
previous section were implemented to obtain the 
estimates of the biases. The first measurement was 
used to initialize the range bias filter and the first five 
measurements were used to initialize the angular bias 
filter. The covariances sj  and Qj for the input noises 
were taken to be constants with s j  = 10-4T2 (m2) 
and Qj = c21, where I is the 4 x 4 identity matrix and 
g = lo-%" (rads). 

The rectangular coordinates of the targets in the 
xy-plane before alignment are presented in Fig. 3(a) 
and the z-coordinates in Fig. 4(a). The solid lines are 
the track positions reported by the first sensor and 
the dashed lines are the corresponding track positions 
from the second sensor. Here, all of the positional 
data are expressed in the frame of the first sensor. 
The asterisk at the origin in Fig. 3(a) denotes the 
locations of the sensors. The separations between the 
corresponding tracks positions reported by the two 
sensors is due to the bias errors in the sensors. 

The spherical coordinates of track 1 as reported 
by the two sensors were input in the Kalman filters to 
generate the estimates of the biases. That is, track 1 
was used to generate the bias estimates, which are then 
applied to both track 1 and track 2. Specifically, the 
biases were used in (49)-(51) to align the spherical 
coordinates. Then, (22) was used to calculate the 
rectangular coordinates. This alignment was performed 
in real time (dynamically); that is, as bias estimates 
were generated at each time point, they were then 
applied to align the coordinates. Since the estimates 
of the biases were initially very noisy, the biases 
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Fig. 3. Ttack coordinates in xy-plane. (a) Before alignment. Fig. 4. Vertical coordinates of track. (a) Before alignment. 
@) After alignment. (b) After alignment. 

were applied only after they had been estimated for 
10 s (20 updates). Fig. 3(b) presents the rectangular 
coordinates of the targets in the xy-plane after the 
biases have been applied to the measurement of the 
second sensor, and Fig. 4(b) presents the z-coordinates. 
To the scale of the graph in Fig. 3(b), there is little 
discernible difference between the corresponding 
tracks reported by the two sensors in the xy-plane. As 
shown in Fig. 4(b), the alignment of the z-coordinates 
for track 1 was very good, but the alignment for track 
2 was poor for the first 40 s. Of course, track 1 was 
used to estimate the biases and it is expected that 
the alignment for track 1 should be good. Note that 
the z-coordinates reported by the sensors are not 
constants, but the true z-coordinates are constants. 
This occurs because of the bias errors in the sensors 
and the changing geometry due to the motion of each 
target. 

are presented in Fig. 5. The dashed lines in these 
figures represent the true values of the biases, which 
are also given in (67). It takes approximately 30 to 40 s 

The estimates of the biases from the Kalman filters 

(60 to 80 updates) before the elevation, pitch, and roll 
biases converge to values near their true values, but 
the range and azimuth biases converge more quickly. 
The reason that the range bias converges more quickly 
is that it is estimated using one equation with one 
unknown, namely the range bias in (49). Similarly, 
the azimuth bias is usually the dominant term in 
(50), at least for targets with low elevations. In this 
simulation, track 1 started at a fairly low elevation and 
the azimuth parameter was the dominant term. The 
elevation, pitch, and roll biases must rely mainly on 
the single equation in (51) for their estimates, and it is 
expected that they will converge more slowly than the 
other two biases. 

The alignment error between the corresponding 
tracks reported by the sensors is presented in Fig. 6, 
where the total error is shown in Fig. 6(a) and the 
error in the xy-plane in Fig. 6(b). The total error 
before the biases are applied is quite large (an average 
of 980 m for track 1 and 608 m for track 2). After the 
biases have been applied, the average total error is 
reduced to 37 m for track 1 and 102 m for track 2; this 
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Fig. 5. Estimates of biases from Kalman Glters. 
(a) Range bias estimates. (b) Angular bias estimates. 

represents a reduction in the total error by a factor of 
25 for track 1 and a factor of 6 for track 2. The reason 
that the error was reduced more for track 1 is that it 
was used to generate the bias estimates. Most of the 
error in track 2 after the biases have been applied 
is due to the poor alignment of the z-coordinates 
for track 2 in the first 40 s. The alignment in the 
xy-plane is much better. The average error in the 
xy-plane before the biases are applied is 841 m for 
track 1 and 5% m for track 2; but after the biases 
have been applied it reduces to 26 m for track 1 and 
25 m for track 2. This represents a reduction in the 
error in the xy-plane by a factor of 32 for track 1 and 
a factor of 24 for track 2. Thus, the proposed algorithm 
performed very well in reducing the alignment error 
in the xy -plane, but it required quite a long time 
before the error in the z-coordinate was reduced. This 
occurred because of the long time required for the 
elevation, pitch, and roll bias estimates to converge 
to their true values. This problem can be reduced by 
using more than one common target to estimate the 
bias e s. 
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Fig. 6. Alignment errors in tracks before and after alignment. 
(a) Total alignment error. (b) Alignment error in xy-plane. 

V. SUMMARY AND CONCLUSIONS 

The problem of aligning two 3-D sensors using 
common targets tracked by the sensors was examined, 
and an alignment algorithm was developed to relatively 
align the sensors. The alignment is accomplished 
using five bias parameters: one range bias and four 
angular biases. Two Kalman filters are used to estimate 
the biases: a first-order filter for the range bias 
and a fourth-order filter for the angular biases. An 
observability analysis shows that there should be  no 
problem in estimating the range bias, but problems 
do occur in estimating the angular biases when the 
common target is a radially inbound or radially 
outbound target. 

The alignment algorithm is applicable to those 
situations where there are no sensor location errors, 
the distance between the sensors is small (e.g., sensors 
located on the same platform), the magnitude of the 
bias errors is small, and these errors do  not change 
with time or vary slowly with time. It is also assumed 
that the sensors are synchronized in time and have 
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the same update rates. For illustrative purposes, the 
alignment algorithm was applied to simulated data 
from two sensors that were tracking two common 
targets. Only one of the targets was used to generate 
the estimates of the biases, which were then applied to 
both tracks. Each of the sensors had realistic values for 
their measurement errors. The filters converged within 
30 to 40 s to values of the range, azimuth, elevation, 
pitch, and roll biases that were close to their actual 
values. Utilizing these bias estimates, it was possible to 
obtain a dramatic 24-fold reduction in the alignment 
error in the xy-plane, but it required at least 40 s 
before the error in the z-coordinate was reduced. This 
occurred because of the long time required for the 
elevation, pitch, and roll bias estimates to converge 
to their true values. This problem can be reduced by 
using more than one common target to estimate the 
biases. 

R. E. HELMICK 
T. R. RICE 
Research and Technology Department 
Naval Surface Warfare Center 
Dahlgren, VA 22448-5000 
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Digital Baseband Processor for the GPS Receiver 
Modeling and Simulations 

A Global Positioning System (GPS) receiver has been modeled 

mathematically and implemented in software. The digital 

baseband processor of the receiver perform the maximum 

likelihood estimations of the GPS observables. The following 

issues are discussed: 1) the fundamentals of the digital GPS 

receiver, 2) the modeling of the digital baseband processor, and 3) 

the performance of the modeled static and dynamic receivers. The 

software-based receiver is more flexible, less expensive and more 

accurate compared with hardware receivers in receiver designs and 

GPS system performance analysis. 

I. INTRODUCTION 

The NAVSTAR (Navigation Satellite Timing 
and Ranging) Global Positioning System (GPS) is a 
satelhte-based, worldwide, all-weather navigation and 
timing system [l]. The GPS is designed to provide 
precise position, velocity, and timing information on 
a global common grid system to an unlimited number 
of suitably equipped users. A GPS receiver is the key 
for a user to access the system and it has undergone 
extensive development since the GPS concept was 
initiated in 1973. The GPS signal structure, the 
fundamental principles and operations of the receivers, 

' the basic technical approaches to high accuracy and 
low cost hardware receiver designs are discussed in 
[24]. A functional description of signal processing 
in the Rogue GPS prototype receiver is presented in 
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