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�e most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and
produce very shining colours in the water. In this regard, kenaf core 	ber (KCF) was chemically modi	ed by the quaternized agent
(3-chloro-2-hydroxypropyl)trimethylammonium chloride to increase surface area and change the surface properties in order to
improve the removing reactive anionic dyes from binary aqueous solution.�e in�uencing operating factors like dye concentration,
pH, adsorbent dosage, and contact time were examined in a batch mode. �e results indicate that the percentage of removal of
Reactive Red-RB (RR-RB) andReactive Black-5 (RB-5) dyes frombinary solutionwas increasedwith increasing dyes concentrations
and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on e�ect of pH
showed that the adsorption was not signi	cantly in�uenced by pH. �e equilibrium analyses explain that, in spite of the extended
Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing
the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption
kinetics for RR-RB and RB-5 dyes on QKCF.

1. Introduction

Environmental pollution due to speedy development of
industries causes harmful e�ect on human health and ecosys-
tem. �e textile dyeing industries have generated a massive
pollution problem because it is considered one of the most
industries which used a wide range of dyes in their produc-
tion. Consequently, it is the most polluting water sources
[1].

It is estimated that every year 280,000 tones of textile dyes
are released in textile mill e�uent [2], and unfortunately, all
factories are still using water streams for discharging their
e�uent water. However, the necessity for the renewal of our
water resources has received growing interest. �is has led
up to the evolution of strategies to the reversion of water
to its source in the least possible pollution form, to enable

using water again. �ese strategies and processes are termed
as “wastewater treatment” [3].

Although the colour is not included in the Environment
Conservation Rules which was published in 1997, it is an issue
in dye e�uent because, unlike other pollutants, it is so visible.
Consequently, international textile industries are increasingly
setting discharge standards for colour [4].

�e use of commercial activated carbon for removing
dyes is expensive as it is obtained fromnonrenewable starting
materials like lignite, coal, and petroleum coke. �erefore,
aqueous phase adsorption by utilizing di�erent types of
agroresidues is one of the most alternatives materials for
removing di�erent types of dyes (including reactive dyes)
from wastewater [5].

Agricultural biomass can be procured either directly from
plant species or indirectly from a processing of domestic,
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Table 1: Binary adsorption studies for the removal of reactive dyes from aqueous solution.

Binary dye system Adsorbent
Adsorption
capacity, ��
(mg/g)

Reference

Remazol Black B
Remazol Red

Wheat straw
2.1
2.5

[11]

Reactive Remazol Red F-3B
Remazol Blue

Coconut coir
activated carbon

2.01
12.19

[12]

Reactive Black-5,
Reactive Red E

Palm kernel
shell-activated carbon

—
—

[13]

Reactive Orange 16,
Basic Blue 3

Sugar cane bagasse
34.48
37.59

[14]

Reactive Orange 16,
Methylene Blue

Modi	ed rice husk
1.829
4.958

[15]

Reactive Red,
Reactive Blue

Activated carbon
3.01
1.45

[16]

Reactive Blue 2,
Eriochrome Black T

Chitosan-based
hydrogel

47.8
58.9

[9]

Reactive Orange 12
Direct Yellow 12

ZnS:Mn
nanoparticles loaded
on activated carbon

—
—

[17]

Reactive Orange
Basic Blue 3

Modi	ed rice hull
—
—

[8]

commercial, industrial, or agricultural products. Around
the world, an enormous amount of agricultural residues is
producing every year. Disposal of these agricultural residues
have generated a secondary environmental pollution. �is
increases the researchers’ interest to produce porous adsor-
bent which can be derived from renewable, abundant, and
low-cost substances generated froman agricultural origin [6].

Many agricultural wastes and natural adsorbents have
been tested for the removal of the dyes from textile e�uents
[7]. Lee et al. [8] studied the removal of Basic Blue-3
(BB3) and Reactive Orange-16 (RO16) dyes from single and
binary systems using ethylenediaminemodi	ed rice hull.�e
results showed that the sorption of both dyes was pH and
concentration-dependent. �e uptake of BB3 was favored at
high pH whereas that of RO16 was favored at low pH.

Oladipo et al. [9] studied the removal of Reactive Blue 2
and Eriochrome Black T dyes from single and binary solution
by adsorption on chitosan-based hydrogel. It was observed
that the maximum adsorption capacity for Reactive Blue 2
and Eriochrome Black T in binary solution was 47.8 and
58.9mg/g, respectively. �e recent reports in the removing
reactive dyes from binary system are tabulated in Table 1.

However, limited studies have been reported to transform
these agricultural residues to a suitable adsorbent for com-
mercial application to remove dyes by using batch adsorption
system [10].

In the present research, kenaf core 	ber (KCF) resid-
ual was chemically modi	ed with (3-chloro-2-hydroxy-
propyl)trimethylammonium chloride (CHPTAC) to alter the
surface properties and increase surface area to develop more
active sites to capture dyes from solution.

To date, the utilization of quaternized kenaf core 	ber
(QKCF) to adsorb binary reactive dyes has not been reported

elsewhere. In the present work, the mechanism of dyes
adsorption onto QKCF was studied to provide engineering
information (e.g., uptake capacities and equilibrium time)
to develop an adsorption design. �e constants parameters
that were obtained from equilibrium data of single dye were
utilized to predict the binary adsorption behavior of dyes.

2. Materials and Methods

2.1. Preparation Adsorbent from Kenaf Core Fibers. KCF
was obtained from Institute of Tropical Forestry and Forest
Product (INTROP) in Universiti Putra Malaysia. KCF coarse
powder was sieved using 1mm and 0.25mm stainless steel
sieves to get particles with size range from 0.25mm to 1mm.
�e sieved kenaf particles were washed a few times with tap
water to get rid of dust and undesirable particles. �e KCF
powder was rinsed with distilled water and dried in an oven
for 24 hours at 50∘C.

�e KCF was mercerized by soaking it in a solution
of 6.25mmol of NaOH for 24 hours. �e basic medium
swelled the 	bers walls and opened the pores to improve
KCF absorbency. Mercerized KCF (MKCF) was washed with
distilled water and dried in an oven at 50∘C for 24 hours.

�e quaternization was accomplished by reacting each
gram of dried MKCF with a solution consisting of 1.5 g
of NaOH, 6.67mL of (3-chloro-2-hydroxypropyl)trimeth-
ylammonium chloride (CHPTAC) solution (60wt% in
water), and 2.5mL of water. �e mixture was well-kept in
a closed container at room temperature for 24 hours. �en,
the quaternized kenaf core 	ber (QKCF) was washed with
0.1% acetic acid solution to halt the reaction and rinsed with
distilled water until neutral condition was achieved. �en,
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Table 2: General properties of reactive dyes.

Commercial name Reactive Red-RB Reactive Black-5

Chemical name Reactive Red 198 Remazol Black B

�max (nm) 288 599

Molecular weight (g/mol) 967.5 991.82

Chemical formula C27H18ClN7Na4O15S5 C26H21N5Na4O19S6
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Figure 1: Molecular structure of (a) Reactive Red-RB and (b) Reactive Black-5.

QKCF was dried at 50∘C for 24 hours and kept in a closed
container prior to use.

Fourier Transform-Infrared (FT-IR) Spectrometer 100
(PerkinElmer- precisely,UnitedKingdom)was used to record
Infrared (IR) spectra. FT-IR spectrum was used in this study
to identify the characteristic functional groups in QKCF.

Scanning Electron Microscope (SEM) (Hitachi Model S-
3400N) was used to investigate the structuremorphologies of
QKCF. �e SEM was registered at a magni	cation of 100 �m
and the instrument was turn on at 15 kV.

2.2. Preparation of Dyes Solution. Reactive Red-RB (RR-
RB) and Reactive Black-5 (RB-5) dyes were utilized as
adsorbates in the present study. �e structures of these two
dyes and the general properties of selected reactive dyes
are presented in Figure 1 and Table 2, respectively. Stock
solutions of 1000mg/L of dyes were prepared, respectively,
by dissolving 1.00 g of dye in 1 L distilled water. Solutions of
various concentrations were prepared by diluting the stock
solutions.

2.3. Single Adsorption Isotherm Studies. Adsorption isotherm
for single-component solution was studied by using 250mL
Erlenmeyer �asks. �e volume of dye was 100mL in
each �ask, and the initial dyes concentrations for single-
component solution were 100mg/L.�e dosage of QKCFwas
varying from0.05 to 0.16 g/100mL.All �askswere fully closed
using aluminum foil to prevent evaporation and leakage. �e
incubator shaker was set at 200 rpm, 25∘C, and 24 hours.
�e liquid and adsorbents were separated by using fast 	lter
paper. �e change in dye concentration in each solution was
determined using a spectrophotometer UV-1800 (Shimadzu,
Japan). �e concentration of each dye was measured at

maximum wavelength (�max) 288 nm and 599 nm for the
RR-RB and RB-5, respectively. �e adsorption capacity at
equilibrium condition, �� (mg/g)was calculated using (1) and
a dye removal percentage was calculated by using (2).

�� = (�� − ��)
�
	 (1)

% Removal = �� − ����
∗ 100, (2)

where�� and�� represent the initial and 	nal dye concentra-
tions (mg/L), respectively,	 represents the weight of QKCF
(g), and � refers to the volume of dye solution (�) [18].

2.4. Binary Adsorption Studies. In binary systems, the ratio
of mixing for each sample was 1 : 1, which mean that every
100mL of dyes solution was prepared by mixed 50mL of RR-
RB dye with 50mL of RB-5 dye. �e concentration of each
dye was changed depending on the experiments.

To investigate the in�uence of dye concentration on
the removal e�ciency of RR-RB in the presence of RB-
5 dye, a varying concentration of RR-RB range from 25–
100mg/L was mixed with a 	xed concentration of RB-5
(25mg/L or 100mg/L). In order to investigate the e�ects of
dye concentration on the removal e�ciency of RB-5 in the
presence of RR-RBdye, a varying concentration ofRB-5 range
from 25–100mg/L was mixed with a 	xed concentration of
RR-RB (25mg/L or 100mg/L). For all the experiments, three
di�erent pH (4, 6, and 8) were used and 0.1 g of QKCF dosage
was added to each �ask.

To investigation the e�ects of initial dye concentration,
the two dyes were mixed with an equal concentration range
from 20–200mg/L. One g/L QKCF was added to each �ask.
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Figure 2: Calibration curves for RR-RB and RB-5 dyes at (a) �max = 288 nm and (b) �max = 599 nm.

�e study of the e�ect of adsorbent dosage was carried
out at di�erent weight of QKCF ranging from 0.05 to
0.25 g/100mL while the concentrations of dyes in multicom-
ponent are ranging from 25 to 100mg/L.

Adsorption isotherm for a multicomponent solution
was studied by using the same procedure �owed in single
component and the dye concentration in multicomponent
was kept constant at 100mg/L.

�e study of the e�ect of contact time was achieved
by varying the dye concentrations in multicomponent from
20 to 100mg/L. �e samples were withdrawn at increasing
contact time intervals ranging from 15min to 180min. From
this study, the kinetics of adsorption was determined.

2.5. Measurement of Dye Concentration in Multicomponent
Solution. UV-spectrophotometer method is the common
procedure for determination of the dye concentration in their
mixture. To achieve that, linear relation between absorbance
(�) and concentration of dye (�) (mg/L) which was given by
Beer-Lambert law in (3) was applied [19].

� = 
� + �, (3)

where

� is absorbance of light at a maximum wave length
(�max);


 is the absorbance coe�cient (slope of linear rela-
tion);

� is the concentration of dye in solution (mg/L);

� is the intercept of a linear relation.

For binary system, the total absorbance �1 at �1max will be
the sum of absorbance of the individual components � and
�, which can be written as

�1 = ��1 ∗ �� + ��1 ∗ ��. (4)

Similarly, for �2 that was measured at �2max it can be written
as

�2 = ��2 ∗ �� + ��2 ∗ ��. (5)

�e combination of above equations results in (6) and (7),
respectively. Equations (6) and (7) provide the values for the
concentration of each component, CR (RR-RB) and CB (RB-
5).

�� = (��2 ∗ �1 − ��1 ∗ �2)(��1 ∗ ��2 − ��2 ∗ ��1) (6)

�� = (��1 ∗ �2 − ��2 ∗ �1)(��1 ∗ ��2 − ��2 ∗ ��1) , (7)

where ��1, ��1, ��2, and ��2 represent the calibration
constants for dyes RR-RB and RB-5 at wavelengths 288 nm
and 599 nm, respectively.

�erefore, to calculate the dye concentrations of each dye
in binary solution, four calibration curves were built to deter-
mine four calibration coe�cients using pure standards dyes
of RR-RB and RB-5 of known concentration as illustrated in
Figure 2. As shown in Figure 2, the calibration constants for
RR-RB and RB-5 are


�1 = 0.032,

��1 = 0.0136

measured at �1max = 288 nm

��2 = 0.00045,

��2 = 0.0172

measured at �2max = 599 nm.

(8)

So, the concentrations of RR-RB and RB-5 dyes were calcu-
lated depending on

�� = ((0.0172 ∗ �1) − (0.0136 ∗ �2))
((0.032 ∗ 0.0172) − (0.00045 ∗ 0.0136))

�� = ((0.032 ∗ �2) − (0.00045 ∗ �1))
((0.032 ∗ 0.0172) − (0.00045 ∗ 0.0136)) .

(9)

3. Results and Discussion

3.1. Characterization of Adsorbent. �e FT-IR spectra of
NKCF and QKCF are shown in Figure 3. QKCF has
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Figure 3: FT-IR spectra for NKCF and QKCF.

absorption bands at 2878 cm−1 and 2341 cm−1 which cor-
respond to the stretching vibrations of O-H and stretching

of C-H, respectively. �e absorption bands at 1783 cm−1,
1654 cm−1, and 1592 cm−1 on QKCF spectrum are assigned to

aromatic C=C stretch [20]. Furthermore, peaks at 1474 cm−1

and 1419 cm−1 that are assigned to C-H stretching of tert-
butyl group are an evidence of successful reaction between
quaternary ammonia and QKCF. C-O stretch mode in C-

O-C cellulose linkage appeared at 1059 cm−1 and 1062 cm−1

for NKCF and QKCF, respectively. �e bands at QKCF

and NKCF from 787 cm−1 to 706 cm−1 are assigned to CH2
rocking.

SEM is a primary tool for characterizing the surface
morphology and fundamental physical properties of the
adsorbent surface.�e textural structures of granular natural
KCF (NKCF), mercerized KCF (MKCF), and quaternized
KCF (QKCF) were observed by SEM images (Figure 4).
Figure 4(c) shows that the enlargement pores had turned into
crevices and reveal native cellulose andmore native cellulose;
thus the previously unreachable interior part of the 	ber was
able to react with dye [21]. Furthermore, larger pores aremore
suitable for adsorption of bulky substrates such as reactive
dyes [22].

BET analysis revealed that the surface area (SBET)

increased from 2m2/g for NKCF to 4m2/g for QKCF. �e
average pore diameter of NKCF is 106 nm, and QKCF has
an average pore diameter of 283 nm. Enlargement of the pore
size is due to the dissolved lignin and hemicellulose in NaOH
solution during themercerization process. Furthermore, pore

volume slightly decreased from 0.1699 cm3/g for NKCF to

0.1128 cm3/g forQKCF. It is attributed to the smoother texture
of KCF surface a�er chemical quaternization.

3.2. E�ect of Initial Dye Concentration. Figures 5(a) and
5(b) show the e�ect of initial RR-RB dye concentrations on
the removal percentages of RR-RB dye onto QKCF while
maintaining the concentration of RB-5 dye concentrations
at 25mg/L (Figure 5(a)) and 100mg/L (Figure 5(b)), respec-
tively. �e pH of the adsorption systems were adjusted to pH
4, 6, and 8 to investigate the e�ect of pH on the removal
percentages of RR-RB dye by QKCF adsorbent.

RR-RB dye removals were increased from 93% of removal
up to 98% of removal as the initial RR-RB dye concentrations
were increased from 25mg/L up to 100mg/L (Figure 5(a)).
On the other hand, Figure 5(b) shows that the RR-RB dye
removals were increased from91.5%of removal up to 97.5%of
removal as the concentrations of RR-RB dye were increased
from 25mg/L to 100mg/L. In addition, Figure 5 revealed
that the removal percentages of RR-BB were almost similar
although the initial concentrations of RB-5 were adjusted
from 25mg/L (Figure 5(a)) to 100mg/L (Figure 5(b)).

Figures 6(a) and 6(b) show the e�ect of initial RB-
5 dye concentrations to the removal percentages of RB-5
dye onto QKCF while 	xing the concentration of RR-RB
dye concentrations at 25mg/L (Figure 6(a)) and 100mg/L
(Figure 6(b)), respectively. �e pH of the adsorption systems
were adjusted to pH 4, 6, and 8 to investigate the e�ect
of pH on the removal percentages of RB-5 dye by QKCF
adsorbent. Figure 6(b) shows that RB-5 dye removals were
increased from 98.5% to 99.5% as the initial RB-5 dye con-
centrations were increased from 25mg/L up to 100mg/L. On
the other hand, Figure 6(b) shows that the RB-5 dye removals
were 	xed around 99.5% as the concentrations of RB-5 dye
were increased from 25mg/L up to 100mg/L. In addition,
Figure 6 revealed that the removal percentages of RB-5 were
almost similar although the initial concentrations of RR-
RB were adjusted from 25mg/L (Figure 6(a)) to 100mg/L
(Figure 6(b)).

�e variation of pH (pH 4, 6, and 8) in adsorption system
for both cases (Figures 5 and 6) resulted in identical trend
of dyes removal.�is indicates that the adsorption of reactive
dyes ontoQKCF is not in�uenced by the pHof the adsorption
system.

In RR-RB and RB-5 binary dye systems, RB-5 generally
presented preferable adsorption on QKCF (Figure 7). A
higher concentration of both dyes in solution would result
in further dyes adsorption on the QKCF due to the fact
that increase in the initial dye concentrations causes increase
in the driving force to overcome the resistance of the mass
transfer of dye between the solution and the adsorbent
surface [23].

3.3. E�ect of Adsorbent Dosage. �e percentage of removals
of RR-RB and RB-5 in a binary system is shown in Figure 8.
Generally, in all cases (Figures 8(a), 8(b), 8(c), and 8(d), resp.)
the removal percentage of RR-RB dyes was decreased as the
doses of adsorbent were increased from0.05mg/100mLup to
0.25mg/100mL. �is might be due to the less availability of
RR-RB and RB-5 dyes to be adsorbed by the increasing active
sites of adsorbent.

3.4. E�ect of Contact Time. Figure 9 shows the e�ect of
contact time on the removal of RR-RB in the presence of RB-5
in binary system. It was shown that, at various concentrations
of dyes (20mg/L up to 100mg/L), the RR-RB dye was rapidly
adsorbed in the 	rst 60min of contact time and reached
equilibrium at ∼100min of contact time. Similar trend was
revealed in the case of binary system for the removal of RB-
5 dye in the presence of RR-RB dye (Figure 10). �e rapid
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(a) (b) (c)

Figure 4: SEM images: (a) natural KCF, (b) mercerization KCF, and (c) quaternization KCF.
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Figure 5: E�ect of initial RR-RB dye concentrations on the removal percentages of RR-RB dye by QKCF at di�erent pH in the presence of (a)
25mg/L of RB-5 dye and (b) 100mg/L of RB-5 dye (QKCF dosage = 0.1 g/100mL, agitation speed = 200 rpm, time = 4 hr., and temp. = 25∘C).

adsorption at the initial 60min of contact time might be due
to the adsorption by the outer surface of the adsorbent. As
the active sites of an exterior layer of the adsorbent have been
fully saturated, the dyes were exerted into the pores of the
adsorbent and occupied the interior layer of the adsorbent.
�e adsorption onto the active sites at the interior layer took a
longer time to be completed before equilibriumwas achieved
[24]. In addition, as shown in Figures 9 and 10, the maximum
dye removals were achieved as the concentrations of dyes
were maximum (100mg/L) in both cases. Meanwhile, the
minimumdyes removals were obtained as the concentrations

of dyes were minimum (20mg/L) in both binary systems.
�is might be due to the fact that increase in initial dye
concentration enhances the interaction between dye and
adsorbent [25].

3.5. Adsorption Isotherms for Single System. Adsorption
isotherms are basic requirements for any adsorption systems
design. To quantify the adsorption capacity of adsorbents
for the removal of adsorbate from aqueous solution, the
equilibrium of a solute separated between liquid and solid
phase is demonstrated by di�erent models of adsorption
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Table 3: Langmuir isotherm constants for RB-5 and RR-RB on
QKCF in single system.

Dyes in single system
Langmuir constants

�max (mg/g) � (L/mg) 
�(L/g) �2
RB-5 270.3 0.9024 243.9 0.95

RR-RB 169.5 0.444 75.2 0.992

isotherms. One of these adsorption isotherms is Langmuir
isotherm model. �e applicability of the isotherm equations
was a comparison by referring to the correlation coe�cient,

�2 [26]. Langmuir model is characterized by the conditions
that each site can take in only one molecule and adsorption
energy is the same at all sites. In addition, the adsorbed

molecules cannot move across the surface or react with
neighboring molecules [27]. �is model is given by (10) and
the linearization form of Langmuir’s model is given by (11)
[28].

�� =
�max���
1 + ���

(10)

��
��
= 1��max

+ ���max

, (11)

where �� is the amount of adsorbate dye per unit mass
of adsorbent weight of QKCF at equilibrium (mg/g), �max

(mg/g) is a constant related to the area occupied by a
monolayer of adsorbate, re�ecting the maximum adsorption
capacity, � (L/mg) is a direct measure of the intensity of
the sorption, and �� is the equilibrium concentration in the
solution (mg/L). A plot of��/�� versus�� results in a straight
line of slope (1/�max) and an intercept of (1/��max).

�e equilibriumadsorption isotherms forRR-RB andRB-
5 dyes adsorption onto QKCF are shown in Figures 11 and 12,
respectively, and the isotherms parameters are calculated and
presented in Table 3.

3.6. Adsorption Isotherms for Binary System. �e equilibrium
adsorption isotherms parameters for RR-RB and RB-5 dyes
adsorption onto QKCF in binary experimental system are
shown in Table 4. As can be observed from Table 4, the
maximumadsorption capacity (�max) for binary dye solutions
was found to be smaller than �max in single solution. �is
can be explained by the fact of competition and interaction
between two dyes in binary system.
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Figure 8: E�ect of di�erent adsorbent dosages in binary system with (a) 25mg/L initial concentrations of RR-RB and RB-5, (b) 50mg/L
initial concentrations of RR-RB and RB-5, (c) 75mg/L initial concentrations of RR-RB and RB-5, and (d) 100mg/L initial concentrations of
RR-RB and RB-5 (temperature = 25∘C, agitation speed = 200 rpm, and adsorption time = 4 hr.).

3.6.1. Extended Langmuir Equation (ELE). �e Langmuir
model can be extended for binary system dye to give (12).
�is model was 	rst developed by Butler and Ockrent [29];
they assumed that all the sites are equivalent, each site can
hold at most one molecule of dye 1 or one molecule of dye 2
but not both, and there are no interactions between adsorbate
molecules on adjacent sites.

�� =
�max,�����,�
1 + ∑��=1 ����,�

. (12)

For binary system the above equation becomes

�1 =
�max,1�1��,1
1 + �1��,1 + �2��,2

(13)

�2 =
�max,2�2��,2
1 + �1��,1 + �2��,2

, (14)

where �1 and �2 are the amounts of dyes 1 and 2 adsorbed per
unit weight of sorbent at equilibrium concentrations of dyes
��1 and��2 in a binary solution, respectively. �max,1 and �max,2
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Figure 9: E�ect of contact time on the removal of RR-RB dye in
the presence of RB-5 dye (binary system) (temp. = 25∘C, speed =
200 rpm, dose = 0.1 g/100mL, and con. of RR-RB = con. of RB-5).
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Figure 10: E�ect of contact time on the removal of RB-5 dye in
the presence of RR-RB dye (binary system) (temp. = 25∘C, speed =
200 rpm, dose = 0.1 g/100mL, and con. of RR-RB = con. of RB-5).

Table 4: Langmuir isotherm constants for RB-5 and RR-RB in
binary system.

Dye in binary system
Langmuir constants

�max (mg/g) � (L/mg) 
� (L/g) �2
RB-5 142.86 2.414 344.83 0.9912

RR-RB 116.3 0.18 20.8 0.9929

are the maximum adsorption capacities from the Langmuir
isotherm of dyes 1 and 2 in single dyes system. �1, �2 are the
Langmuir isotherm constants for single dyes systems.

Consequently, for the binary system of RR-RB and RB-
5 dyes the extended Langmuir equation (a�er replacing the
values of a parameter from Table 3) will become

��,RB-5 =
270.3 ∗ 0.9024��,RB-5

1 + 0.9024��,RB-5 + 0.444��,RR-RB
(15)

��,RR-RB =
169.5 ∗ 0.444��,RR-RB

1 + 0.9024��,RB-5 + 0.444��,RR-RB
. (16)
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Figure 11: Langmuir adsorption isotherm of RR-RB onto QKCF
(temp. = 25∘C, agitation speed = 200 rpm, time = 24 hr., and initial
dye concentration = 100mg/L).
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Figure 12: Langmuir adsorption isotherm of RB-5 onto QKCF
(temp. = 25∘C, agitation speed = 200 rpm, time = 24 hr., and initial
dye concentration = 100mg/L).

To evaluate the best 	tted isotherm model, the sum of
the squares of the errors (SSE), (17) was used to calculate the
divergence of each isotherm model from experimental data
[30].

�
∑
�=1
(�exp − �cal)

2 . (17)

Figures 13 and 14 show the extended Langmuir equation
applicable for the adsorption of RB-5 andRR-RB in the binary
system. �e sum of the squares errors for the correlation
between the experimental data and that predicted by the
extended Langmuir isotherm for RB-5 and RR-RB in binary
system are 6386 and 1425, respectively. Moreover there are
signi	cant di�erences between calculated and experimental
data which were observed, which indicate that extended
Langmuir equation failed to explain the adsorption of the
binary mixture of RR-RB and RB-5 dyes on the QKCF
adsorbent. �e failure of the model suggested that the binary
adsorption might be competitive.

3.6.2. Jain and Snoeyink Modi	ed (JSM) Extended Langmuir
Model. According to Jain and Snoeyink [31], the Langmuir
theory for binary adsorbed system is based on sorption
without competition. �erefore, in order to compute for
competition in the Langmuir theory, the Jain and Snoeyink
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Figure 13: Extended Langmuir model for RB-5 in binary system
with RR-RB (temp. = 25∘C, speed = 200 rpm, time = 24 hr., and con.
of RR-RB = con. of RB-5 = 100mg/L).
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Figure 14: Extended Langmuir model for RR-RB in binary system
with RB-5 (temp. = 25∘C, speed = 200 rpm, time = 24 hr., and con.
of RR-RB = con. of RB-5 = 100mg/L).

model o�ered to add an additional term into (13) to become
(18).

�1 =
(�max,1 − �max,2) �1��,1
1 + �1��,1

+
�max,2�1��,1
1 + �1��,1 + �2��,2

(18)

�2 =
�max,2�2��,2
1 + �1��,1 + �2��,2

. (19)

�e 	rst term on the right-side of (18) is the Langmuir
expression for the number of molecules of dye 1 that sorb
without competition on the surface area of the adsorbent and
the term is proportional to (�max,1 − �max,2), where �max,1 >
�max,2, while the second term gives the amount of dye 1
adsorbed in competition with a second dye.

Figures 15 and 16 indicate the comparison between exper-
imental data and predicted data by the Jain and Snoeyink
modi	ed extended Langmuir model. Figure 15 refers to
disagreement between the model prediction and the exper-
imental data with a sum of the squares errors equal to 14235
for RB-5, which is higher than that obtained from extended
Langmuir equation. On the other hand, the sum of the
squared errors between the prediction data and experimental
data for RR-RB was 1425.

Overall, although the extended Langmuir model was
failed to describe the data in the binary system, it is better
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Figure 15: Jain and Snoeyink model for RB-5 in binary system with
RR-RB (temp. = 25∘C, speed = 200 rpm, time = 24 hr., and con. of
RR-RB = con. of RB-5 = 100mg/L).
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Figure 16: Jain and Snoeyink model for RR-RB in binary system
with RB-5 (temp. = 25∘C, speed = 200 rpm, time = 24 hr., and con.
of RR-RB = con. of RB-5 = 100mg/L).

to represent the binary system than the Jain and Snoeyink
modi	ed extended Langmuir model.

3.7. Adsorption Kinetics Models for Dyes in Binary System.
Kinetics adsorption study provides information about the
mechanism of adsorption and also important for the qual-
i	cation of the adsorption process [32]. It is important to
de	ne the average of adsorption during removing dyes from
aqueous solution to optimize the design parameters because
the kinetics of the system controls the adsorbate residence
time and reactor dimensions. As a result, predicting the rate
at which adsorption takes a place for any system is may be the
most important factor in adsorption system design [33].

In order to analysis the experimental data for adsorption
kinetics of RB-5 and RR-RB onto QKCF, the pseudo-	rst-
order and pseudo-second-order models were utilized. Equa-
tion (20) was used to describe the linear form of the pseudo-
	rst-order model [34].

log (�� − ��) = log �� −

1
2.303 �,

(20)

where �� and �� are the amounts of dye adsorbed on
adsorbent at equilibrium and at time �, respectively (mg/g),
� is the contact time (min), and 
1 is the rate constant of
pseudo-	rst-order model (1/min).

�e values of constant 
1 and calculated �� were
obtained from the slope and intercept, respectively, of plots
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Figure 17: Pseudo-	rst-order kinetic model for adsorption RB-5 in
binary system with RR-RB (temp. = 25∘C, speed = 200 rpm, dose =
0.1 g/100mL, and con. of RR-RB = con. of RB-5).
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Figure 18: Pseudo-	rst-order kinetic model for adsorption RR-RB
in binary system with RB-5 (temp. = 25∘C, speed = 200 rpm, dose =
0.1 g/100mL, and con. of RR-RB = con. of RB-5).

log(�� − ��) versus time (�) as shown in Figures 17 and 18.

�e parameters and correlation coe�cient (�2) of pseudo-
	rst-order kinetic model were listed in Table 5. It clear from
Table 5 that the calculated �� values for two dyes and for
all concentration did not agree with experimental �� values;
thus the pseudo-	rst-order model did not 	t well for the
experimental data. In recent years, the pseudo-second-order
model has been widely used to descript the adsorption of
dyes from aqueous solutions. Pseudo-second-order model
(21) had been achieved by plotting �/�� versus time (�) [35].

�
��
= 1
2�2�

+ 1��
�, (21)

where �� (mg/g) is the equilibrium adsorption capacity and

2 (mg/gmin) is the equilibrium rate constant of pseudo-
second-order adsorption.

�e values of 
2 and calculated �� can be 	ned from
the slope and intercept of a plot of �/�� versus time (�) as
shown in Figures 19 and 20. �e parameters and correlation

coe�cient (�2) of pseudo-second-order kinetic model were
listed in Table 5. From Table 5, it can be seen that the
correlation coe�cients �2 are ranging from 0.9999 to 1 and
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Figure 19: Pseudo-second-order kinetic model for adsorption RB-5
in binary system with RR-RB (temp. = 25∘C, speed = 200 rpm, dose
= 0.1 g/100mL, and con. of RR-RB = con. of RB-5).

100mg/L
80mg/L

60mg/L

mg/L

20

40

mg/L

0
1
2
3
4
5
6
7
8
9

10
11
12

t/
q
t

30 60 90 120 150 1800

Time (min)

Figure 20: Pseudo-second-order kinetic model for adsorption RR-
RB in binary systemwith RB-5 (temp. = 25∘C, speed = 200 rpm, dose
= 0.1 g/100mL, and con. of RR-RB = con. of RB-5).

the calculated �� values are in agreement with experimental
�� values.�is indicates that the pseudo-second-ordermodel
provided the best correlation with experimental data. Hence,
the adsorption kinetic of RB-5 andRR-RB onQKCFoccurred
by chemisorption and internal di�usion mechanism based
on the assumption in the pseudo-second-order kineticmodel
[36].

4. Conclusions

�e results of adsorption RR-RB and RB-5 dyes in binary
system showed that QKCF can be e�ectively used as a
bioadsorbent for the removal of anionic dyes. �e QKCF
bioadsorbent shows high sorption capacities toward RR-RB
and RB-5. �e kinetic studies stated that the adsorption
kinetics of dyes on QKCF followed the pseudo-second-
order model at di�erent dye concentrations. According to
the present study, one could conclude that the QKCF is an
e�ective adsorbent for anionic dyes removal from coloured
textile wastewater.
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Table 5: Parameters and correlation coe�cient (�2) for pseudo-	rst-order and pseudo-second-order kinetic models for adsorption RB-5 and
RR-RB by QKCF in binary system.

Dye in binary
system

Initial dye concentration
(mg/L)

�� exp
(mg/g)

Pseudo-	rst-order kinetic model Pseudo-second-order kinetic model

�� cal. 
1 �2 �� cal. 
2 �2

RB-5

20 19.5 1.83 0.01612 0.91 19.6 0.023 0.9999

40 39.3 3.57 0.028 0.9384 39.68 0.0157 1

60 59.5 3.02 0.024 0.8213 59.88 0.0133 0.9999

80 79.54 15.22 0.037 0.957 80.6 0.0055 1

100 99.6 23.56 0.037 0.9812 101 0.0035 0.9999

RR-RB

20 17.93 1.1 0.032 0.959 18.02 0.081 1

40 38.1 1.68 0.017 0.833 38.3 0.025 1

60 57.88 1.71 0.0196 0.711 58.14 0.0189 1

80 77.73 8.1 0.0341 0.928 78.7 0.0084 1

100 97.5 9.22 0.0272 0.901 99 0.0055 1
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