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ABSTRACT We present a method for the removal of movement artifacts from the recordings of elec-
troencephalography (EEG) signals in the context of sports health. We use a smart wearable Internet of
Things-based signal recording system to record physiological human signals [EEG, electrocardiography
(ECG)] in real time. Then, the movement artifacts are removed using ECG as a reference signal and the
baseline estimation and denoising with sparsity (BEADS) filter algorithm for trend removal. The parameters
(cut-off frequency) of the BEADS filter are optimized with respect to the number of QRS complexes detected
in the reference ECG signal. Next, surrogate movement signals are generated using a linear combination of
intrinsic mode functions derived from the sample movement signals by the application of empirical mode
decomposition. Surrogate signals are used to test the efficiency of the BEADS method for filtering the
movement-contaminated EEG signals. We provide an analysis of the efficiency of the method, extracted

movement artifacts and detrended EEG signals.

INDEX TERMS Mobile EEG, movement artifact removal, sports e-health, digital signal processing.

I. INTRODUCTION

Service Oriented Architecture (SOA) systems for health mon-
itoring are popular in health centers, clinics and smart home
environments. These systems are used by elderly people,
patients, sportsmen, etc. The electronic remote health moni-
toring systems sometimes can replace the conventional health
care methods. However, the integration of the Internet of
Things (IoT) into these systems can further increase inter-
operability, intelligence, and scalability [1]. A device which
utilizes the IoT is uniquely addressed and can be identified
anywhere and anytime through the Internet. The IoT based
devices in smart health monitoring systems can connect and
share the information with each other through the Internet
automatically.

With the arrival of low-cost consumer-grade electroen-
cephalogram (EEG) and electrocardiographic (ECG) devices,
a large amount of data can be collected through IoT, smart
wearables and Body Area Networks (BAN) and used for
numerous e-health and well-being applications such as for
workplace ergonomics [2], fatigue detection [3], epileptic
seizure detection [4], tele-monitoring of chronic diseases [5],

activity recognition [6], depression monitoring [7], gam-
ing [8], etc.

The collected data can be very useful for assessing human
condition, but still requires effective computational intel-
ligence algorithms to derive useful information in near
real time. While ultimately only professional experts after
lengthy inspection can conclude a medical diagnosis based
on the available data, the average consumer requires instant
feedback on his state and trends of well-being. There-
fore, the development of automated expert systems to assist
both professional experts and average users while analyzing
large amounts of physiological data is very demanding for
real-word e-health applications.

Analysis of human EEG during various motoric and
imagery tasks is known to be useful for evaluating the links
between neural system functions and behavior, and provides a
straightforward measure of neural activity in real-time. EEG
is captured using wired sensors attached to specific loca-
tions across the head. Recording brain surface activity during
physical activities such as walking can provide useful knowl-
edge to advance both neuroscience as well as sports health.
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Moreover, capturing information about neural processes in
real-time during daily activities could be used to improve
Brain Computer Interface (BCI) systems. Having capabil-
ity to record and analyze brain signal characteristics during
real-world sports training rather than during artificially-setup
laboratory tasks (as many other researchers do) are likely to
lead to significant breakthrough in understanding how human
body functions.

Currently, the users of BCI applications can make
use of domestic-grade wearable headsets such as Emotiv
(Hong Kong, ROC) and Neurosky (San Jose, CA, USA).
These devices however are of limited use due to high nois-
iness of the recorded signals [9]. For psychophysiological
monitoring and neurofeedback, smaller devices with a small
number of electrodes such as B-Alert X series (Advanced
Brain Monitoring, Carlsbad, CA, USA) and Neurobit Sys-
tems (Gdynia, Poland) exist. These gadgets were originally
designed for personal use such as health monitoring and
gaming instead of use in serious research.

With the increase of healthcare services in non-clinical
environments the processing and analysis of wearable sen-
sors are growing significantly [10]. The integration of smart
multimodal interfaces, modeling and data mining techniques
should guarantee that the developed system is comfortable
and effective. Also, the dynamics and individual daily-life
activities are important to human health. Electrocardiogram
(ECG) analysis is commonly used and is known to be useful
tool for screening a variety of heart diseases due to its simple
application [11]. However, it has a high cost and long waiting
time to meet a specialist for screening [12].

The EEG signals can be captured during sports activi-
ties when sportsmen are involved in regular sporting such
as playing golf or riding a bicycle [13]. While there are
obvious limitations for several kinds of sporting activities
such as water-related (e.g. swimming) or high-impact sports
such as rugby, there are no technical difficulties to record
and monitor the EEG signals without any discomfort to a
sporting person. For example, EEG was recorded outdoors
while walking and fairly reliable single-trial P300 effects
were observed by employing an auditory oddball task [14].
Wireless Emotiv headset with dry electrode sensors fitted into
an elastic cap with an amplifier was successfully used while
subjects walked freely outdoors [15].

However, the measurement and comprehension of brain
surface signals during the execution of sports movement is
plagued by noise and different artifacts due to the physical
movement itself [16], [17]. According to [18], interpreting
physiological data that includes semi-periodic or aperiodic
movement artifacts such as originating from walking may
be problematic. The recorded EEG signals, firstly, are con-
taminated by muscular activity artifacts, that are activated
during motion tasks [19], [20]. The electromyography (EMG)
artifacts are the most problematic to isolate from as their
spectrum overlaps with EEG signal frequencies, mainly with
beta and gamma waves [21]. Artifacts of other types such
as occurring from sweat bridges, movements of cables and
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electrodes, ballistocardiographic (BCQG) artifacts, eye move-
ments and blink artifacts also contribute significantly towards
noisiness of the EEG signals. Electrode movement artifacts
can be characterized by rapid change of impedance. BCG
artifacts occur when the blood in veins induce a mechanical
movement of the electrode placed directly on top of a blood
vessel. Therefore, the main obstacle for a direct application of
EEG recording and analysis during all the movement phases
in sport still remain the movement artifacts [22].

Reliable capture of neural signals in active sporting envi-
ronment can be tackled by the application of mathematical
and signal processing methods (for a discussion, see [16]).
For example, Independent Components Analysis (ICA) can
segregate brain activity from movement artifacts. I[CA uses
the correlational manifold of signals to decompose brain sig-
nals into a set of statistically not-related components, which
can be interpreted either as a physiologically meaningful
signal or as a noise (see [23]). Using the ICA method, Gra-
mann et al. [24] analyzed the event-related potentials (ERPs)
captured on a treadmill, while standing, slow or fast walking,
and running. The ocular and muscular artifacts have been
separated from the EEG signals using blind source separation
(BSS) techniques [25], such as canonical correlation analysis
(CCA) [26], but they have not been efficient with movement
artifacts present due to the correlation between noise signals.
Moreover, artifact subspace reconstruction (ASR) [27] has
also been applied to filter out artifacts from the EEG signals.

In this context, the development of methods and systems
that can extract the actual movement artifacts and reject (sub-
tract) them from the original EEG signals is highly relevant
for sports medicine and e-health applications. We present
a method for the removal of movement artifacts from the
recorded electroencephalography (EEG) signals in sports
health. We use a smart wearable signal recording system to
record the physiological human signals (EEG, electrocardio-
graphy (ECQG)) in real-time. Then the movement artifacts
are removed using ECG as a reference signal and Base-
line Estimation and Denoising with Sparsity (BEADS) filter
algorithm [28] for trend removal. Next, surrogate movement
signals, are generated using a linear combination of Intrinsic
Mode Functions (IMF) derived from the sample movement
signals using Empirical Mode Decomposition (EMD), are
used to test the efficiency of the BEADS method for filtering
movement-contaminated EEG signals. We provide an analy-
sis and comparison of the extracted movement artifacts and
detrended EEG signals.

The organization of other parts of the paper is as follows.
Section II describes the monitoring architecture, methods
and materials used, including BEADS and surrogate gener-
ation method. Section III provides the results of experiments.
Section IV formulates the conclusions.

Il. METHODS AND MATERIALS
A. OVERVIEW OF METHODOLOGY

We assume that the ECG and EEG signals registered during
the physical movement of a human are contaminated with
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both high and low frequency noise and artifacts. Before
baseline detection and its elimination, the noise suppres-
sion should be done. Almost all high pass filtering meth-
ods have sharp cut-off frequencies, which in many cases
distort the raw signal [29]. Using wavelet based techniques
for high-frequency noise removal from the physiological
signals requires numerous experiments for finding different
parameters and thresholds [30]. Other most common methods
like Fast Fourier Transform (FFT) [31] or Finite Impulse
Response (FIR) filter [32] techniques are limited. They fail
to discover the exact location of frequency components in
time. For the real time calculations, it is important that all
methods would be as low time consuming as possible. How-
ever, high-pass filtering should not damage the original signal
and ensure that main signal characteristics remain the same.
The problem with the EEG signals is that their waveforms do
not have a characteristic and easily recognizable shape form
(i.e., QRS complex) like the ECG signals have. Therefore,
it is difficult to evaluate the efficiency of filtering of the EEG
signals compared to the ECG signals. Therefore, we use the
ECG signals derived during physical motion as reference sig-
nals for constructing an optimal filter for movement artifact
removal. Then the optimized is applied onto the EEG signals.

The outline of our methodology is presented in Figure 1
and is detailed below.

q BEADS Surrogate Movement
Signal Movement
2 parameters . movement artefacts
recording L extraction .
ptimization| generation removal

FIGURE 1. Service Oriented Architecture of the system components.

(1) Recording of signals: ECG and EEG signals dur-
ing a series of physical exercises are recorded using
Service-Oriented Architecture (SOA) for monitoring of
human physiological signals (originally described in [33]).

(2) Optimization of the BEADS filter parameters (cut-off
frequency) using the artifact-contaminated ECG signal as a
reference and the number of detected QRS complexes as a
fitness function.

(3) Extraction of the movement signals using an optimized
BEADS filter.

(4) Generation of the surrogate movement signals using
Intrinsic Mode Functions (IMFs) derived by Empirical Mode
Decomposition (EMD) [34].

(5) Removal of the movement artifacts from the
movement-contaminated EEG signals.

The flow chart of the proposed method is shown in Figure 2
as follows: 1) ECG high-frequency noise reduction, 2) Trend
extraction from electrocardiogram, 3) Baseline appliance on
EEG signal, 4) EEG signal low-band filtering and 5) result
comparison.

Before baseline detection and its extraction, additional
normalized cut-off frequency analysis was made. For the esti-
mation of best filter parameter the QRS complex searching
algorithm was implemented, and the number of QRS complex
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FIGURE 2. Schematical diagram of applied methods.

detected used as a fitness function for optimization. The
ECG high-frequency noise is removed using the median filter,
while for the baseline detection, the BEADS algorithm was
applied.

B. SERVICE ORIENTED ARCHITECTURE FOR HUMAN
PHYSIOLOGICAL SIGNAL MONITORING

The IoT-based implementation of the ECG monitoring sys-
tem which includes cloud based signal processing was
adopted (see Figure 3). It consists of the following functional
units:

(1) Electrocardiography device (Cardiograpg) with its sen-
sors enabled to capture the ECG signal and provide informa-
tion to a logging device located nearby using the Bluetooth
wireless connection;

(2) The logging device (smartphone), which collects infor-
mation from ECG and other sensors and transmits it to a
remote computer (cloud server);

(3) The remote computer, which receives, stores, analyses
the data and provides feedback as a cloud service.

C. BASELINE ESTIMATION AND DENOISING WITH
SPARSITY (BEADS) ALGORITHM

1) BEADS ALGORITHM

The linear filters with fixed cut-off frequencies often cannot
identify useful information from the ECG waveform and
baseline wander components become hard to remove com-
pletely [35]. The trend in the ECG signal is interpreted as a
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FIGURE 3. Service Oriented Architecture of the Human Physiological Signal Monitoring system components.

low frequency noise. If a person is in stationary condition,
the trend of the ECG signal is low, and it could be removed
using low-order polynomial methods. In some cases, the data
could be subtracted from each time-series signal objects.
However, in the context of active sports training exercises,
the trend is not stationary or linear and can be considered as
a low-frequency noise.
The noisy ECG data can be modeled as:

ym)=f@+vx)+wx), x=0,....,N=1 (1)

where f is a low-pass signal, w is a stationary white Gaussian
noise and v is a sparse-derivative signal [36]. For the data
described in (1) it is not suitable to use neither sparsity-
based de-noising methods, nor low-pass filtering. However,
a combination of these two methods is suitable. The N point
signal can be defined as:

x = [x0, X1, .-, xy—11" . 2)

The high-pass filter H passes signals with a frequency
higher than a cut-off frequency and attenuates signals with
frequencies lower than the cut-off frequency. It can be char-
acterized by its transfer function as shown below:

B(x) bo+bix ' +byx 4+ byx N
Ax)  l4axt4+ax24 - +ayxVN
(3)

H(x) =

where order of the filters is the greater than N [37].

The low pass filter L can be defined as (4), where [ is a
diagonal matrix with ones on the main diagonal and zeros
elsewhere:

L=I-H (4)
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The combination of the conventional low-pass filtering
and sparsity-based de-noising usually requires time con-
suming calculations due to its complexity [38]. The base-
line estimation and de-noising with sparsity algorithm
(BEADS) [28] removes the trend from the data using baseline
(or low-frequency noise wave) detection and removal. The
filters (as defined in (3) and (4)) L and H are taken with zero-
phase, recursive and non-causal. The filter parameters are its
order and its cut-off frequency. Design of the filter requires
the definition of first and second order difference matrixes.

The first-order difference matrix (N — 1) x N is defined
as:

ag a
ap ay a
A= ay  ay ap ; ©)
aj ao ai
a;  ap

where ag and a; are filtering coefficients.
The second-order difference matrix (N — 2) x N is:

-1 2 -1
-1 2 -1
B= -1 2 -1 . (6)
-1 2 -1
-1 2 -1
If Do = 1[I , where [ is the identity matrix and

Dy = A, D, = B, then the difference operator of order k
(of size (N — k) x N ) can be denoted as Dy, .

To evaluate positive and negative ECG peaks, the asym-
metric penalty function 6 (x,; r) is constructed, here r is an
asymmetric parameter.
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The algorithm solves the problem written below:

N-1

IH (v =)+ 20 > 0 (i 7)
n=0

. )1
X = argmin 5|

Ni—1

M
+ Y My el (. ()

i=1 n=0

where ¢ is a differentiable symmetric penalty functions, X; are
regularization parameters, and the norm is defined as:

x5 =D bl ®)

If the function g (x, v) is taken of the form
g(x,v):ax2+bx+c ©)]

which is an upper bound of function 6 and x = v, x = s, are
values close to zero from both sides then solving differenti-
ation equations with respect to the first argument gives the
result:

1+r 1—r (I+r)v|
a=—, b= , C= ,
4 v 2 4

s=—v. (10)

These values are put into the equation (3) and the g (x, v)
function gains the form:

1+7r , — (14+7r)|v

11
A 2 4 (in

gx,v) =

With the same parameter the I" (v) function can be defined
as:

1+r
i V| > &;

()= v 12
v) (1+7) (12)
, vl <e.

4

The cost function G (x, v) is defined as:
_ 1 T T
Gx,v) = 3 I1H (y — )7 + 2ox" [I" (0)]x

M
+y [% (Dix)" [A (Div)] (D,-x):| +em, 13)
i=0

where A; > 0 are regulation parameters, c; (v) are scalars, D;
is the order - i difference operator.

[A (D)) = 2 V(V”). (14)

n

Moreover, using the commutative property of linear, time-
invariant systems, a high pass filter H is defined as

H=BA"!, (15)

where A and B represent linear, time-invariant (LTI) systems,
and H is a cascade of LT1I.
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Minimizing the cost function G (x, v) with respect to x
leads to (16) solution. The parameters are recalculated until
the best (with the lowest residuals) baseline is found [39].

M -1
x = (HTH +2200 () + Y nD] [A (DiV)]Di>
i=0
HTHy = AQ"'B"BA™ !y, (16)

where O = BTB + A7 (Zﬁ‘i o MDT [A (D)] Di) A

Note that in some cases, the BEADS algorithm has long
lasting calculation time, because it contains the inverse matrix
estimation and matrixes with values close to zero requires
more time. However, this method has linear complexity
which, in total, leads to a good computational result.

2) QRS COMPLEX DETECTION

As it was mentioned in the previous paragraphs, the ECG
signal is used to measure the heart rate, respiration and
regularity of heartbeats. It shows the size, activity and posi-
tion of heart chambers. The ECG signal has a distinct and
characteristic shape contained with different waves, which is
shown in Figure 4. The QRS complex is made by contraction
of the left and right ventricles. It contains the Q, R and S
waves, which involves more muscle mass and are stronger
than P or T waves. That is why it has larger fluctuation in the
graph [40].

RR interval

T

' A ,

(+] S" a s
| QRS

|interval

time

FIGURE 4. Typical shape of QRS complex.

To estimate the filtering parameters, it is important to have
certain criterions that would allow to identify if an algorithm
works properly and with acceptable errors. One of these
criterions could be the root mean square error (RMSE) or any
other error measure. However, it could lead to the elimination
all or a part of signal parameters. To avoid information losses
during filtering, we have selected the QRS complex detec-
tion [40] as a fitness function. The method is based on the
detection Q, R and S waves in ECG signal and calculation of
the number of QRS complexes. We assume that the more QRS
complexes are found in the analysed ECG signal the better is
the filtering algorithm. It is not hard to notice that if at least
one wave (Q, R or S) is not identified, the QRS complex also
cannot be found.

The QRS complex detection method is based on the motor
unit action potentials (MUAPs) analysis [41]. The first step
of this algorithm is to detect the initial set of MUAPs in
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the noisy ECG recording. To make sure that there is no
noise of power-line interfaces the narrow-band notch filter is
applied by removing the 50 Hz frequency [41]. After signal
processing, the peak detection is applied. The most visible
wave in the ECG signal is the R-wave. That is why the first
ECG signal processing task is the recognition of the R-wave.
Then the QRS complex and other ECG parameters can be
found. The recognition of the QRS complexes (Figure 4)
includes finding their position in time and the time interval
between them [42].

There are many methods, which can be used for the
QRS complex detection like neural networks [43], wavelet
transform [44], filter banks [45], adaptive filters, genetic
algorithms, Hidden Markov Models (HMM), mathemati-
cal morphology operators, Hilbert, length and energy trans-
formations, and syntactic methods. Most of these methods
require large computing resources, or have a big delay, or are
sensitive to noise and sudden signal change. To avoid these
disadvantages, we used the ORS detection method based on
the Pan-Tomkins algorithm [37], which uses the calculation
of the signal derivatives.

For optimization of the BEADS filter parameters we use
Algorithm 1:

Algorithm 1
Inputs: Movement-contaminated ECG signal
Output: Parameters of BEADS filter
BEGIN
for each BEADS parameter do
best_value = 0;
maxQRS = 0;
for each parameter_value do
detrend ECG signal using BEADS algorithm;
find R, Q and S peaks;
i=h
for i from 1 to max(length(R), length(Q),
length(S)) do
if Q(@) or R(7) or S(i) is empty
1=1i+1;
else
ORS(j) = estimate QRS complex;
j=j+h
if maxQRS < length(QRS)
maxQRS = length(QRS);
best_value = parameter_value;

END

3) EXTRACTION OF MOVEMENT SIGNALS AND REMOVAL OF
MOVEMENT ARTIFACTS

After the BEADS algorithm is applied, low frequency
noise (baseline) is estimated and subtracted from the ECG
signal. This baseline can be interpreted as movement arti-
fact. However, it can still correlate with the ECG signal.
That is why additional decorrelation is applied to reduce
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FIGURE 5. Sample movement signal (bold black) and its surrogates.

correlation within an ECG signal, while preserving the
baseline.

4) GENERATION OF SURROGATE MOVEMENT SIGNALS
Surrogate data refers to time series data that is produced using
well-defined models that reproduce signal spectrum [46] or
various statistical properties of an original data [47]. Surro-
gate data may be used to supplement available data and used
for recognizing patterns not seen in original data, developing
and analyzing data models [48] or improving data classi-
fication of forecasting. Surrogate data can be produced in
many ways, e.g., through statistical processes [47], which
may involve random data generation using constraints of the
model or system [48] or by assuming random phases and tak-
ing the inverse FFT of the given periodogram. Here for surro-
gate movement signal generation we propose using Intrinsic
Mode Functions (IMF) derived by Empirical Mode Decom-
position (EMD), an empirical data-driven technique for signal
decomposition [34]. The IMFs represent a sent of almost
orthogonal functions with varying amplitude and frequency,
which could be assigned a physical meaning. Many vari-
ants and extensions of EMD exist such as weighted sliding
EMD, Ensemble EMD (EEMD), Complete Ensemble EMD
with Adaptive Noise (CEEMDAN), which were proposed
to address the main issues of EMD such as mode mixing
and the boundary problem. The computational complexity of
these improved methods is, however, higher and mode mixing
is not important for us, since we sum mixed IMFs, if any,
back to obtain surrogate signals, while the boundary problem
can be solved by truncating the surrogate signal. Therefore,
we have selected the classical EMD method, which has a well
researched behavior, for further use. As a result of the appli-
cation of EMD, the orthogonal IMFs are obtained from which
the original signal x (f) may be reconstructed as follows:

x(t) = ZIMFi () + E (1). (17)

here E is the residueerror.
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In matrix form, the decomposition can be written as The surrogate data series are generated as a randomly
eighted sum of IMFs as follows:
X =1-IMF (18 V' u W

R
here I is the identity matrix. X = ”ﬁ - IMF 19)
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FIGURE 7. Samples of signals registered during the physical exercises.

here X is the surrogate signal, R is the uniformly distributed
random vector, and nis the number of IMFs.

The result for a sample movement signal is illustrated
in Figure 5, the surrogate signals are shown alongside the
reference movement signal.

5) PERFORMANCE EVALUATION

The evaluation of the results is a crucial step to demonstrate
the reliability and accuracy of the proposed method. In val-
idation, the performance indices are computed between the
reconstructed and known original values. We evaluate the
accuracy of the results using Pearson correlation coefficient,
which estimates the strength and direction of the linear rela-
tionship between two variables:

oo XD oi-p)

Y- 0i— 9
here x;, y; are the individual sample points with index i; and
X, y are the averaged values of the samples.

In our case, we use the spectral correlation of signals,
which is calculated as follows:

(28 ) =3 ) (S5 ) - M)}
Y (5@ -5’ E (S0 -5m)

here S¢ (x), S (y) are the amplitude spectra values (in dB) of
signals x, y at frequency f, respectively, and S (x), S (y) are
the averaged spectrum values of x and y.

(20)

2 _
Ry, =

21
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Ill. DATA AND RESULTS
A. EXPERIMENTAL SETTING
We used CardioScout Multi-ECG device for recording of
ECG signals (sampling frequency 500 s~!). The ECG and
EEG signals were taken when a person walked and performed
a set of ten main functional training exercises [49]. This
set consist of two static exercises: plank and side plank
(working muscles: core, shoulder, back), two cardio exer-
cises: star-jumps and high knee (working muscles: hands,
legs), and six dynamical exercises: dead-bug (working mus-
cles: core, shoulder mobility, hip flexors), burpee (multifunc-
tional), lunge, air-squat and skater jumps (working muscles:
legs, buttocks) and push-up (core, back, chest). Duration of
each exercise performance was 1 min. Figure 6 demonstrates
the exercises schematically. The samples of ECG signals reg-
istered during the physical exercises are shown in Figure 7.
The recorded ECG signals have various amplitudes and wave
forms, because they have been affected by different high and
low frequency noise.

We have performed all computations and processing of
signals using customized MATLAB scripts.

B. RESULTS OF BEADS OPTIMIZATION

The optimization of the BEADS filter parameters was applied
following the procedure described in Section 2. An exam-
ple of the process optimization with the parameter value of
cut-off frequency f. applied on the ECG signal during the
different exercises will be shown further. Each exercise has
its own baseline because different muscles are working. How-
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FIGURE 8. Normalized cut-off frequencies in different physical exercises
for detection of QRS complexes in movement artifact contaminated ECG
signals.

ever, the best results are reached with f, < 0.1 (see Figure 8).
Some exercises are almost stationary (plank, side plank) and
their best normalized frequency is a small value (f. < 0.02),
because there is little trend to remove. Meanwhile, cardio
exercises (like high knee or skater jump) have larger trend and
are more affected with high-frequency noise. That is why the
QRS detection becomes a complicated task and f. values are
fluctuating more.

During the ECG signal processing and its trend removal,
the QRS detection process is initialized in each step.
We assume that the more QRS complexes are found the better
result is reached. By repeating this cycle, the best normalized
cut-of frequency (f. ) of the BEADS filter is found. This
parameter is important for the trend analysis and its removal.
The example of the number of QRS complexes with respect
to different normalized frequencies is shown in Figure 8.

For the ECG signal filtering, two methods were applied.
The median filter was used to reduce high-frequency noise
and the BEADS algorithm was used to remove a trend from
the signal. We noticed that the ““dead bug” exercise has a high
trend, which fluctuates a lot. The example of this exercise is
represented in Figure 9. After the ECG signal pre-processing
is complete and all trends obtained, the next step is a baseline
application on the EEG signal. Simulated EEG signals were
modeled as a superposition of two components: the original
EEG signals and the surrogate movement signals generated
from the original movement signals that were extracted from
the movement-contaminated ECG signals by the application
of the BEADS algorithm. This allowed us to simulate removal
of movement artifact from the EEG signal during physical
exercises.

The spectral Pearson’s correlation (Eq. 21) was estimated
using the spectra of the original and simulated EEG signal
(after baseline removal) (see Table 1). For better comparison
the alpha beta and gamma waves were separated, and their
spectrum correlation was calculated. Here spcorr, shows
the spectrum correlation of the original and detrended EEG
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FIGURE 9. Example of the ECG signal contaminated with movement
artifacts (top), detrended ECG signal (middle), and extracted movement
signal (bottom).

TABLE 1. Correlation of original EEG signal and the
movement-contaminated EEG signal after removal of movement artefacts.

Physical SPCOITyig|  SPCOTTypupg | SPCOTherq SPCOTTgqmma| best g
exercise
Plank 0.895 0.908 0.929 0.931 0.083
Plank left 0.900 0.948 0.958 0.962 0.002
Plank right 0.907 0.954 0.963 0.963 0.003
Dead bug 0.923 0.920 0.954 0.963 0.010
Star jump 0.930 0.962 0.974 0.964 0.028
High knee 0.914 0.930 0.969 0.966 0.010
Bur pee 0.902 0.924 0.957 0.950 0.062
Air squat 0.928 0.958 0.972 0.960 0.031
Lunge 0.836 0.849 0.871 0.869 0.167
Skater jump 0.920 0.867 0.942 0.949 0.023
Push up 0.923 0.916 0.960 0.963 0.062

signals, while spcorraipha, SPCOFTpeta, SPCOTT gamma TEPrESENt
the spectrum correlation between the alpha (8-15 Hz), beta
(16-31 Hz), and gamma (> 32 Hz) waves of EEG, respec-
tively, and besty, corresponds to the best cut-off frequency that
is used for the filtering of the EEG signal.

The spectral correlation coefficients presented in Table 1
indicate that the proposed method does not damage the spec-
tral characteristics of the EEG signal thus the denoised signal
resemble the original signals. Best correlation was achieved
when the subjects performed Star jumps and Air squat exer-
cises. The results were obtained using normalized frequen-
cies of 0.010 and 0.031, respectively. Higher frequencies
lead to lower Pearson correlation (see exercise ‘‘Lunge”
in Table 1). This could have happened at the time of trend
removal, because of the corruption of the signal. The higher
the frequency is, the more corruption to the signal is done,
because the EEG signal mainly has the higher frequency
waves.

As a metric of efficiency of the movement artifact removal,
we also use the Pearson correlation (Eq. 20) between
the movement signal and the detrended EEG signal. The
results for different types of physical exercises are shown in
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detrended EEG signal.

Figure 10. The bar plot shows that there is low correlation
between the movement signal and the detrended EEG signal,
which means that the signal separation worked quite well.

IV. CONCLUSION

The removal of movement artifacts from the recordings of
physiological signals during the dynamic activities of human
behavior is important for analyzing and understanding the
way a human body works. In this paper we have created a
novel approach for removing the movement artifacts from the
recordings of electroencephalography (EEG) signals.

We have applied the BEADS algorithm with adaptive
parameters to identify and extract the movement-related sig-
nals using the recorded electrocardiography (ECG) signals
as a reference. When applied to the movement-contaminated
EEG signals we have managed to successfully reduce the
movement-related artefacts. We have examined the efficiency
of our approach on a variety of artificially generated surrogate
movement signals obtained from the extracted movement
signals by random mixing of independent signal modes (i.e.,
Intrinsic Mode Functions - IMF) derived by applying Empiri-
cal Mode Decomposition (EMD). The results were evaluated
using Pearson correlation and spectral Pearson correlation.

The results of experiments performed with 11 types of
physical exercises show that the proposed movement arti-
fact removal method allowed to successfully remove move-
ment artifacts while preserving the spectral characteristics
of the EEG signal both in its entirety (spectral correla-
tion: 0.836-0.930) as well as in different EEG signal
bands (alpha: 0.849 — 0.962, beta: 0.871 — 0.974, gamma:
0.869 — 0.966).

In future work, we plan to extend our work to other types
of human activities and recorded signals in the context of
Assisted Living Environments.
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