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Removal of metal ions and humic 
acids through polyetherimide 
membrane with grafted bentonite 
clay
Raghavendra S. Hebbar1, Arun M. Isloor1, Balakrishna Prabhu2, Inamuddin3,4, Abdullah M. 

Asiri3,4 & A. F. Ismail5

Functional surfaces and polymers with branched structures have a major impact on physicochemical 

properties and performance of membrane materials. With the aim of greener approach for 

enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of 

polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural 
bentonite was carried out via distillation-precipitation polymerisation method and employed as a 
performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant 
improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive 
dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with 

increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase 
in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. 
The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 
87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite 
membranes can be significantly employed for the removal of hazardous heavy metal ions with a 
rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing 
poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of 
nanocomposite membrane to enhance the performance in real field applications.

Ultra�ltration (UF) has been employed extensively in several membrane �ltrations and separation-based tech-
nologies, such as the wastewater treatment, chemical and biochemical applications, protein e�uent separation, 
oil-water separation, pollutant rejection etc1,2. �e morphology (porous structure) and hydrophilicity are the two 
signi�cant factors to be considered in membrane fabrication processes. A suitable porous membrane material 
used in the UF process should have excellent mechanical stability, permeability, hydrophilicity and resistance to 
the feed streams, which play a very vital role in separation process3. Polyetherimide (PEI) is a common micro�l-
tration (MF), ultra�ltration (UF), and pervaporation membrane material due to its excellent �lm-forming capac-
ity, thermal stability, mechanical strength and chemical resistance to wide range of pH4. However, pristine PEI 
membrane hampers their usage to aqua-based media due to its hydrophobic nature. �us, the modi�cation of 
polyetherimide is inevitable. �e selectivity and performance of polyetherimide membranes can be improvised 
by employing chemical gra�ing, surface coating and by blending hydrophilic polymers. Furthermore, apart from 
the above-mentioned techniques, inorganic materials such as TiO2, SiO2, Al2O3, ZnO2, Fe3O4, and LiCl4 were 
also incorporated into the casting solutions for fabricating organic-inorganic hybrid membranes5–8. It was found 
that, by adding certain inorganic additives or �llers will lead to an increased hydrophilicity, pure water �ux, and 
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rejection properties. It also has the capacity to improve the mechanical strength, antifouling e�cacy, and e�ective 
control on physicochemical properties of the membrane surface.

�e non-biodegradable nature of heavy metal ions and humic substances in the water causes harm to human 
health and a�ect the aquatic ecosystem. Even lower concentrations of these pollutants accumulated in tissues of 
an organism can cause severe and fatal damage to the health due to their extreme toxicity9. For instance, intake 
of excess copper into the body can lead to severe health problems like convulsions, vomiting, cramps and even 
death. �e accumulation of nickel beyond the permissible limit can cause severe harm to kidneys, lungs, and 
disorders such as pulmonary �brosis, gastrointestinal distress, and skin dermatitis. Cadmium has been catego-
rized by the U.S. Environmental Protection Agency as a potential human carcinogen. Prolonged exposure to cad-
mium causes kidney dysfunction and high levels of exposure can result in death10. In another case, the presence 
of humic substances in water reacts with most commonly used disinfectant and chlorine to form disinfection 
by-products such as haloacetic acids, trihalomethanes, and other halogenated products. Without an appropri-
ate treatment process, direct exposure to these carcinogenic by-products can lead to cancers, miscarriages and 
nervous system complications6. �ese examples illustrate that, the presence of heavy metals and humic acid are 
extremely dangerous, and therefore it is necessary that these substances should be eliminated from water.

Nanocomposite UF membranes could be an attractive alternative in this perspective. �e rate of hydraulic 
permeation and selectivity was enhanced by the inclusion of inorganic additive into base membrane matrix. 
Predominantly, cost-e�ectiveness, size and properties of the materials are the key factors to optimize the inor-
ganic additives9. Nowadays, naturally available bentonite clays are the new prospective �llers for the polymer 
composite for water puri�cation applications, which endow with low cost, strong hydrophilicity, net negative 
charge, facile chemical modi�cation ability and enhances mechanical strength. It is a naturally occurring clay 
mineral composed of silica tetrahedral sheets and aluminum octahedral sheets. A single unit cell consists of 
two basic building blocks such as one aluminum octahedral sheet is sandwiched between two tetrahedral silica 
sheets10,11. Panpanit et al. investigated the in�uence of natural bentonite clay in ultra�ltration �ux enhancement 
during the wastewater treatment. �is study demonstrated that, the addition of bentonite clay can result in the 
reduction of total membrane fouling12. It has also been con�rmed that, bentonite immobilised polymer mem-
brane matrix having the highly porous surface was able to remove hazardous heavy metal ions from the aqueous 
stream. Also, addition of bentonite has led to an increasing hydrophilicity, porosity, pure water permeation, anti-
fouling resistance capacity, and e�ective control over the surface properties13.

In recent years, polymer brushes gra�ed on to nanomaterials are viewed as a new type of chemical modi�-
cation for functionalisation and for improving the membrane physicochemical properties and performances. 
Polymer brushes are basically assemblies of one end tethered polymer chains at high gra� density on a surface 
of nanomaterials14,15. According to Hadjesfandiari et al., the properties of polymer brushes are unique and more 
e�ective even gra�ed polymer chains at low gra� density16. For the gra�ing of polymer brushes to nanomaterials, 
distillation-precipitation polymerization is the unique process to prepare surface functionalized nanomateri-
als (such as sulfonated, carboxylated) without any stabilizing agent or surfactant. Moreover, this method can 
be adopted easily for scale up due to solvent re�ux in the process can impart e�cient mixing and oxygen-free 
environment. In comparison with the typical polymerization methods like group transfer polymerization, 
radical-polymerization and chain transfer polymerization, distillation-precipitation polymerization o�ers greater 
bene�ts such as, atom economy, lesser reaction time, no metal catalyst, and easy isolation. �e mechanism of 
distillation-precipitation polymerization follows the order of radical initiation of monomer or cross-linker and 
subsequent chain propagation by chain addition, which increases colloidal stability of modi�ed nanoparticles due 
to high surface charge17,18.

Bai et al. described the preparation of negatively charged chitosan membrane by the inclusion of halloysite 
nanotubes gra�ed with poly (sodium 4-styrenesulfonate) via distillation-precipitation polymerization method. 
It has been stated that, degree of gra�ing was successfully regulated by varying the amount of monomers and 
the reaction time. �e results shown that, hydrophilicity and permeation properties of hybrid membranes were 
increased considerably19. Further, Cai and group members. reported that, Poly (vinylidene �uoride) (PVDF) 
membranes with covalently immobilized hyper-branched polymers brushes has shown signi�cant improve-
ment in the antifouling and antibacterial properties20. �e gra� copolymers of PVDF was synthesised by using 
poly[2-(N,N-dimethylamino)ethyl methacrylate] as a side chain, via activators generated by ATRP. Hence, sul-
fonated polymer brushes gra�ed over the nanomaterials having the great potential to substantially improve the 
membrane performance with low fouling propensity.

Based on these observations, poly (sodium 4-styrenesulfonate) was gra�ed onto the surface of natural ben-
tonite clay via distillation-precipitation polymerisation method, which was employed as negatively charged 
and hydrophilic additive. �en modi�ed polyetherimide (PEI) membranes were fabricated by phase inversion 
method by using di�erent amount of the additive dosage with polyvinylpyrrolidone (PVP) as a pore forming 
agent. �e uniform distribution and proper immobilisation of additive in the membrane matrix were con�rmed 
by elemental mapping analysis. �e changes in the surface topology and morphological features were observed 
by SEM and AFM analyses. �e resultant membranes were characterised in terms of its water uptake capac-
ity, hydrophilicity, porosity, and permeation ability. �e anti-organic fouling properties of the membranes were 
examined by using BSA protein molecules solution and humic acid rejection capacity was also studied in detail. 
Additionally, the detrimental heavy metal ion rejection capacity of the hybrid membranes was investigated using 
100 ppm of cadmium nitrate and lead nitrate solution.

Materials and Methods
Materials. �e (Methacryloxy)propyltrimethoxysilan (MPS), styrene (St), Sodium-p- styrene sulfonate (SS) 
and 2,2′- Azobisisobutyronitrile (AIBN) were obtained from Alfa Aesar. Polyetherimide (PEI) with melt index 
9 g/10 min and Bentonite clay were procured from Sigma Aldrich (India) (S-1). �e humic acid was procured 
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from Himedia, India. BSA was obtained from Central Drug House (CDH), India. N-methyl pyrrolidone (NMP) 
was procured from Merck, India. �e lead nitrate and cadmium nitrate were purchased from Sigma Aldrich 
(India). Deionised water was used throughout the experiment.

Grafting of sodium4-styrenesulfonate brushes onto bentonite. The grafting of sodium 
4-styrenesulfonate on bentonite was carried out according to distillation precipitation polymerisation method21. 
�e schematic representation of the reaction was represented in the Fig. 1. In brief, the bentonite (3 g) was dis-
persed into the mixture of water (90 ml), ethanol (9 ml) and an aqueous solution of ammonia (7.5 ml). �e result-
ant suspension was magnetically stirred for 24 hrs at room temperature. To this suspension, MPS (0.6 ml) was 
added dropwise and being stirred for another 24 hrs. �en MPS modi�ed bentonite was collected by centrifuga-
tion and dried in an oven at 50 °C. MPS-modi�ed bentonite (0.60 g), St (0.80 ml) SS (0.80 ml), and AIBN (0.032 g) 
are dispersed into acetonitrile (160 ml) in a dried three-necked round bottom �ask. �e suspension was heated 
and kept under boiling condition until half acetonitrile was distilled out. �e product obtained was collected by 
centrifugation and puri�ed using acetonitrile. �e resultant hybrid bentonite was then treated with 0.1 M HCl 
to exchange Na+ in –SO3Na with H+. �en bentonite gra�ed with poly (4-styrenesulfonate) brushes (modi�ed 
bentonite) was obtained a�er being dried in the vacuum oven at 70 °C.

Membrane preparation. �e PEI/ modi�ed bentonite nanocomposite membranes with di�erent amount 
of additive concentration were prepared by immersion precipitation method22. Firstly, modi�ed bentonite was 
dispersed in a calculated amount of NMP and it was ultra-sonicated for 20 min to con�rm uniform dispersion. 
To the dispersed solution, the desired amount of PEI and PVP (invariable pore former) were added and gently 
stirred for 18 h to get homogeneous polymer solution. �us obtained solution was degasi�ed by ultra-sonication 
to eradicate trapped air bubbles. �e homogeneous casting solution was cast over a glass plate and immersed in 
the coagulation bath containing water as non-solvent. �e resulting membrane was kept in coagulation bath for 
24 h to ensure the complete phase inversion. �e overview of the composition of casting solution was presented 
in Table 1.

Characterization of modified bentonite. �e changes in the functional groups a�er the modi�ca-
tion was con�rmed by Fourier transform infrared (FTIR) spectroscopy within range 4000–400 cm−1 (Bruker 
FTIR instrument). In order to investigate the elemental composition of nanoparticles before and a�er modi-
�cation, TEM (JEM 1230 Electron Microscope), SEM, and EDX (Joel JSM-6380LA scanning electron micro-
scope instrument) analysis were performed. �e surface modi�cation of bentonite was characterized by X-ray 
di�raction (XRD) using Cu-Kα radiation over the 2θ range of 20−60° at a scan rate of 2 deg min−1 (Bruker AXS 
Di�ractometer D8 powder XRD). �e percentage weight loss before and a�er the modi�cation was carried out 

Figure 1. Preparation process of modi�ed bentonite.

Membrane PEI (g) NMP (g) Ben-(SPB) (g) PVP (g) W* (wt%)

PEM-0 16.5 78.5 0 4 0

PEM-1 16.5 78.3 0.16 4 1

PEM-2 16.5 78.1 0.33 4 2

PEM-3 16.5 78.0 0.49 4 3

Table 1. Composition of casting solutions. *W means mass ratio of modi�ed bentonite to PEI.
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by TGA measurements, using Perkin Elmer (TGA4000/pyris6) instrument in the temperature range of 35 °C 
−800 °C.

Membrane Characterization
Water uptake study. �e wettability or water adsorption capacity of prepared nanocomposite membrane 
was determined as per literature23. In brief, immersing the membranes (2 cm2) in demineralized water for about 
24 h. �e weight of the wet membrane was noted a�er wiping the surface water. �e obtained membrane was 
dried in hot vacuum oven at 75 °C for a 48 h and dry weight was noted. Further water content of the resultant 
membrane was calculated according to the equitation
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where WW and Wd are the weights of the wet membrane and dry membrane respectively.

Morphological study of the membrane. �e variation in cross sectional morphology of PEI membrane 
a�er the addition of modi�ed bentonite additive into membrane matrix was analysed by SEM (Joel JSM-6380LA 
scanning electron microscope) analysis. Prior to SEM analysis, the dry membrane was cryogenically fractured in 
liquid nitrogen environment and a thin layer of gold was coated using a sputtering apparatus.

Contact angle measurement and porosity analysis. �e contact angle measurement indicates the 
in�uence on membrane hydrophilicity. For this purpose, FTA200 Dynamic Contact Angle Analyzer was used 
and sessile droplet method was followed. From these values, the nature of adhesion or surface energy (ωA) of the 
membranes could be determined as

ω γ θ= + cos(1 ) (2)A w

where ‘ωA’ is the surface energy (N/m), ‘γw’ is the surface tension of water (7.2 × 10−2 N/m) and ‘θ’ is the contact 
angle.

�e presence of polar functional groups such as –OH, –SO3H and –C=O in the additive o�ers considerable 
changes in the porosity of the resultant membrane. It was determined according to dry-wet weight method24. �e 
porosity of membrane was calculated using equation (3)
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where ‘P’ is the porosity of membrane, ‘PW’ is the density of water (0.998 g/cm3), ‘A’ is the area of membrane (cm2) 
‘Ww’ is the weight of wet membrane (g), ‘Wd’ is the weight of dry membrane (g), and ‘δ’ is the thickness of mem-
brane (cm).

Permeation properties. �e pure water permeation rate of the nanocomposite membranes was examined 
by the lab-fabricated dead end UF kit, having a membrane holder of the e�ective diameter of 5 cm. �e prepared 
nanocomposite membranes were subjected to compaction at 0.45 MPa transmembrane pressure (TMP) for 1 h. 
�e �ltration experiments were conducted at room temperature and at 0.4 MPa TMP. �e pure water �ux was 
calculated as

=
× ∆

J
Q

A t (4)w

where ‘Q’ is the volume of water (L) permeated through the membrane, ‘Jw’ (L/m2h) is the pure water �ux (PWF), 
‘A’ (m2) is area of the membrane surface, ‘∆t’ (h) is time.

Antifouling properties. �e fouling resistance nature o�ered by the membranes was determined according 
to our previously reported work24. Before commencing the experiment, each membrane was subjected to com-
paction for an initial 30 min at 0.45 MPa. �en applied pressure was brought bring down to 0.4 MPa and pure 
water permeation rate was measured as ‘JW1’ (L/m2h). �e BSA protein solution with concentration of 0.8 g/L 
was prepared and �ltration experiment was carried out for about 80 minutes. A�er BSA �ltration, again water 
permeation rate, ‘JW2’ (L/m2h) was measured. �e antifouling behaviour of the membrane was calculated in terms 
of �ux recovery ratio (FRR) using the equation (5).
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Generally, higher FRR indicates an improved fouling resistance of the membranes. Further to explore the fouling 
phenomenon following analyses were conducted. To determine the total protein fouling (‘Rt’) produced by the 
membrane a�er BSA �ltration was calculated by equation (6)
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�e �ux loss caused by both reversible and irreversible protein fouling (‘RrRr’ and ‘Rir’), which were calculated 
using equation (7) and (8)
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where, ‘Jp’ is �ux during the protein solution �ltration,

Humic acid (HA) rejection study. �e 200 ppm of HA solution was employed as feed to investigate the 
rejection performance of the nanocomposite membranes. �e concentration of HA in the feed solution and per-
meate was measured by a UV-Visible spectrometer (Analytikjena Specord S600) at a wavelength of 254 nm. �e 
percentage of rejection was calculated by using the equitation (9).
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where ‘Cf’ and ‘Cp’ (mg mL−1) are the concentration of the HA in the feed and permeate respectively.
In order to further evaluate the relative permeation rate of nanocomposite membrane, the PWF of the mem-

brane was estimated before studying the fouling resistance o�ered by HA in contact with the membrane surface. 
�e �ux decline was explored in terms of relative �uxes.

Heavy metal ion rejection study. �e heavy metal ion rejection e�cacy of nanocomposite membranes 
was investigated by both ultra�ltration (UF) and polymer enhanced ultra�ltration (PEUF). For PEUF, 100 ppm 
concentration of lead nitrate and cadmium nitrate solutions were complexed with 1% polyethyleneimine aqueous 
solution. �e prepared solution was �lled into a feed tank and pressurized as required using a nitrogen cylinder 
and permeate was collected for a speci�c interval of time. �e concentration of heavy metal ions in the feed and 
permeate was determined using AAS instrument. �e percentage of rejection was calculated by using the equa-
tion (10)
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where Cf and Cp concentration feed of and permeate solution respectively.

Results and Discussion
Characterisation of modified bentonite and membrane. �e chemical modi�cation of the bentonite 
clay was con�rmed by taking FTIR spectra of both raw bentonite and modi�ed bentonite (Fig. 2). �e spectrum 
of raw bentonite showed an absorption peak at 3694 cm−1 and 3619 cm−1 corresponding to the stretching vibra-
tions of hydroxyl groups coordinated to the octahedral cations. �e absorption band at 3407 cm−1 and 1635 cm−1 
resultant to the stretching and bending vibrations of –OH functionality of absorbed water molecules on the clay 
surfaces. �e most intensive absorption peak at 998 cm−1 attributed to the Si–O stretching vibrations. Compared 

Figure 2. �e FT-IR spectrum of (a) bentonite (b) modi�ed bentonite.
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to raw bentonite, the modi�ed bentonite exhibited new absorption peaks in the spectrum. �e characteristic 
absorption band associated with –CH2 stretching vibration was observed at 3010 cm−1, peak intensity is low due 
to low molar concentration. �e absorption peak corresponding to the carbonyl (–C=O) group was observed at 
1736 cm−1. Two new peaks appeared at 1347 cm−1 and 1211 cm−1 and are ascribed to the stretching vibrations 
of the sulfonate groups. Furthermore, the intense broad peak for adsorbed water molecules on the bentonite was 
observed around 3422 cm−1. �is substantiates the presence of hydrophilic –SO3H groups, which enhance the 
water retention of bentonite19,21. In order to further con�rm the chemical modi�cation, bentonite and modi�ed 
bentonite were subjected for energy dispersed x-ray (EDX) analysis. From the Fig. 3, it was observed that, ben-
tonite consists of silicon (Si), aluminium (Al) and oxygen (O) as the main elements. A�er chemical modi�cation, 
the peaks corresponding to the carbon (C) with 26.17% and sulphur (S) with 0.27% were appeared along with 
other peaks. �is endorses the chemical modi�cation of the bentonite. �e elemental percentage composition of 
both bentonite and modi�ed bentonite were tabulated in Table 2. In addition to this, TGA analysis was carried 
out to con�rm the chemical modi�cation and resultant output has been presented in Fig. 4. �e result revealed 
that, two-stage weight loss for both bentonite and modi�ed bentonite material. �e �rst-stage of weight loss 
around 30–200 °C is mainly due to adhered water molecules in the surface and intercalations bentonite structure. 
�e second-stage of weight loss around 350–800 °C is corresponds to the decomposition of organic counterparts 
present in the material. However, compared to the percentage of weight loss of both the material, modi�ed ben-
tonite exhibited higher weight loss. �is is attributed to the fact that, modi�ed bentonite is comprising of attached 
polyelectrolyte with –SO3H functionality and undergo decomposition at a higher temperature19,21. Further, the 
Fig. 5 represents the FESEM and TEM images of the modi�ed bentonite clay (TEM and FESEM images of ben-
tonite ware given in S-2). From the images, it was observed that, bentonite is having a typical layered structure 
comprising of aluminium and silicon as basic building unit. However, there is no signi�cant structural changes 
in the bentonite was observed a�er chemical modi�cation of bentonite (S-1). �is was further substantiated by 
investigating the XRD analysis. �e XRD patterns for pure bentonite and modi�ed bentonite nanoparticles are 
given in Fig. 6. �e characteristic peaks at di�raction angle, 2θ = 20.7°, 26.5°, 36.3°, 54.7° corresponds to the 
planes (110), (210), (124) and (144) of the bentonite material. �ese XRD patterns are in good agreement with the 
standard JCPDS �le (card no.01-088-0891). From the graph, it can be observed that there is neither signi�cant 
change in intensity of the patterns, nor there is a shi� in the peaks. �is behaviour is due to no signi�cant change 
in the phase structure of material a�er the modi�cation.

Membrane morphology. In order to examine the in�uence of modi�ed bentonite content on the internal 
structure of the membranes, SEM analysis of PEI membranes with di�erent composition have been obtained. �e 
Fig. 7 represents the cross sectional SEM images of nanocomposite membrane matrix with a di�erent amount 
of additive dosage. All the membranes displayed asymmetric structure with dense top layer followed by porous 
sublayer with fully developed macro-pores, which is the typical morphology of UF membrane fabricated via the 
phase inversion process. �e proper immobilisation and uniform distribution of the modi�ed bentonite into 

Figure 3. �e EDX analysis of (a) bentonite and (b) modi�ed bentonite.

Samples

Content of element (%)

Si Al O S C

Bentonite 27.63 4.53 67.83 — —

Modi�ed bentonite 18.80 3.43 51.34 0.27 26.17

Table 2. �e elemental composition of the bentonite and modi�ed bentonite.
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Figure 4. �e TGA analysis of (a) bentonite and (b) modi�ed bentonite.

Figure 5. �e (a) TEM and (b) FESEM images of modi�ed bentonite.

Figure 6. �e XRD analysis of (a) bentonite and modi�ed bentonite.
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resultant nanocomposite membrane was con�rmed by elemental mapping analysis (Fig. 8). With increasing in 
the modi�ed bentonite content augmented the number of macrovoid in the sublayer and the pore walls among 
macro-voids become looser with some channel-like pores. According to the literature, the inclusion of hydro-
philic inorganic additives and PVP into the homogeneous casting solution signi�cantly modi�es the morphology 
of resultant membranes25. �e presence of PVP could expedite the phase inversion process and thus expand the 
macrovoids. On the other hand, addition of modi�ed bentonite could increase pore interconnection in the mem-
brane matrix because of its migration behaviour. In the current work, changes in morphological features are due 
to combined e�ects of both modi�ed bentonite and PVP additives. From the Fig. 5 it was observed that, bentonite 
is having typical layered structure. According to Ghaemi et al., the layered silicate structure of natural bentonite 
clay and polymer are prone to form intercalated and exfoliated structures. �is results in enhancement of the 
nano-scale interaction between the polymer chains and the modi�ed bentonite additive and at the same time 

Figure 7. �e cross sectional SEM images of the (a) PEM-0, (b) PEM-1, (c) PEM-2 and (d) PEM-3 membranes.
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reduced interaction among polymer chains. Moreover, with increasing additive dosage, the increased viscosity of 
the casting solution hinders the phase inversion phenomenon by delaying solvent and non-solvent exchange rate. 
Since the growth of the skin layer was reduced, and the formation of macrovoids in the support was improved26,27.

Figure 9 displays the three dimensional AFM images of the PEI nanocomposite membranes. �e roughness 
parameters of the membrane surfaces were also reported in terms of root mean square of Z data (Rq), mean 
roughness (Ra), and mean di�erence in the height between the highest peaks and the lowest valleys (Rz). �e 
results of surface roughness for the prepared membranes were tabulated in the Table 3. From the Table 3 we 
could observe that roughness parameters of all the modi�ed membranes were higher than that of the PEM-0 
membrane. PEM-0 membrane showed root mean square roughness (Rq) and mean roughness (Ra) of 7.43 nm 

Figure 8. �e elemental mapping of (a) silicon and (b) aluminium of PEM-3 membrane.

Figure 9. �e three dimensional AFM images of (a) PEM-0, (b) PEM-1, (c) PEM-2 and (d) PEM-3 
membranes.
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and 5.93 nm respectively. Whereas membrane with 3 wt % of modi�ed bentonite exhibited mean roughness (Ra) 
and root mean square roughness (Rq) of 11.1 nm and 13.9 nm respectively (S-4). According to Zhang et al., a 
membrane with higher surface roughness have higher surface area and causes cavities, thus promoting water 
permeation rate28.

Contact angle measurement. �e surface properties of the membrane have a signi�cant e�ect on the �ux, 
fouling and other barrier properties. �e water contact angle analysis has been generally employed to estimate 
the surface hydrophilicity of the membrane. �e higher contact angle value represents a hydrophobic surface, 
whereas lower value represents the hydrophilic surface29. Figure 10 displays the contact angle and surface energy 
of the nanocomposite membranes. �e decreasing trend of contact angle was observed as increased modi�ed 
bentonite dosage in the membrane matrix. �e membrane with 3 wt. % of additive had shown lowest contact 
angle of 63.8°, which was nearly 16° less than that of the PEM-0 membrane (S-5). Further, WCA values were 
used to determine the surface energy (ωA) of the resultant membrane. �e lowest surface energy of 85.2 mN/m 
was obtained for the PEM-0 membrane, whereas PEM-3 membrane exhibited highest surface energy value of 
103.7 mN/m. �ese results indicate that, addition of modi�ed bentonite to the membrane matrix could signif-
icantly improve the surface hydrophilicity. Furthermore, all the membranes have shown an apparent decline in 
the contact angle with increasing the drop age. �e PEM-0 membrane displayed a slight decrease in the contact 
angle, whereas modi�ed membranes o�ered noticeable change with increasing water droplets. At the water drop-
age of 150 sec, contact angles of the PEM-0, PEM-1, PEM-2 and PEM-3 membranes were 79°, 71°, 68° and 63° 
respectively (Fig. 11). �ese results imply that, immobilization of modi�ed bentonite into the membrane matrix 
not only improve the surface hydrophilicity, but also pore hydrophilicity. �e improvement in the membrane 
hydrophilicity could be substantiated by the fact that during the membrane formation process, hydrophilic mod-
i�ed bentonite spontaneously migrates towards the top surface to reduce the interface energy. Since hydrophilic 
modi�ed bentonite on the membrane surface could easily interact with water molecules, giving rise to lower 
contact angle30.

Water uptake capacity and porosity. One more pervasive investigation to understand the bulk hydro-
philicity properties of nanocomposite membrane is equilibrium water uptake capacity. �is mainly depends on 
the two factors, �rstly on the presence of a number of hydrophilic polar functional groups per unit area of mem-
brane matrix. Secondly, on the membrane morphology i.e, the presence of macrovoids in the membrane sublay-
ers31. �e water uptake capacities of the prepared membranes were tabulated in the Table 4. �e results revealed 
that, water uptake capacity increases with increased modi�ed bentonite dosage in the membrane matrix. �e 
PEM-0 membrane has shown the lower water uptake value of 34.7%, whereas membrane with 3 wt. % of modi�ed 
bentonite exhibited up to 71.3%. �is con�rmed the presence of a hydrophilic additive, which increases the a�n-
ity of membrane matrix towards water molecules. Also from the Fig. 7, we could observe that, PEM-3 membrane 

Membrane

Image 
surface Surface area Roughness

area 
(µm2)

Di�erence 
(%)

Ra 
(nm)

Rq 
(nm)

Rmax 
(nm)

PEM-0 100 0.072 5.93 7.43 67.7

PEM-1 104 1.37 7.13 9.25 99.1

PEM-2 100 0.083 8.71 10.3 108

PEM-3 102 1.62 11.1 13.9 126

Table 3. �e roughness parameters of the membranes.

Figure 10. �e contact angle and surface energy of the membranes.
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displayed a more number of macro-voids in the sublayers. �is also contributes to the enhanced equilibrium 
water content of the membranes.

It is well known that, the skin layer of the asymmetric membrane has a major in�uence on its performance 
and selectivity. Since the rejection and intrinsic permeation properties are also primarily depend on pore size and 
average pore size distribution of the membranes11. �e addition of inorganic additives into the casting solution 
signi�cantly alters the performance of the resultant membrane. In order to substantiate this, the experimental 
results showed a noticeable change in the porosity and morphology, this was due to the presence of di�erent 
amount of modi�ed bentonite dosage. �e porosity of all prepared membranes was tabulated in table-3. It can 
be observed that, the membrane with 3 wt. % of modi�ed bentonite exhibited higher porosity up to 62.7%, while 
at the same time PEM-0 showed porosity of 32.4%. �is change in the porosity could be explained on the basis 
of in�uence and migration behaviour of modi�ed bentonite content during the membrane formation process. 
�e addition of modi�ed bentonite to the membrane dope enhances the in�ux rate of non-solvent (water) and 
delayed the exchange process between the solvent in polymer dope and non-solvent in the coagulation bath. �is 
improves the ratio of water content in the nascent membrane, increase the porosity. In addition, a portion of PVP 
was leached out of casting �lm during the phase inversion and acted as pore former29.

Permeation properties. �e porosity and hydrophilicity are the two important factors, which decides the 
permeation properties of the membranes. Figure 12a illustrate the time dependent pure water �uxes of the mem-
branes with di�erent amount of modi�ed bentonite content. Initially, a gradual decline in hydraulic permeation 
rate was observed for all the prepared nanocomposite membranes during compaction. �is was probably due to 
mechanical deformation or compression of membrane structure under the di�erent transmembrane pressure 
(TMP) during the operation. From the experimental observation, the inclusion of modi�ed bentonite additive in 
the membrane matrix has a synergistic e�ect on the physicochemical and hydrodynamic permeation behaviour 
of nanocomposite membrane. Since membrane with 0 wt. % of modi�ed bentonite showed PWF of 121 L/m2h, 
whereas 3 wt. % of modi�ed bentonite exhibited PWF of 211 L/m2h. �e water �uxes of the PEM-1, PEM-2 and 
PEM-3 are 1.33, 1.52 and 1.74 times higher than that of PEM-0 membrane respectively. Here, the pure water 
�uxes of the nanocomposite membrane showed a similar trend that of porosity and hydrophilicity. �is is due to 
the fact that, the modi�ed bentonite immobilised PEI membrane have a synergistic e�ect on permeation prop-
erties, and the enhanced hydrophilicity can attract the water molecules, facilitating them to pass through the 
membrane. Furthermore, the structural or morphological changes in the composite membrane compared PEM-0 
membrane also in�uence the PWF. When modi�ed bentonite content increases from 1 wt. % to 3 wt. %, the mem-
brane surface porosity, hydrophilicity, pore interconnection and macrovoid increased. Which signi�cantly reduce 
the hydraulic resistance and thus improved membrane permeability28,32.

Antifouling properties. �e adsorption or deposition of organic foulants particularly protein molecules on 
membrane surface and pores is the prevalent reason for membrane fouling. It could reduce the membrane �ux 

Figure 11. �e time dependent contact angle of the membranes.

Membrane
�ickness 
(µm)

Porosity 
(%)

Water 
uptake (%)

FRR 
(%)

PEM-0 128 32.4 34.7 23.7

PEM-1 139 42.9 48.2 58.1

PEM-2 143 53.5 65.8 76.5

PEM-3 131 62.7 71.3 84.1

Table 4. �e properties of the prepared membranes.
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either temporarily or permanently. �e adsorbed protein molecules might cause reversible membrane fouling, 
which can be easily eliminated by simple water �ushing, while �ux reduction was caused by irreversible mem-
brane fouling that could not be easily removed33,34. BSA protein solution is generally employed as a model protein 
to examine fouling dynamics of membranes. Figure 12b illustrate the water �ux of the membranes a�er BSA solu-
tion �ltration. It was observed that, hydraulic permeability rate of the membranes decreased prominently when 
pure water was substituted by protein solution in the �ltration tank, which represents the membranes fouling. 
A�er washing the membranes, the pure water �ux of the PEM-0 membrane had shown a large decrease. However, 
the �ux reduction for the modi�ed bentonite embedded membranes was lower.

Table 4 represents the % of FRR of all the prepared membranes. �e higher FRR indicates better hydraulic 
cleaning property of the membranes. �e �ux recovery ratio of the PEM-0 membrane was about 28.7%, indi-
cating a poor self-cleaning property, while it reached up to 58.1%, 76.5% and 84.1% for the PEM-1, PEM-2 and 
PEM-3 membranes respectively. �is change in the �ux recovery value of nanocomposite membranes may be 
attributed to modi�ed membrane comprises of an abundance of negatively charged hydrophilic polar functional 
groups such as hydroxyl (-OH), carbonyl groups (C=O), and sulfonic acid (-SO3H), which impart the hydro-
philicity to the membrane surface. Since by diminishing robust hydrophobic-hydrophobic interactions between 
the membrane surface and foulants. Further, hydrophilic membrane surface is having the capacity to attract water 
molecules to form the hydrated layer, which acts as a bu�er to the adsorption of foulants35. �us reducing the 
interactions of protein molecules with the membrane surface or pores and decreasing membrane fouling. On the 
other hand, the electrostatic repulsive interaction between negatively charged membrane surface and BSA mole-
cule could also aid to enhance the fouling resistance behaviour. �e experiential outcome is reasonably analogous 
to the polymer membrane comprising of hydrophilic inorganic additives such as graphene oxide (GO), TiO2, SiO2 
nanoparticles, multiwalled carbon nanotubes (MWCNTs) and other nanoplates25,32,34.

Further to examine more about the fouling behaviour, the properties such as total fouling ratio (Rt), irre-
versible (Rir) and reversible (Rr) fouling resistance ratios were determined. �e fouling nature of the modi�ed 
membrane a�er hydraulic cleaning was depicted in Fig. 13. �e total fouling ratio (Rt) of 92.1% was observed 
for the PEM-0 membrane. PEM-3 membrane exhibited reversible fouling (Rr) up to 75.6% with �ux rate of 
168.7 L m−2h−1. A�er modi�cation, the irreversible fouling percentage in the total fouling drastically dropped 
to 41.8%, 23.4% and 15.8% for PEM-1, PEM-2 and PEM-3 membranes respectively (S-6). �is con�rmed that, 
antifouling nature of hybrid membranes were signi�cantly improved.

Humic acid rejection properties. Since in the current work, to further explore the humic acid rejection 
and anti-organic fouling property of modi�ed membranes, the �ltration experiments were carried out at 0.3 MPa 
TMP with 200 ppm HA solution (Fig. 14). �e �ux of all the membranes decreased rapidly at the beginning of 
each �ltration experiment indicates the deposition or adsorption of HA molecules on the membrane surfaces. 
�e permeation behaviour of the membrane during the experiment was measured in terms of �ux relative to the 
initial PWF and results were presented in Fig. 15a. �e inclusion of hydrophilic modi�ed bentonite enhanced 
the relative �ux indicating that, higher resistance towards fouling. �e membrane without additive showed ~ 
24% relative to initial PWF, whereas PEM-3 membrane exhibited highest relative permeate �ux of ~60%. �e 
Fig. 15b represents the HA rejection behaviour of the di�erent membranes. From the results, we could observe 
that, maximum fouling resistance o�ered by PEM-3 membrane with HA rejection e�cacy of 87.6%. It was 
interesting to note that, foulants on the modi�ed nanocomposite membrane surface can be easily eradicated by 
simple hydraulic cleaning. Since adsorption or deposition of foulants on membrane surface is considered to be 
the prominent fouling mechanism and is strongly depending on the physicochemical and structural properties 
of both membranes and foulants36,37. �e modi�ed bentonite additives impart the negative charge density and 
improved hydrophilicity of resultant membrane, thus reduce strong interaction between membranes surface and 
HA molecules37,38.

Figure 12. �e (a) time dependent pure water of the membranes and (b) water �uxes of the membranes a�er 
BSA protein solution �ltration.
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Figure 13. �e fouling resistance behaviour of prepared membranes.

Figure 14. �e photographic image of (a) HA solution in the feed, (b), (c) and (d) are permeate of PEM-1, 
PEM-2 and PEM-3 membranes respectively.

Figure 15. (a) �e relative �ux ratio during HA �ltration and (b) HA rejected by the membranes at 0.3 MPa 
TMP.
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Heavy metal ion rejection. UF membranes have also been exploited for removal of toxic and detrimental heavy 
metal ions from aqueous streams. �e prepared nanocomposite membrane was subjected to heavy metal ion rejection 
experiment under both PEUF and UF �ltration process. Among the fabricated membranes, the well performed PEM-3 
membrane, which exhibited lower contact angle, highest FRR and good permeability rate was taken for the rejection 
analyses. �e Fig. 16a represents the % of heavy metal ions (Cd2+and Pb2+) were rejected by the membrane via UF 
and PEUF method. �e mechanism of heavy metal ion compensation Polyethylenimine was presented in Fig. 16b. 
�e membrane showed PEUF rejection e�cacy up to 80.5% and 74.6% for Pb2+ and Cd2+ ions respectively. From the 
results, we can observe that, % of rejection of the Pb2+ was higher than that of Cd2+ ions. �is might be due to Pb2+ 
forms the larger metal chelate size compared to Cd2+ ions. Because Pb2+ ion has a smaller size (atomic radius of Pb 
–180 pm) and having higher electronegativity (2.33) compared to Cd2+ ions (atomic radius of Cd–220 pm and elec-
tronegativity of 1.69)39. �e % rejection of Pb2+ and Cd2+ ions during the UF process was 47.3% and 41.5% respectively. 
�is was due to the heavy metal ion adsorption capacity of the modi�ed bentonite in the mixed matrix membrane. 
�e Fig. 16c represents the elemental mapping analysis of cadmium and lead a�er �ltration experiment. �is con�rms 
the interaction of heavy metal ions with the active surface of the membrane. From the experimental analysis, it was 
observed that PEUF process showed higher % of heavy metal ion rejection compared to normal ultra�ltration process. 
�is was due to, the complexed metal ions have considerably larger size than the membrane pore size. In case of normal 
UF process, the most of the heavy metal ions are certainly pass through the membrane. Only metal ions adsorbed by 
the active sites of nanocomposite membranes account for the % of rejection40.

Conclusions. �e natural bentonite clay bearing the poly (4-styrenesulfonate) brushes were synthesised by 
distillation-precipitation polymerisation and employed as performance modifying agent in membrane matrix. 
�e membrane was fabricated by incorporating di�erent amounts of modi�ed bentonite dosage via phase inver-
sion method. �e proper immobilisation of additive into the nanocomposite membrane was con�rmed by ele-
mental mapping. �e modi�ed membrane had shown signi�cant changes in the morphology, porosity, water 
uptake capacity and hydrophilicity compared to the PEM-0 membrane. �e permeation experiment revealed 
that, pure water �ux of the membrane improved to 211 L/m2h with 3 wt % of additive dosage. �e modi�ed ben-
tonite brushes have a signi�cant in�uence on anti-organic fouling nature of the membrane. �e membrane with 
3 wt % of additive dosage has shown FRR value of 84.1% with irreversible fouling ratio of 15.8% and reversible 
fouling (Rr) up to 75.6%. �e HA rejection study revealed that PEM-3 membrane having rejection e�ciency up 
to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Moreover, modi�ed membranes were 
also having the capacity to adsorb heavy metal ion from the aqueous solution. �us it can be concluded that, the 
natural bentonite clay bearing poly (4-styrenesulfonate) brushes could be considered as potential candidate to 
improve the overall membrane performance.

Figure 16. (a) �e schematic representation of heavy metal ion complex with the complexing agent, (b) heavy 
metal ion rejected by the PEM-3 membrane and (c) �e elemental mapping of PEM-3 membrane a�er the 
heavy metal ion �ltration.
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