
INTRODUCTION

Rapid industrialization and urbanization have
resulted in elevated emission of toxic heavy metals
entering the biosphere.1 Activities such as mining and
agriculture have polluted extensive areas throughout
the world.2,3 The release of heavy metals in biologically
available forms by human activity, may damage or alter
both natural and man-made ecosystems.4 Heavy metal
ions such as Cu2+, Zn2+, Fe2+, are essential micronutrients
for plant metabolism but when present in excess, can
become extremely toxic.5

  Cadmium (Cd) is one of the most toxic heavy metals
and is considered non-essential for living organisms.6

Cd has been recognized for its negative effect on the
environment where it accumulates throughout the food
chain posing a serious threat to human health.7 Cd
pollution has induced extremely severe effects on
plants.8 Unlike Cd, zinc (Zn) is an essential and beneficial
element for human bodies and plants. Complete
exclusion of Zn is not possible due to its dual role, an

essential microelement on the one hand and a toxic
environmental factor on the other.9 However, Zn can
cause nonfatal fume fever, pneumonitis, and is a
potential hazard as an environmental pollutant.10

Recently there is a considerable interest in
developing cost effective and environmentally friendly
technologies for the remediation of soil and wastewater
polluted with toxic trace elements.11 Plants have the
ability to accumulate nonessential metals such as Cd
and Pb, and this ability could be harnessed to remove
pollutant metals from the environment.12-14 Plants-
based bioremediation technologies have received
recent attention as strategies to clean-up contaminated
soil and water.15 The submerged macrophytes are
particularly useful in the abatement and monitoring of
heavy metals.16

Water hyacinth, Eichhornia crassipes, is a floating
macrophyte whose appetite for nutrients and explosive
growth rate has been put to use in cleaning up municipal
and agriculture wastewater.17 It has been discovered
that water hyacinth’s quest for nutrients can be turned
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Table 1. Maximum growth response of water hyacinth
exposed to Cd and Zn.

ParameterParameterParameterParameterParameter CdCdCdCdCd ZnZnZnZnZn

Relative growth 0.85a 0.89c

Metal accumulation (mg/kg)
shoot 113.2a 1926.7c

root 2044a 9652.1c

Residual concentration (mg/L) 0.185a 6.29c

BCF 622.3b 788.9d

a 4 mg/L Cd, b 2 mg/L Cd, c 40 mg/L Zn, d 5 mg/L Zn.

a volumetric flask. The final volume was made up with
deionized water and heavy metals analysis was done
using a flame atomic absorption spectrophotometer
(FAAS). The results of the accumulation were reported,
as concentration (mg) of Cd and Zn in plants (kg). The
concentration of metals remained in the residual
solution was measured using FAAS.

BCF
The BCF provides an index of the ability of the plant

to accumulate the metal with respect to the metal
concentration in the substrate.  The BCF was calculated
as follows:11

Concentration of metal in plant tissue
Initial concentration of metal in external solution

Statistical AnalysisStatistical AnalysisStatistical AnalysisStatistical AnalysisStatistical Analysis
The mean numbers of relative growth, metal

concentration and BCF were calculated and subjected
to Analysis of Variance (ANOVA) using randomized
block design and Least Significant Difference method
(LSD) on the SPSS for windows program after analysis
of the homogeneity of variance according to Cochran’s
test.23

RESULTS

Relative GrowthRelative GrowthRelative GrowthRelative GrowthRelative Growth
The effects of Cd and Zn on relative growth of E.

crassipes at different concentrations and exposure times
were shown in Figure 1.  The relative growth of control
plants significantly increased (P ≤ 0.05) with the passage
of time. In plants treated with Cd, the relative growth
significantly increased (P ≤ 0.05) in 0.5 and 1 mg/L
treatments, but decreased in 2 and                                                       4
mg/L treatments.  In plants treated with Zn, the relative
growth significantly increased (P ≤ 0.05) in 5 and
10 mg/L treatments, but decreased in 20 and 40 mg/L
treatments. The lowest values of relative growth were
0.85 and 0.89 for water hyacinth treated with Cd at
4 mg/L and Zn at 40 mg/L, respectively.  The comparison
of maximum relative growth of water hyacinth exposed

in a more useful direction. The plant has been shown
to accumulate trace elements such as Ag, Pb, Cd and
Zn.18-21 The focus on water hyacinth as a key step in
wastewater  recycling is due to the fact that it forms the
central unit of a recycling engine driven by
photosynthesis and therefore the process is sustainable,
energy efficient and cost efficient under a wide variety
of rural and urban conditions.22 The aim of the present
study was to demonstrate the phytoremediation
potential of water hyacinth, E. crassipes for the removal
of Cd and Zn.

MATERIALS AND METHODS

Experimental ProceduresExperimental ProceduresExperimental ProceduresExperimental ProceduresExperimental Procedures
E. crassipes was collected from a ditch in the suburb

of Bangkok, Thailand and rinsed with tap water to
remove any epiphytes and insect larvae grown on plants.
The plants were placed in cement tanks with tap water
under natural sunlight for one week to let them adapt
to the new environment, then the plants of the same
size were selected for further experiment. A stock
solution (1000 mg/L) each was prepared in distilled
water with analytical grade CdCl

2
. 2½ H

2
O and ZnSO

4
.

7H
2
O which was later diluted as required. The plants

were maintained in tap water supplemented with 0.5,
1, 2, 4 mg/L of Cd and  5, 10, 20, 40 mg/L of Zn.  Plants
that were not exposed to metals served as controls.  All
experiments were performed in triplicate.   The test
durations were 0 (two hours), 4, 8 and 12 days. Tap
water was added daily to compensate for water loss
through plant transpiration, sampling and evaporation.
After each test duration, plants were harvested.  They
were separated into shoots and roots, and were analyzed
for relative growth, metals accumulation, and
bioconcentration factor (BCF).  In addition, the metals
remained in the solution were measured to assess the
removal potential of water hyacinth.

Sample AnalysesSample AnalysesSample AnalysesSample AnalysesSample Analyses
Relative Growth
Relative growth of control and treated plants was

calculated as follows:

Metals Accumulation
Metals accumulation in plant and water samples

was measured.  Digestion of  samples in this study was
performed according to the Standard Methods by
APHA.7 Plant samples were decomposed to dry matter
by heating at 120°C for 24 hours in a hot air oven and
the ash was digested with nitric acid and filtered into

Relative growth   =
Final fresh weight (FFW)

Initial fresh weight (IFW)

BCF  =
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Fig 1.The effects of Cd (A) and Zn (B) on relative growth of  E. crassipes at different metal concentrations and exposure times.
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general, there were increases in metal accumulation in
shoots and roots when metal concentration and
exposure times were increased (P ≤ 0.05). For Cd,
control and plants treated with 2 and 4 mg/L showed
a significant difference (P ≤0.05) in metal accumulation
(Fig 2). There was a significant difference (P ≤ 0.05) in

to Cd (4 mg/L) and Zn (40 mg/L) is shown in Table 1.

Metals AccumulationMetals AccumulationMetals AccumulationMetals AccumulationMetals Accumulation
Cd and Zn accumulations by water hyacinth at

different concentrations and exposure times were
separately shown in Fig 2 and Fig 3, respectively. In

AAAAA

BBBBB

Fig 2.The accumulation of Cd in shoots (A) and roots (B) of  E. crassipes.
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concentrations. Plants treated with 4 mg/L of Cd on
day 8 accumulated the highest level of metal in shoots
(113.2 mg/kg; Fig 2A)  and in roots  (2044 mg/kg; Fig
2B); while plants treated with 40 mg/L of Zn on day 4
accumulated the highest level of metal in shoots (1926.7
mg/kg; Fig 3A), and in roots (9652.1 mg/kg; Fig 3B).

Cd accumulation with the passage of time at all
concentrations except for 0 and 0.5 mg/L. For Zn,
significant differences (P ≤ 0.05) between control and
treated plants were found at all metal concentrations
(Fig 3). There was a significant difference (P ≤ 0.05) in
accumulation  with the passage of time at all
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Fig 3.          The accumulation of Zn in shoots (A) and roots (B) of  E. crassipes.
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in the residual solutions were shown in Fig 4. They were
significantly decreased (P ≤ 0.05) when the exposure
times were increased. The concentrations of dissolved
Cd in the solutions at 0.5, 1, 2 and 4 mg/L were 0.003,
0.005, 0.088 and 0.185 mg/L, respectively on day 12
(Fig 4A). The concentrations of dissolved Zn in the

The comparison of maximum accumulation of Cd and
Zn in water hyacinth exposed to Cd (4 mg/L) and Zn (40
mg/L) is shown in Table 1.

Metals Remained in the Residual SolutionMetals Remained in the Residual SolutionMetals Remained in the Residual SolutionMetals Remained in the Residual SolutionMetals Remained in the Residual Solution
The concentrations of dissolved metals remained
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Fig 4.Cd (A) and Zn (B) remained in the residual solution after 12 days.
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concentrations and exposure times were shown in Fig
5. In general, the BCF values for Cd and Zn increased
with the passage of time (P ≤ 0.05). The BCF values for
Cd  significantly increased (P ≤ 0.05) with Cd
concentration in the feed solution at each exposure
time and then decreased when the Cd concentration
was over 2 mg/L (Fig 5A). The maximum BCF of 622.3

solutions at 5, 10, 20 and 40 mg/L were 0.82, 2.42, 5.06
and 6.29 mg/L, respectively on day 12 (Fig 4B). The
comparison of maximum residual concentration of Cd
and Zn is shown in Table 1.

BCFBCFBCFBCFBCF
The BCF values for Cd and Zn at different
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Fig 5.The bioconcentration factor (BCF) values of Cd (A) and Zn (B) in E. crassipes at different metal concentrations and
exposure times.
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sativa and Triticum aestivum.
In the present study, water hyacinth accumulated

the highest concentration of metals in roots
(2044 mg/kg for Cd and 9652.1 mg/kg for Zn). However,
relatively little Cd (113.2 mg/kg) was translocated to
the shoot, while Zn was translocated at a much higher
concentration (1926.7 mg/kg). This result
demonstrated that Zn was much more mobile than Cd.
The accumulation of metals in the roots and shoots of
water hyacinth has been shown in field studies in which
water hyacinth was used as a biological monitor in
metal pollution.32 Greger33 reported that the uptake of
Cd, both by roots and shoots, increased with increasing
metal concentration in the external medium but the
uptake was not linear in correlation to the concentration
increase. Stratford et al.27 found that the metals’
accumulations in water hyacinth increased linearly with
the solution concentration in the order of
leaves<stems<roots in water hyacinth. This study
demonstrated a pattern of metal uptake similar to that
of Stratford et al.27 and we found that both Cd and Zn
accumulated more in roots than in shoots. Qian et al.34

treated 12 plant species (fuzzy water clover, iris-leaved
rush, mare’s tail, monkeyflower, parrot’s feather, sedge,
smart weed, smooth cordgrass, striped rush, umbrella
plant, water lettuce and water zinnia) with 10 trace
elements (As, B, Cd, Cr, Cu, Pb, Mn, Hg, Ni and Se) and
reported that with the exception of B, all trace elements
studied accumulated to substantially higher
concentrations (from 5 to 60 folds) in roots than in
shoots of all plant species. In general, most studies
reported the higher concentration of metals in roots
than in shoots. Cd concentrations were reported to be
higher in the roots in most studies.35,36 Normally Zn, Cd
or Ni concentrations are 10 (or more) times higher in
root than in shoot.37 Soltan and Rashed38 treated water
hyacinth with several heavy metals (Cd, Co, Cr, Cu, Mn,
Ni, Pb and Zn) and concluded that water hyacinth
accumulated higher concentrations of heavy metals in
the roots than in the aerial parts. However, there are a
few studies that showed the higher accumulation of Cd
in shoots than in roots.39,40

Matagi et al.41  have extensively  reviewed on the
heavy metal removal mechanisms in wetlands.
Denny42,43 noted that the main route of heavy metal
uptake in wetland plants was through the roots in the
case of emergent  and surface-floating plants like water
hyacinth. In locating the sites of mineral uptake in
plants, Arisz44  found that ions penetrated plants by
passive process, mostly by exchange of cations which
occurred in the cell wall.  Denny42 concluded that heavy
metals were taken up by plants by absorption and
translocation, and released by excretion.  Sharpe and
Denny45  and Welsh46 showed, however, that much of
the metal uptake by plant tissue is by absorption to

was obtained in plants treated with 2 mg/L of Cd on day
8. The BCF values for Zn significantly decreased (P ≤
0.05) with Zn concentrations in the feed solution at
each exposure time and the maximum BCF of 788.9
was found in plants  treated with 5 mg/L of Zn on day
12 (Fig 5B). The comparison of maximum BCF of water
hyacinth exposed to Cd (2 mg/L) and Zn (5 mg/L) is
shown in Table 1.

DISCUSSION

Growth changes are often the first and most obvious
reactions of plants under heavy metal stress.24 In the
present study, the relative growth increased in plants
treated with low concentration of Cd (0.5 and 1 mg/L),
but decreased with high concentration (2 and 4 mg/L).
It appeared that low Cd concentration could stimulate
plants’ growth. Dou25 found that although Cd is not
generally considered an essential element, yet it may
stimulate growth of some plants in small amounts. It is
known that Cd is a non-essential heavy metal, and has
inhibitory effects on plant growth.26 Stratford et al.27

reported that Cd was toxic and caused substantial
reduction in water hyacinth growth mainly by
suppressing development of new roots, and reducing
relative growth rates to about 10% of those of controls.
In plants treated with Zn, the relative growth increased
in 5 and 10 mg/L treatments but decreased in 20 and
40 mg/L treatments. The addition of Zn at low
concentration had a favorable effect on the growth of
water hyacinth, which may be attributed to the fact that
the plants utilize Zn as a micronutrient for their growth.28

Delgado et al.29 found that in long term experiment (24
days), water hyacinth exposed to 9 mg/L of Zn resulted
in 30% reduction in weight. Schat et al.30 reported that
Zn toxicity was first expressed in reduced root growth.
It has been proved by EI-Ghamery et al.31 who reported
that the non-lethal concentration of Zn2+ showed an
inhibitory effect on cell division in root tips of Nigella

Table 2. Bioconcentration factors (BCF) for Cd and Zn in
various plants.

Plant speciesPlant speciesPlant speciesPlant speciesPlant species    BCF   BCF   BCF   BCF   BCF ReferenceReferenceReferenceReferenceReference
CdCdCdCdCd ZnZnZnZnZn

Eichhornia crassipes 622.3 788.9 Present study
Lemna polyrrhiza 650 44 28, 60
Elodea nuttalli 1,700 3,000 55
Azolla pinnata (root) 24,000 12,000 56
Eriocaulon aquaticum
(root) 2.7 39 57
Myriophyllum exalbescens6 1,640 59
Bacopa monnieri 400 - 61
Ricciocarpus natans - 3,700-8,800 62
Zostera marina
(aboveground) 0.62 78 58
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metal concentration in feed solution. Zhu et al.50 found
that the BCFs of water hyacinth were very high for Cd,
Cu, Cr and Se at low external concentration, and they
were decreasing as the external concentration
increased. In the present study, for plants treated with
Zn, the BCF values decreased when Zn concentration
was increased. For plants treated with Cd, the BCF
values first increased with the increase of Cd
concentration, and then decreased when Cd
concentration was over 2 mg/L. It can be concluded
that the best BCF value was obtained when the external
solution concentrations were 2 mg/L for Cd and
5 mg/L for Zn.

In the present study.  The BCF values for Zn were a
little higher than those of Cd at the same duration in
most cases, indicating that the accumulation potential
of Zn by water hyacinth was slightly higher than that of
Cd.  The maximum BCF values for Cd and Zn were
622.3 and 788.9, respectively, indicating that E. crassipes
is a moderate accumulator of Cd and Zn based on the
arbitary criteria by Zayed et al.11 and Zhu et al.50 Metal
accumulation potential and BCF values can vary among
submerged species of macrophytes (Table 2). Some
other aquatic plant species have been shown to exhibit
higher accumulation of Cd or Zn and therefore are
considered excellent Cd or Zn accumulators.  Nakada
et al.55 found high BCF values for Cd (1,700) and Zn
(3,000) in Elodea nuttallii.  Sela et al.56  reported the very
high BCF values for Cd (24,000) and Zn (12,000) in the
roots of water fern, Azolla filiculoides.  In comparison,
other aquatic plant species were proven to be poor
accumulators of Cd or Zn, and very low Cd or Zn BCF
values were observed. For example, Miller et al.57

reported that the BCF values for Cd and Zn in soft-
water pipewort were only 2.7 and 39, respectively;
while Brix et al.58 found that the BCF values for Cd and
Zn in the aboveground parts of eelgrass (Zostera marina)
were only 0.62 and 78, respectively. Franzin and
McFarlane59 reported the BCF value for Cd of only 6 in
Myriophyllum exalbescens in contaminated sites; while
Jain et al.28  reported the BCF value for Zn in Azolla
pinnata of only 44.

The appropriateness of a plant for phytoremediation
potential is often judged by its BCF. BCF values over
1000 are generally considered evidence of a useful
plant for phytoremediation.11  However, in this study,
with the BCF values of water hyacinth a little under
1000, this plant can be considered as a moderate
accumulator for Cd and Zn. Further studies are needed
to extend the growth season of the plant for utilizing
in Cd and Zn treatment in effluents. Effluents containing
these metals at low concentration may be treated by
continuously passing them through a bed of water
hyacinth growing in ponds. The harvestable parts, rich
in accumulated metals, can be easily and safely

anionic sites in the cell walls and the metals do not enter
the living plant.  This explains why wetland plants can
have very high magnitude of heavy metal concentration
in their tissues compared to their surrounding
environment.47,48

Movement of metal-containing sap from the root to
the shoot, termed translocation, is primarily controlled
by two processes: root pressure and leaf transpiration.49

Some metals are accumulated in roots, probably due to
some physiological barriers against metal transport to
the aerial parts, while others are easily transported in
plants. In the present study, although Cd and Zn
translocation to the plant aerial parts occurred and
continued to go on during the whole experiment, it was
slower than sorption by roots.   Translocation of trace
elements from roots to shoots could be a limiting factor
for the bioconcentration of elements in shoots.50

Additionally, Cd accumulation in 4 mg/L treated plants
reached the highest level in roots and then decreased;
while for Zn accumulation, 40 mg/L treated plants
reached the highest level in shoots and  roots, and  also
decreased. It can be proposed that the roots reached
saturation during the period and there exists mechanism
in roots that could detoxify heavy metals or transfer
them to aerial parts.

Water hyacinth effectively removes appreciable
quantity of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and
Zn) from freshwater especially at low concentrations.38

Maine et al.21 reported that remaining Cd concentration
in water was inversely related with time and depended
on the initial Cd concentration.  In the present study,
Cd and Zn were efficiently depleted from the solution
with the greatest decrease observed during the first
four days. The sharp decrease in Cd and Zn
concentration remaining in the residual solutions is
indicative of the fast attainment of a saturation state.
As soon as the saturation state was reached, it seemed
a little difficult for plants to further absorb Cd or Zn.
Still the concentration decreased with the passage of
time.

Bioconcentration factor (BCF) is a useful parameter
to evaluate the potential of the plants in accumulating
metals and this value was calculated on a dry weight
basis. Metal accumulations by macrophytes can be
affected by metal concentrations in water and
sediments.51 The ambient metal concentration in water
was the major factor influencing the metal uptake
efficiency.52 In general, when the metal concentration
in water increases, the amount of metal accumulation
in plants increases, whereas the BCF values decrease.53

It was also reported that in most cases, BCF values
decreased with increasing metal concentrations in the
soil.54 Jain et al.28 found the BCF values for water velvet
(Azolla pinnata) and duckweed (Lemna minor) treated
with Pb and Zn gradually decreased with increasing
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processed by drying, ashing or composting for
recycling.40 It represents a cost-effective plant-based
technology for the removal of metals from the
environment and has great potential for future
applications.

In conclusion, water hyacinth may be used in “Eco-
technology” (environmental technology) in
constructed wetlands. Wetlands help to prevent the
spread of heavy metal contamination from land to the
aquatic environment. High metal removal rates of close
to 100% have been reported both in natural and artificial
constructed wetlands.41 The advantage of constructed
wetlands being easy and cheap to construct and operate
suggests they are a suitable alternative for wastewater
purification.
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