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ABSTRACT The noise cancellation in electrocardiogram (ECG) signal is very influential to distinguish the

essential signal features masked by noises. The power line interference (PLI) is the main source of noise in

most of bio-electric signals. Digital notch filters can be used to suppress the PLI in ECG signals. However,

the problems of transient interferences and the ringing effect occur, especially when the digitization of PLI

does not meet the condition of full period sampling. In this paper, to obtain a better cancellation of the PLI,

a designing approach, generating adaptive notch filter (ANF) of sharp resolution, is proposed. The proposed

method is concise in algorithm and achieves a more comprehensive reduction of the PLI. It only requires on

one fast Fourier transform on the input signal. The spectrum correction method, based on the information

from the FFT spectrum of the corrupted signal, is utilized to estimate the harmonic parameters of the PLI.

The information of a few main lobe spectral bins in the FFT spectrum is merged such that a compensation

signal can be synthesized. By subtracting the compensational signal from the original measurement, the PLI

within the investigated signal can substantially reduced. A distinguished advantage of the proposed ANF lies

in the fact that no parameters are required to be specified, making the algorithm easier to be implemented.

The proposed ANF outperforms conventional notch filters because it not only alleviates the undesirable

effects but also better preserves the QRS-complex features in the filtered signal.

INDEX TERMS Electrocardiogram (ECG), power line interference, spectrum correction, adaptive notch

filter.

I. INTRODUCTION

The measurement of the electrical activity of the heart is

referred to as an electrocardiogram (ECG) [1], [2]. The

reliable and accurate feature measurement of ECG signals

plays an important role for the effective diagnosis of car-

diovascular disease [3]–[5]. However, during the process of

the ECG measurement, power line interference (PLI), which

is of 50Hz in frequency, emerges as a major source of

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongtao Hao.

interference that significantly deteriorates signal quality if it

is left untreated [6], [7].

To retrieve the actual ECG signal and to extract more

accurate information for further analysis, the cancellation

of PLI is necessary and thus attracts extensive attentions

[8]–[10]. Many advanced signal processing techniques,

which can remove the PLI from noisy ECG signals, have been

reported in the literature [11]. Notch filter based method-

ologies, based on the classical theory of Fourier analysis,

have found many applications. Either finite impulse response

filters or infinite impulse response filters can be designed

for this purpose. Piskorowski utilized multiple notch filtering
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methods to suppress harmonic power line interferences in

ECG signals [12]. Vallejo proposed a spectro-temporal filter-

ing technique for electrocardiogram enhancement and found

a gain in signal-to-noise ratio improvement [13]. Wang put

forward a novel design method to realize adaptive notch

filters with infinite-impulse response such that harmonics in

the signal can be removed [14].

Time-scale analysis (TSA) is also utilized in PLI cancel-

lation and noise reduction of biological signals [15], [16].

TSAmethods can be regarded as filterbank based techniques,

which consist of a set of digital band-pass filters [17]–[19].

There are studies reporting the usage of the wavelet trans-

form and the empirical mode decomposition for suppressing

PLI. Liu investigated the time, second-order difference, and

wavelet domain as sparse domains for the ECG signal and

the frequency domain as the sparse domain for PLI [6].

Suchetha conducted a comparative analysis of EMD based

filtering methods for 50 Hz noise cancellation in ECG sig-

nal [20]. Yadav proposed a novel non-local wavelet transform

method for ECG signal denoising by exploiting the local

and non-local redundancy present in the signal [21]. Sayed

introduced an effective hybrid scheme for the denoising of

ECG signals corrupted by non-stationary noises using genetic

algorithm and wavelet transform [22].

Besides the above methodologies, other advanced meth-

ods, such as least mean square based adaptive filtering [23],

adaptive Fourier transform [24], Kalman Filter [25], nonlin-

ear Bayesian filtering [26], eigen-value decomposition [11],

have also been investigated for the purpose of ECG denois-

ing. Recently, artificial intelligence based techniques are

also introduced to enable intelligent analysis of equip-

ment monitoring signals and biomedical signals with noises

[27]–[29]. Wang proposed an adversarial method for ECG

signals de-noising and achieved up to about 62% improve-

ment on the SNR of de-noised signals on average compared

with state-of-the-art technologies [30]. Huang investigated

the classification of ECG signals using the combination of

short time Fourier transform and convolutional neural net-

work [31]. Wang proposed a fast and accurate ECG classi-

fication system based on deep learning [32].

The problem of PLI removal in ECG signal analysis can

be interpreted as the reduction of sinusoidal waves at some

specific frequencies. We proposed a novel adaptive notch fil-

ter for PLI cancellation. The core of the proposed algorithm is

the ratio based spectrum correction (RBSC). In the procedure,

only one fast Fourier transform is required to be performed

on the original ECG signal. A pair of spectral bins located

within the main lobe of the Fourier spectrum can be used to

estimate the amplitude, the frequency and the initial phase of

the PLI such that a compensation signal can be constructed.

By subtracting the compensation signal from the original

ECG signal, the PLI can be effectively suppressed.

Two performances of two window based RBSC are com-

pared and the Hanning window is chosen to be used in the

algorithm. Numerical results show that the proposed ANF

is more effective in suppressing undesirable phenomenon of

FIGURE 1. Relationship between (a) the digitized signal and (b) the
associated FFT spectrum.

transient interference and the ringing effect, which widely

exist in notch filter based ECG de-noising techniques. ECG

measurements from the dataset released by MIT-BIH are

used to test the proposed method in actual ECG analy-

sis. The results show that the ANF not only can suppress

the undesirable phenomena, but also produces less residual

QRS-complex features, which outperforms the performances

of two comparison notch filters.

II. ENERGY LEAKAGE OF SINUSOIDAL WAVE

IN DIGITAL SAMPLING

Usually in the digitization of a physical process, a time series

of even spaced samples is recorded. In this section, we focus

on explaining how the energy leakage problem occurs in

spectrum based techniques. We will show that the condition

of fully period sampling (FPS), which is determined by sam-

pling parameters, has a substantial impact on the spectrum

analysis of signals.

A. FUNDAMENTALS OF SPECTRUM ANALYSIS

OF DIGITAL SIGNALS

Modern spectrum analysis relies heavily on the theory of

discrete time Fourier Transform (DTFT). Cooley and Tukey

developed the celebrated fast algorithm of fast Fourier trans-

form (FFT), which decomposes a signal into the sum of a few

sinusoidal waves. For a signal x(t) sampled at the frequency

fs and the length N , the associated FFT spectrum x̂(k) is a

complex valued series spaced at a uniform spatial interval of

fs/N in the frequency domain.

x̂(k) =

N−1∑

n=0

x(n)e−j
2πnk
N , (1)

where the constant j indicates the imaginary number and k =

0, 1, · · · ,N − 1. The relationship between the sampling of

x(n) and that of x̂(k) is shown in Figure 1.

150668 VOLUME 7, 2019



B. Chen et al.: Removal of PLI From ECG Signals Using ANFs of Sharp Resolution

FIGURE 2. The waveform of an SHW in the time domain.

B. CONDITION OF FULL PERIOD SAMPLING FOR

SIMPLE HARMONIC WAVE

A simple harmonic wave (SHW) is referred to as a dynamic

process in which a sinusoidal wave of a specific frequency is

included (Figure 2). The mathematical definition of a SHW

can be defined as

shw(t) = A · cos(2π fct + φ), (2)

where A denotes the amplitude; fc denotes the frequency of

the SHW; and φ denotes the initial phase of the process. It can

be inferred that an SHW, by nature, is a band limited signal

of extremely narrow bandwidth (Figure 3(a)).

An SHW, of finite evenly spaced samples, is described

to meet the demand of FPS if the following condition is

satisfied.

N ·
fc

fs
∈ N

+, (3)

where N
+ denotes the set of positive integers. The Fourier

spectrum of an SHW satisfying the FPS condition is a

discrete Dirac sequence in the frequency domain (Figure 3(b),

denoted as

ŝhw(f ) = δ(f − fc) =

{
1, f = fc

0, f 6= fc,
(4)

Otherwise it will become a discretized version of a broadband

signal whose shape is determined by the FFT of the windows

function (Figure 3(c)). Two most commonly used types of

window are the rectangular window and theHanningwindow.

C. NEGATIVE EFFECT CAUSED BY NON-FPS CONDITION

In the case of non-FPS condition, the energy leakage occurs

across the entire frequency axis. A notch filter is designed in

the frequency domain. As such, no matter what kind of notch

filter is used, the FIR type or the FIR type, only a portion of

the leakage components of PLI can be reduced. Owing to the

incomplete reduction, an undesirable phenomenon of ringing

effect is inevitable. The phenomenon is reflected as highly

oscillated fluctuations of waveforms in the time domain.

Although the amplitudes of the oscillations are not large,

it still complicates subsequent processes of ECG analysis.

III. RATIO BASED SPECTRUM CORRECTION METHODS

BASED ON RECTANGLE WINDOW AND

HANNING WINDOW

Awindow function is often used in spectrum analysis because

it is beneficial to suppress the energy leakage problem. RBSC

FIGURE 3. (a) The actual spectrum of an SHW; (b) the narrow band
spectrum of an SHW when it satisfy the FPS condition; and (c) the broad
band spectrum of an SHW when it does not satisfy the FPS condition.

can be interpreted as a preprocessing of the FFT spectra.

More accurate harmonic information of Ac, fc and φc can

be estimated using a few main lobe spectral bins (MLSBs)

located within the main lobe of a window function in the

frequency domain.

A. SPECTRUM CORRECTION USING RECTANGLE WINDOW

The mathematical definition and the frequency response of a

rectangle window is shown in Equation (5,6).

Wr (n) = 1 for n = 1, 2, . . . ,N , (5)

Ŵr (w) =
sin(Lw/2)

sin(w/2)
ej(N−1)w/2, (6)

The window has the same length as that of the input signal.

The modulus function of the frequency response is

T (k) =
sin(πk)

sin(πk/L)
≈
L sin(πk)

πk
, (7)

and the shape of T (k) is plotted in Figure 4(a). In the main

lobe of the function, two MLSBs are utilized (Figure 4(b)).

They are denoted as T (k̃) and T (k̃ + 1).

Let the normalized error1k = k ′−k , where k ′ is the index

of the window vertex associated with the actual spectral bin.

This error can be computed as

1k = −
1

1 + v
= −

T (k̃ + 1)

T (k̃) + T (k̃ + 1)
, (8)
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FIGURE 4. (a) The frequency response of a rectangle window; and (b) the
MLSBs for spectrum correction.

where v = T (k̃)/T (k̃+1). Finally, the harmonic information

of an SHW can be obtained as below.





Ac =
π1k · T (k)

sin(π1k)

fc = (k + 1k)
fs

L

φc = arctan
Im(k ′)

Re(k ′)
− π1k,

(9)

B. SPECTRUM CORRECTION USING HANNING WINDOW

The mathematical definition and the frequency response of a

Hanning window is shown in Equation (10,11).

Wh(n) =
1

2
−

1

2
cos

(
2πn

L

)
for n = 0, 1, 2 . . . ,L − 1,

(10)

Ŵh(w) =

{
1

2
Ŵr (w) +

1

4

[
Ŵr

(
w−

2π

L

)

+ Ŵr

(
w+

2π

L

)]}
e−jNw/2, (11)

The modulus function of the frequency response is

T (k) =
sin(πk)

2πk
·

1

1 − k2
, (12)

and the shape of T (k) is plotted in Figure 5(a). When the FPS

condition is not satisfied, there are four MLSBs existed in

the main lobe. However, only the two with larger amplitudes

are selected (Figure 5(b)). The error between k ′, the index of

the actual spectral bin, and k̃ , is calculated used the following

equation

1k =
v− 2

v+ 1
, (13)

FIGURE 5. (a) The frequency response of a Hanning window; and (b) the
MLSBs for spectrum correction.

where the v = T (k̃)/T (k̃ + 1). Finally the harmonic informa-

tion of an SHW can be estimated as




Ac =
π1k · T (k̃)

sin(π1k)
· 2[1 − (1k)2]

fc = (k + 1k)
fs

L

φc = arctan
Im(k ′)

Re(k ′)
− π1k,

(14)

IV. DESIGN OF ADAPTIVE NOTCH FILTER OF SHARP

RESOLUTION BASED ON RBSC

If the frequency of the PLI is exactly 50Hz, it is feasible

to avoid energy leakage by properly selecting the sampling

parameters. However, the value of the actual frequency is just

approximately 50. An error of the power frequency in the

range of [−2, 2]Hz can be found according to power qual-

ity control regulations, for example in China. RBSC based

techniques can be employed to design adaptive notch filter

of extremely sharp resolution. The procedure of the proposed

methodology is stated as below.

Step 1). Let the analyzed signal be ecg(t) of sampling

frequency fs and length N . Perform the fast Fourier transform

on the signal ecg(t).

ecg(t)
FFT
−→ êcg(f )

Step 2). Search two spectral bins of large amplitudes within

the main lobe of the PLI in the frequency domain. Estimate

the harmonic information (APLI, fPLI and φPLI) of the PLI by

ratio based spectrum correction methods.

êcg(f )
RBSC
−→ APLI, fPLI, φPLI

Step 3). Construct a compensation signal compPLI(t) based

on the extracted harmonic information.

compPLI(t) = APLI · cos(2π fPLIt + φPLI)

150670 VOLUME 7, 2019
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FIGURE 6. Flow chart of the algorithm of the adaptive notch filter.

Step 4) Subtract compPLI(t) from the corrupted ECG

signal.

ecg(t) = ecg(t) − compPLI(t)

The algorithm belongs to the type of parameter free. A flow

chart of the proposed algorithm is displayed as in Figure 6.

V. COMPARISON OF PERFORMANCES OF TWO

SPECTRUM CORRECTION METHOS

Either of the two windows can be employed to estimate the

harmonic frequency of PLI in ECG signals. In this section,

we test the estimation performance of the RBSCs with the

two types of windows.

A. COMPARISON OF PERFORMANCE FOR

NOISE-FREE SHW

In this subsection, a digital signal x(t) containing one SHW

is simulated.

xc(t) = Ac cos(2π fct + φc), (15)

where the amplitude Ac is chosen as 1 without loss of gen-

erality. The sampling length of celebrated datasets of ECG

measurement are mainly 200∼400Hz. Therefore, we set the

sampling frequency of x(t) as 1, and 250 digital samples are

utilized in the following comparison.

To simulate the error of power line frequency, the parame-

ter fc is set as

fc = 50 + 1f , (16)

Supposing that yrec(t) and yhan(t) are synthesized signals

reconstructed using the rectangular window based RBSC and

the Hanning window based RBSC, respectively, the recon-

struction errors between x(t) and the synthesized signals

FIGURE 7. (a) The frequency response of a Hanning window; and (b) the
MLSBs for spectrum correction.

using the following formulae.

errrec = ‖yrec(t) − x(t)‖22 , (17)

errrec = ‖yrec(t) − x(t)‖22 , (18)

where || · ||2 means to compute the 2-norm of input series.

Let the frequency error be ranged in the interval of [0,

0.5]Hz, the reconstruction errors of the two RBSC methods

are shown in Figure 7. It can be seen that when 1f ∈

[0, 0.25]Hz, the rectangular window based RBSC has better

performance. While when 1f ∈ [0.25, 0.5]Hz, the Hanning

window based RBSC has better performance. Nomatter what

kind of window is used, the reconstruction error is small and

acceptable for high precision estimation.
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FIGURE 8. (a) The frequency response of a Hanning window; and (b) the
MLSBs for spectrum correction.

FIGURE 9. The waveform of the simulated simple harmonic wave.

B. COMPARISON OF PERFORMANCE FOR SHW

CORRUPTED BY GAUSSIAN NOISES

In this subsection, we create a noisy version of the signal

xc(t) as

x̃c(t) = xc(t) + wgn(t). (19)

The same sampling parameters are adopted as those in

xc(t). The signal-to-noise ratio of the noisy signal is set as 20.

The resulting reconstruction errors using the two types of

windows are shown in Figure 8. For all values of 1f , the

curves of the reconstruction errors based on Hanning window

RBSC is stable. While for the case of rectangle window,

large errors are produced when 1f ∈ [0.01, 0.13]. This

phenomenon is caused by one MLSB small in amplitude.

C. RESULT ANALYSIS

The actual ECG measurement is not free of noise. As shown

in the comparisons, the Hanning windows based RBSC is

more robust in correction harmonic information of SHW not

satisfying FPS condition. Therefore, we choose the type of

window, which is utilized in the algorithm of Section IV,

as the Hanning window.

VI. COMPARISON OF THE PROPOSED METHOD WITH

CONVENTIONAL NOTCH FITLER IN REDUCTION OF SHW

Following the definition in Equation (15), an SHW with

frequency is 50.1Hz is simulated and the waveform is shown

in Figure 9.

FIGURE 10. The waveform of the simulated simple harmonic wave.

FIGURE 11. The Fourier spectra of the simulated signal and the filtered
signal by the IIR notch filter.

FIGURE 12. The waveform of the filtered signal using the proposed
method.

An IIR notch filter is constructed to remove the SHW. The

central frequency and the bandwidth of the notch filter are set

as 50Hz and 0.4Hz. The filter result is shown in Figure 10.

Undesirable phenomena of the transient interference at the

beginning samples and the ringing effect can be easily recog-

nized in Figure 11.

The Fourier spectra of the simulated signal and the fil-

tered signal are shown in Figure 11. The scale of Y-axis this

figure is set as in the mode of logarithm. The leakage compo-

nents, whose frequencies are closed to 50Hz, are effectively

reduced; however spectral bins with larger distances from

the central frequency of the notch filter are preserved. This

leads to the undesirable phenomena of filtering based on the

IIR filter.

Figure 12 shows the filtering result using the proposed

method. The maximal absolute value of the signal is smaller

150672 VOLUME 7, 2019
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FIGURE 13. The Fourier spectra of the simulated signal and the filtered
signal by the proposed method.

FIGURE 14. (a) The waveform of the original ECG signal; (b) the
simulated PLI; and (c) the simulated ECG signal with PLI.

than 4×10−3. Although the ringing effect still exists, it can be

neglected due to extremely small amplitudes. The root-mean-

square values of the ringing parts of the two filtered signals

in Figure 10 and Figure 12 are 0.024 and 0.016 respectively,

which demonstrates the enhancement of the proposedmethod

in the suppression of the ringing effect.

Figure 13 shows the Fourier spectra of the simulated signal

and the filtered result by the proposed method. The ampli-

tudes of the leakage components across the entire frequency

axis are substantially reduced.

FIGURE 15. The Fourier spectra of the original ECG signal and the
simulated signal corrupted by PLI.

VII. NUMERICAL ANALYSIS OF THE PROPOSED

METHOD IN ECG SIGNALS

To evaluate the performance of the proposed method in

processing ECG signals corrupted by PLI, measurements

of ECG form the dataset of MIT-BIH polysomnographic

database (http://www.physionet.org/cgi-bin/atm/ATM) are

utilized. In this section, the original ECG signal to be ana-

lyzed is denoted as d(n). The sampling frequency and the

sampling length of the signal is 250 and 1024.

An SHW is simulated to be the PLI of the original ECG

signal. The harmonic information of the SHW are




Ac = 250

fc = 50.1Hz

φc = 15◦.

(20)

The waveform of the simulated PLI is shown in Figure 14(b).

By summing the original ECG signal and the SHW, the sim-

ulated signal with PLi is shown in Figure 14(c). The SNR

of the simulated signal is 1dB. The Fourier spectra of the

original ECG signal and the simulated signal are shown

in Figure 15.

Based on the proposed ADF method, the filter signal and

reconstruction errors are shown in Figure 16. The construc-

tion error is pretty small. The largest value of the errors is

smaller than 1.5.

The comparison between the Fourier spectrum of the orig-

inal ECG signal and that of the filtered signal is shown

in Figure 17. It can be seen, the two signals are very similar

except for a few spectral bins round the neighborhood of the

actual frequency of the PLI.

We utilized two types of IIR notch filter to process the sig-

nal. One is the conventional IIR filter employed in Section VI.

The filtered signal and its Fourier spectrum are shown in

Figure 18. Although the waveform of the filtered signal is

very similar to the original ECG signal. The curve of errors

between the two signals reveals that phase shift is produced

VOLUME 7, 2019 150673
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FIGURE 16. (a) The filtered signal using the proposed method; and (b) the
construction errors between the filtered signal and the original ECG
signal.

FIGURE 17. Comparison between the original ECG signal and filtered
signal.

in the IIR filtering process and causes very large errors in the

neighboring areas of the impulsive QRS-complex features.

The maximal error can be as high as 300. On the other hand,

transient interferences are also detected at some beginning

samples of the filtered signal.

The other comparison method is an improved IIR with

transient interference suppression ability [10]. The filtered

result and the construction error are shown in Figure 19.

In Figure 19(b), the transient interferences at the beginning

samples and the residual QRS-complex features are much

smaller than those in Figure 18(b).

Comparisons between the waveform of the original ECG

signal and those of the filtered signal generated by the two

comparison IIR notch filters are shown in Figure 20. In

Figure 20(a), relatively large errors are found in the high

frequency range of the proposed method. To make a more

quantitative analysis, the maximal value and the RMS value

FIGURE 18. (a) The filtered signal using the conventional IIR filter; and
(b) the construction errors between the filtered signal and the original
ECG signal.

FIGURE 19. (a) The filtered signal using the improved IIR filter; and
(b) the construction errors between the filtered signal and the original
ECG signal.

TABLE 1. Comparisons between the proposed method and two types of
IIR notch filters.

of the construction errors are computed. The related infor-

mation is shown in Table 1. The construction error by the

proposed method is the smallest in the indicators of maximal

error and RMS of errors. These comparisons have validated

that the proposed ANF outperforms traditional IIR notch

filter based techniques.
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FIGURE 20. (a) The filtered signal using the conventional IIR filter; and
(b) the construction errors between the filtered signal and the original
ECG signal.

VIII. CONCLUSION

The findings the paper are summarized as below.

(1) The PLI emerges in the form of simple harmonic

wave. The phenomenon of energy leakage occurs when the

sampling of the PLI does not meet the condition of FPS.

In such situations, conventional notch filters can not suppress

all spectral bins related to energy leakage, which causes

undesirable effects in the filtered signal.

(2) A novel adaptive notch filter based on RBSC is pro-

posed in this paper. In noisy measurements, the Hanning

window based RBSC is more robust in acquiring high preci-

sion harmonic information. In simulations of SHW reduction,

the proposed method was compared with a conventional IIR

notch filter. Results show that the proposed ANF of sharp

resolution can better suppress the ringing effect and causes no

transient interferences at the beginning samples of the filtered

signal.

(3) The ECG measurements form the dataset released by

MIT-BIH are used for test the performance of the proposed

method. An additive 50Hz PLI is added to the original

ECG signal to simulate ECG signals corrupted by PLI. The

proposedi method is compared with two IIR notch filters. It

is found that the maximal value and the RMS value of con-

struction errors, produced by the proposed ANF, are smallest

among the results of three methods, indicating an improved

SNR in the filtered signal.
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