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Abstract

Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of
reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability
in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current
article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration
(MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of
existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes
are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are
effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and
precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.
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Background
In recent years potable water security is considered as a
worldwide issue. The need to remove pathogens from
drinking water supplies is long recognized. Elimination
microbial pollution from potable water through conven-
tional water treatment methods is difficult. Disinfection
of water refers to the inactivation or destruction of
harmful organisms, especially pathogenic organisms of
fecal origin, which living in the water [1, 2]. Among the
different disinfection products, (DBPs) such as Halo
acetic acids (HAAs) and Trihalomethanes (THMs) com-
monly show toxic effects on human health. Thus remove
of them or its precursors are essential to avoid impact
on public health [3–8]. Chlorine and chlorine com-
pounds are common disinfectants which are added for
disinfecting water at the most water treatment plants.
During chlorination, chlorine can react with NOM and
produce DBPs [9, 10]. In the last thirty years, because of
potential health risks of DBPs in water, gained a lot of

attention. According to several meta-analyses epidemio-
logical, studies, chloroform are recognized carcinogen
[11–13]. Therefore, the formation of it’s should be pre-
vented. NOM [generally consists of Humic acid] are the
most important precursors of DBPs. Chemical properties
of NOM significantly effect on their removal efficiency
[14]. NOM is a complex mixture of many chemical
groups that varies both temporally and spatially [15, 16].
The NOM can be broadly divided into two fractions of
hydrophilic such as alginic acid and hydrophobic frac-
tion such as humic acid [17]. The major chemical groups
in NOM are listed as humic species, carboxylic acids,
amino acids, proteins and carbohydrates [18]. Hydro-
phobic NOM that contains hydrophobic acids (HPOA)
can further be divided into humic acid, fulvic acids and
(HPON). Carbohydrates, amino acids and carboxylic
acids comprise much of the hydrophilic fraction (HPI),
which is sometimes further split into hydrophilic acids
(HPIA) and hydrophilic bases (HPIB) [18, 19]. Many dif-
ferent techniques have been used for removal NOM in
water supplies. Since using of some conventional treat-
ment processes such as coagulation, sedimentation and
sand filtration are not completely efficient in the
removal of organic matter [20]. Advanced treatment
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processes, including ozonation and activated carbon fil-
tration are used after conventional treatment processes
[21–23]. Ultrasono-oxidation, photo-oxidation processes
[24] and degradation by nanoparticles [25] are used in
water treatment processes. However, NOMs were re-
sponsible for DBPs formation and cannot remove easily
by some processes such as coagulation [26–29]. Amy et
al. reported that the majority of THMs precursors has a
pore size less than 1 kDa. Therefore, membrane filtra-
tion (Ultrafiltration and Nanofiltration) has become an
accepted method for removal of them. Over the years,
several studies have been carried out and used mem-
brane filtration to remove NOMs or its fractions from
various water [30–34]. The removal efficiency of DBPs
and NOMs with the filtration method was evaluated by
some researchers. In additionally, employing ozonation
followed by conventional treatment process can be use-
ful to removal certain organic contaminants during
drinking water treatment [35–37]. Recent studies dem-
onstrate that removal of organic matter was significantly
improved by hybrid process combining membrane [24].
The aim of this review article was reviewing different
treatment processes for NOMs and DBPs removal in
water treatment process with focus on membrane filtra-
tion. Also compare the advantage and disadvantage of
each used method.

NOMs as DBPs precursors
NOMs are various dissolved and particulate organic
compounds which are generated with the decay of the
plant, animal, and microbial tissue. Collectively, these
organic compounds are known as Total Organic Carbon
(TOC) in aquatic ecosystems. Dissolved partial of TOC
"which is a subset of TOC" dissolves Organic Carbon
(DOC) [38]. In the most of fresh water, nearly 83–98%
of TOC is related to DOC [39]. TOC consists of organic
compounds such as fats, waxes, terpenoids, tannins, lig-
nins, cellulose, hemicelluloses, protein, sugars, and
starches [40]. On the other hand, organic substance can
be classified as humic and non humic compounds.
Humic compounds constitute most of the natural organic
matter in surface waters [41]. It was reported that the oc-
currence of DBPs in chlorinated water may vary signifi-
cantly based on chlorine dose, bromide levels, and TOC.
It has been demonstrated that the natural organic matter
(NOM), especially the hydrophilic portion and amino
acids, constitute important precursors for HAAs [42].

Disinfection by-products (DBPs)
Occurrence of DBPs
Since the beginning of the twentieth century, disinfec-
tion process has been routinely used to annihilate and
inactivate pathogens in water. Chlorine and its’ com-
pounds are a common alternative for disinfection of

water [43]. Chlorine’s popularity is not only due to its’
lower cost, but it also produces large quantities of chlor-
ine dioxide. The efficiency of the disinfection process de-
pends on other conditions such as pH, temperature and
contact time. Reactions between NOMs, with chemical
treatment agents during disinfection process form DBPs.
Typical DBPs include THMs, HAAs, and others, includ-
ing iodine and fluoride. Generally, THMs and HAAs
concentration are substantially higher than other organic
DBPs classes. The first DBPs chemical class is Trihalo-
methanes (THMs) were discovered in 1974 [44].

Toxicology of DBPs
In assessing the importance of disinfection in drinking
water one shouldn’t neglect the toxicity associated with
the disinfectant. United States National Institute of Cancer
(NCI) is recognized that THMs are carcinogenic in the
high dose, and raise the highest public health concerns
[45]. Table 1 shows the possible health risks of DBPs and
theirs guidelines and regulations which recommended by
different organizations in the world. As well as, it shows
that the most of them cause cancer, mutagenic and repro-
ductive effects on human. There are relationships between
DBPs in water and increasing the risk of some cancers
such as bladder, stomach and colon cancers [46]. Some
studies have reported adverse pregnancy outcomes includ-
ing spontaneous abortion, low birth weight (LBW), small-
for-gestational-age (SGA), stillbirth, and preterm delivery
depending on DBPs [47].

Techniques for NOMs and DBPs removal
Several treatment processes can be significantly removed
DBPs precursors. There are two methods for controlling
DBPs in water. The first and most common strategy for
controlling DBPs is removal of its precursors and use of
alternative disinfectants such as enhanced coagulation,
activated carbon adsorption, biologic treatment and
nanofiltration [48–51]. The second, compliance, strategy
is removing DBPs after formation which can prevent of
the formation of THMs by several methods such as:
membrane technology, air stripping and granular acti-
vated carbon [51–53]. Which technologies can prevent
the formation of THMs are combination methods such
as; ozone, monochloramines, hydrogen peroxide-ozone,
UV-ozone and UV-hydrogen peroxide. The 99% of dis-
solved material and molecular weights in the 50 to
100 Da range can be removed by an RO membrane.
Two important factors in successful rejection of contam-
inate are the membrane type and pore size [54].

Membrane techniques
Membrane technology was first observed in 1748 by
Jean Antoine Nollet and it has used in water and waste-
water treatment plants [55]. Also membrane techniques
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are proposed to remove THMs and their precursors
from water. It also provides permeate quality far beyond
the current regulatory requirement for potable water
consumption [56]. The membrane is a selective barrier
which separates particles and molecules by a sieving and
diffusion mechanism [57]. Although the lowest concen-
tration THMs are difficult to remove, water aeration and
absorption of activated carbon have been traditionally used.
However, aeration is not effective in the DBPs removal in
comparing to adsorption on active carbon [58, 59]. RO,
NF, MF, and UF are very similar technologies. Membranes
are used in various applications. This is mainly due to their
structure and preparation. Selecting a membrane to use
depends on which contamination is present in the water.
Figure 1 shows the choice of membrane filtration based on
related questions to contaminant characteristics. The main
problem of membrane of organic matter removal is

fouling. Fouling reduces membrane efficiency and flux [17,
60, 61]. Therefore, water needs pretreatment before mem-
brane processes.

Reverse osmosis (RO)
Reverse osmosis is pressure technology, which has been
widely used for many purpose in water and wastewater
treatment plants [54]. Nevertheless, the RO will not re-
move all contaminants from water, for example THMs,
some pesticides, solvents, and other volatile organic
chemicals (VOCs) are not effectively removed by reverse
osmosis system. However, if the concentrations of the
contaminations are not too high, RO systems can be a
suitable alternative for removing VOCs, THMs, several
pesticides and solvents [57]. As well as, some studies
suggest that this technique has been the most effective
water treatment technique for removal bromide and

Table 1 Toxicological effects, and DBPs (μg/L) guidelines and regulations [83-85]

Class of DBPs Compounds Health effects CDWQ USEPA WHO ISIRI

Trihalomethanes (THM) Chloroform Cancer, liver, kidney, and
reproductive effects

0.2

Dibromochloromethane Nervous system, liver, kidney,
and reproductive effects

0.1

Bromodichloromethane Cancer, liver, kidney, and
reproductive effects

0.06

Bromoform Cancer, liver, kidney, and
reproductive effects

0.1

Haloacetic Acid Monochloroocetic Acid Cancer and reproductive
and developmental effects

80 60 a 0.200b

Dichloroocetic Acid Liver, kidney, spleen, and
developmental effect

a 20 b

Trichloroocetic Acid 0.050 50

Monobromoocetic 0.100 200 0.200

Dibromoocetic Acid a a

Bromochloroacetic Acid a a b

a a

Haloacetonitrile (HAN) Trichloroacetonitrile Cancer, mutagenic and
clastogenic effects

Halogenated aldehydes and
ketones

Formaldehyde Mutagenic

Halophenol 2-Chlorophenol Cancer and tumor promoter

Bromate Bromide Genotoxic carcinogen 10 10 10 (provisional) b

Bromate

Chlorite Chlorite Irritation in the mouth, esophagus,
or stomach, cancer or birth defects

100 1000 700(provisional) b

Chlorate

Nitrosodimethylamine Liver damage accompanied by
internal bleeding, liver cancer
and lung cancer, death of human
babies

0.04
(proposed)

0.00069 0.01 b

CDWQ Canadian Drinking Water Quality, 2010, USEPA United States Environmental Protection Agency, 2012, WHO World Health Organization Guidelines, 2011,
IRISI Institute of Standards & Industrial Research of Iran, 2009
aThe sum of the ratios of the THM level to the WHO guideline values should not exceed
bTotal index of THM (usually 70% of THMs compounds)

Zazouli and Kalankesh Journal of Environmental Health Science & Engineering  (2017) 15:25 Page 3 of 10



iodide. In addition, both organic and inorganic DBPs
precursors can be removed by this technique simultan-
eously [62]. Also, Ro system should be used in the se-
verely polluted water source or untreatable, a public
water supply or a reliable private water source. Table 2
presents summary of some recent studies on Natural or-
ganic matter removal by Reverse osmosis membrane.

Nanofiltration (NF)
Nanofiltration has been classified into pressure driven
membrane process which represent an intermediate be-
tween Reverse Osmosis and ultrafiltration membrane
processes, and exhibits features of both. Many types of
membranes are used for drinking water treatment
process, but the most applications of Nanofiltration are
polyamide thin-film composite membranes in a spiral
configuration. NOMs, small organic molecules and
DBPs precursors can be effectively separated by NF
membranes simultaneously [62]. NF has been recognized
as a low pressure RO membrane. Patterson et al.

reported that NF is a feasible process in the production
of drinking water at small communities (populations of
25–500). This technique is able to reduce the pathogen
and formation of potential DBPs precursors. In addition-
ally, it could be a suitable alternative treatment, because
of low-cost, easy operation and improve water quality to
reduce consumer complaints [63]. Therefore, due to ad-
vantages of the technique, it can be widely applicator for
water and wastewater treatment such as pharmaceuticals
and personal care products (PPCPs) [60]. On the other
hand, NF has the disadvantage of requiring extensive
pre-treatment, high energy consumption brine disposal
difficulties and especially fouling [61]. Again, like RO,
this system is able simultaneously to remove both or-
ganic and inorganic DBPs precursors [64]. However,
fouling of NF membrane system should be considered.
Nevertheless, recent researches attempt to modify the
surface of the membrane by chemical material such as
grafting hydrophilic monomers, are not completely ef-
fective in reduction of membrane fouling [65]. Because

Is treatment goal to remove particle >0.2micron?

Yes                                           No

Can dissolved contaminants be precipitated, coagulated, or absorbed?

Yes                                           No                             

Is dissolved organics removal needed?                                                            Is inorganic ion removal needed?

No                                                                           Yes                                         No 

Are the inorganic ions to be removed multivalent?             Are the ions multivated                                
(e. g.  a., softening application)?                                                                         (e.g. a., softening application)?

Yes                                                                                                                         Yes No

Is the required TDS Removal greater than 3.000mg/L?                                                  

Are the dissolved organic 

greater than 100000MW?

Yes                                          No    Yes No

Is silica scale a concern?                                                                                              Are the dissolved organic 

No Yes greater than 400 MW            

No Yes

MF

MF or UF

NF

RO

ED/EDR RO/ ED/EDR

RO NF

UF

NF RO

Fig. 1 Generalized membrane selection chart [86]
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the advantage of nanotechnology, applications for mem-
brane technologies have expanded widely in water and
wastewater treatment. Research communities reported that
membrane fouling recently mitigated by nanoparticles
based membranes [66, 67]. According to some reports, it is
known that when Humic acids are added in membrane
contained Nano particle, the HA molecules could be
absorbed and filled the empty spaces between Nano parti-
cles which are on the surface of membrane [68, 69].
Table 3 illustrates a summary of studies on the use of

nanofiltration to remove disinfection byproducts and
their precursors.

Ultrafiltration (UF)
Over the last 50 years, Ultrafiltration has been economically
attractive as one of the most important technologies in vari-
ous industrial water treatment processes. However, despite
being cost effective, fouling is a limitation factor where in-
creasing applied pressure drops and necessitates frequent
cleaning. It takes place due to microbial growth colloidal
and scale precipitation [70]. To prevent fouling, a variety of
pretreatment alternatives have been investigated to remove
NOMs from water, such as coagulation, active carbon ab-
sorption, absorption of iron oxides other preformed settle
able solid phases, or ozonation [71, 72]. UF is recognized to
reduce turbidity, suspend solids and particles, but this
method isn’t effective in separating humic substances which
have high THMs and HAAs formation potential, however,

Table 2 Summary of some recent studies on removal NOMs and DBPs by RO membrane

Type of by product Efficiency (%) Type of membrane method References

Precursors Microorganism and Organic matter 89. 7 RO [87]

89.7 RO [88]

Humic Acid 100 RO/NF [89]

95 Polyamide forward Osmosis membrane [90]

98–99.3 RO [33]

NOM 99 RO [91]

44–90 RO [92]

97 Coupling RO/ Electro dialysis [93]

Dissolved Organic Matter (DOC) 90 RO/ Electro dialysis [63]

98.2 RO isolation [94]

90 RO [95]

DBPS THMs 83.8 MF/Active Carbon/RO [96]

80 RO [97]

Nitrosodimethylamine 66 RO / UV [98]

> 97 RO [99]

HAAs 60–90 RO [100]

83.77 RO / UV [101]

Bromide >75 Electro dialysis Reversal [102]

70.48 RO / UV [101]

Table 3 Summary of some recent studies on NOMs and DBPs
removal by NF

Type of by
product

Type of
membrane
method

Efficiency
(%)

References

Precursors Humic acid NF 91–95 [32]

Polyester NF 100 [103]

Commercial
NF/RO

100 [104]

(NOM) NF 58 [75]

NF/RO/UF 93 [105]

NF 49–100 [106]

Dissolved Organic
Matter(DOC)

UF/NF 70–99 [73]

NF >87 [107]

UF/NF 98 [108]

UF/NF 85 [109]

NF >90 [110]

UF/NF 85 [75]

DBPs THMs NF 74–95 [111]

NF 96–99 [112]

NF/ Air
Stripping

42.97 [113]

DBPS HAAs NF 90–100 [114]

NF >95 [115]

NF 80 [77]

Nitrosodimethylamine NF 57–83 [63]

NF/RO 98 [116]
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NF can effectively remove THMs precursors [71]. UF mem-
branes are known with different membrane materials and
wide pore size range distribution as well as different surface
charge densities. And it doesn’t directly predictable removal
NOMs by size exclusion. Charged UF membranes have
shown much higher removals of NOMs compound,
whereas lowest removals can be obtained with uncharged
membranes [73, 74]. On the other hand, NOMs com-
pounds are too small to be retained by the pores of ultrafil-
tration membranes effectively [75, 76]. According Table 4,
some studies reported that removal of DBPs precursors in
lab scale tests be quite effective by UF membranes while as-
sailable organic carbon (AOC), cannot be removed success-
fully by this treatment method. AOCs are compounds
which have MM <1 kDa and responded to 30–40% of
TOC in water. Acetate, amino acids and carboxylic acids
are classified in AOC compounds [77]. Because of linear
configuration and a larger radius structure, NOMs can be
removed easily by both the size exclusion and charge repul-
sion in higher pH levels. Charged membranes are affected
by pH much greater than neutral membranes. UF is as a
suitable alternative pretreatment step for NF and RO which
is able to remove microorganisms.

Microfiltration (MF)
Microfiltration is a kind of physical filtration process
which is commonly accepted for a removal p article mat-
ter of water. This technology can be used for both as a
pretreatment step or as a water treatment process alone.
On the other hand, this process is utilized for waters
with high turbidity as a treatment process or as a pre-
treatment process for NF or RO [78, 79]. Dissolved or-
ganic carbon cannot be easily removed by MF, unless
they are associated with particulates [80]. MF mem-
branes are produced with various materials such as poly-
mers, ceramics and metals, but only Polymeric and
ceramic membranes are used in the water treatment
field. Low cost, easy to scale up, and easy variation in
module form is the most important advantages of poly-
meric membranes compared to ceramic membranes. So,
they are commonly applied in water treatment process
[81]. Ceramic membranes have longer life span, excellent
chemical resistance, thermal stability and they are ther-
mally generable from used membranes, so they are
widely used in chemical processing [82]. This kind of
membrane has been investigated for NOMs removal and
it is clearly observed that MF membranes have a pore

Table 4 Summary of some recent studies on NOMs and DBPs removal by UF membrane

Solution Membrane, material,cut-off/pore
diameter, module type, TMP

Quality of permeate:
content and/or removal %

Variable Removal% Reference

Humic acid (Aldrich) 2 mg L−1,
DOC 8.7 mg L−1, different pHs

Different flat sheet
membranes or charges,
stirred cell, lab scale,69 kPa

55 RC, 100 kDa, neutral, pH 3.5 [117]

59–97 RC, 100 kDa, neutral, pH 7.5

79 RC, 100 kDa, charged, pH 3.5

92–98 RC, 100 kDa, charged, pH 7.5

66 PES, 100 kDa, zeta −12.3 mV

Surface water, TOC 2.3 mg
L − 1, SUVA 1.7, THMFP
70 μgL−1

Different flat sheet membranes,
stirred cell, lab scale

25 NTR-7410, S-PSu, 20 kDa 20 [118]

47 GR90, PSu, 10 kDa

50 ETNA01A, HPC, 1 kDa 44

53 HEKLA01A, amine + DIC, 1 kDa 48

Different surface and
groundwater

GM, PA TFC, 8 kDa, flat sheet,
tangential cross-flow, bench scale

64 DOC 2.0 mg L − 1, SUVA 2.4 38 [119]

84 DOC 3.9 mg L − 1, SUVA 4.4 60

93 DOC 9.8 mg L − 1, SUVA 4.9 85

93 DOC 6.8 mg L − 1, SUVA 5.7 87

Reservoir water, DOC 4.0
mg L − 1, SUVA 2.0

Ceramic, 4 nm, single channel
tubular, lab

UV28072 TMP 400 kPa 55 [120]

UV280 83 TMP 1200 kPa 75

Humic acid (Aldrich), DOC
10 mg L−1

KERMBMU1, Ceramic, 15
kDa/3.54 nm, single tubular,
bench scale

85 pH 2.4, zeta −2.9 mV, pI 1 mmol 59 [119]

pH 7.9, zeta −15.6 mV, pI 1 mmol 99

Natural water, DOC 3.4 mg
L − 1, SUVA 2.5, HMM ∼ 12
kDa, LMM ∼ 1.8 kDa

Different flat sheet membranes,
cross-flow, lab-scale

HMM PT, PES, 5 kDa 61 [75]

LMM 7,

THMs 60 μg L − 1 63,

HAAs 34 μg L − 1 38,

Moorland water, TOC 9.8
mg L−1

PSu, 100 kDa, flat sheet,
bench scale, 100 kPa

22 18 [108]
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size much larger than the NOMs particles. Hence, they
are ineffective for NOMs removal, beside their tendency
to stick to the pores and deposit onto the membrane
surface, which eventually, causes pore blocking. As a re-
sult, membrane fouling can be controlled by coagula-
tion/flocculation as pretreatment.

Conclusion
Natural Organic Matter (NOMs) and biopolymers and
their degradation product in surface water can react with
disinfection and cause different problems in drinking
water treatment and water supply systems and health
risk. Differences in NOMs Composition make it difficult
to remove completely. The most important properties of
membrane filtration are pore size. By decreasing of
membrane pore size, removal of NOMs is increasing.
Although, MF membranes have large pore size, but

unable remove NOMs, unless be obtained bigger
flocks by coagulated. This membrane is a suitable al-
ternative to removal suspended solids and colloidal
materials such as, pathogens and algae, as well as
economically acceptable than tighter membranes. Lar-
ger hydrophobic NOMs fractions are removed effect-
ively by negatively charged UF membrane, even on
the basis membrane would be expected more cutoff
value and NOMs size. These kinds of membranes
have some advantages. First, NOMs with small hydro-
philic compounds and acidic content are removed dif-
ficultly by size or charge exclusion by UF membranes.
Secondly, AOC and bacterial re-growth potential in
drinking water distribution systems be controlled by
UF membrane efficiently. For obtaining the required
water quality, MF and UF with combined by another
process such as adsorption, coagulation, oxidation
/BAC or tighter membranes (NF or RO) should be
applied at the same time.
Nanofiltration can be used to remove compounds from

macromolecular size to multivalent ions. By the sensitivity
of NF membrane to fouling, Extensive pretreatment (in-
clude MF/UF, conventional treatment or slow sand or
dual media filtration) are required to control colloidal, or-
ganic and biological fouling and scaling.
RO is cost effective membranes which can remove 99%

of dissolved material. This technique can remove both or-
ganic and inorganic DBPs precursors simultaneously, and
make it invaluable in DBPs minimization. However, RO
remains relatively expensive, requires extensive pretreat-
ment, has high energy consumption due to high operating
pressures, and is susceptible to scaling, as well as brine
disposal difficulties. The capital and operational expenses
of RO, as well as the disposal of the generated concentrate
are currently restricting of the widespread application this
technique in drinking water treatment plants.
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