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Abstract

Background: For plant species with unsequenced genomes, cDNA contigs created by de novo assembly of RNA-

Seq reads are used as reference sequences for comparative analysis of RNA-Seq datasets and the detection of

differentially expressed genes (DEGs). Redundancies in such contigs are evident in previous RNA-Seq studies, and

such redundancies can lead to difficulties in subsequent analysis. Nevertheless, the effects of removing redundancy

from contig assemblies on comparative RNA-Seq analysis have not been evaluated.

Results: Here we describe a method for removing redundancy from raw contigs that were primarily created by de

novo assembly of Arabidopsis thaliana RNA-Seq reads. Specifically, the contigs with the highest bit scores were

selected from raw contigs by a homology search against the gene dataset in the TAIR10 database. The two existing

methods for removal of redundancy based on contig length or clustering analysis used to eliminate redundancies

from raw contigs. Contig number was reduced most effectively with the method based on homology search. In a

comparative analysis of RNA-Seq datasets, DEGs detected in contigs that underwent redundancy removal via the

homology search method showed the highest identity to the DEGs detected when the TAIR10 gene dataset was

used as an exact reference. Redundancy in raw contigs could also be removed by a homology search against

integrated protein datasets from several plant species other than A. thaliana. DEGs detected using contigs that

underwent such redundancy-removed also showed high homology to DEGs detected using the TAIR10 gene

dataset.

Conclusion: Here we describe a method for removing redundant contigs within raw contigs; this method involves

a homology search against a gene or protein database. In principal, this method can be used with unsequenced

plant genomes that lack a well-developed gene database. Redundant contigs were not removed adequately via

either of two existing methods, but our method allowed for removal of all redundant contigs. To our knowledge,

this is the first reported improvement in accurate detection of DEGs via comparative RNA-Seq analysis that involved

preparation of a non-redundant reference sequence. This method could be used to rapidly and cost-effectively

detect useful genes in unsequenced plants.
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Background

Genome editing technology allows modification of target

genes and introduction of foreign genes into a specific

genomic region [1, 2]. To accelerate plant breeding using

such technology, it is necessary to identify useful genes

that can improve target traits. For example, the objective

of breeding golden rice, which is high in the vitamin A

precursor beta-carotene, was achieved by identifying

CrtI and Psy as useful genes from vitamin A synthesis-

related genes via comprehensive analysis [3]. Thus, com-

prehensively detecting all genes involved in a target trait

is considered an important first step in identifying genes

important to a breeding objective.

Analysis of differentially expressed genes (DEGs) by

microarrays [4–6] or next generation sequencing [7–9]

has been used to comprehensively detect all genes in-

volved in several different traits. However, analysis of

genes with low transcript abundance via microarray

technology is difficult because the microarray detection

limit is relatively high [10]. In addition, microarrays can

analyze only the particular set of genes arrayed on a

DNA chip, which must therefore contain the gene of

interest. In contrast, transcriptome analysis using next

generation sequencing (i.e. RNA-Seq) can detect all

expressed genes without relation to their transcript

abundance [10]. Thus, RNA-Seq is a more suitable

method for comprehensive DEG detection that is aimed

at identification of useful genes, but RNA-Seq requires

the whole genome of the target species as a reference

sequence.

The reference sequence for RNA-Seq can be obtained

easily if the genome of the target species has been se-

quenced [10], but must be prepared another way if the

genome is unsequenced. Sequencing of the whole gen-

ome in the target species is one solution, especially as

the cost of genome sequencing becomes lower [11].

However, genome sequencing of wild species in which

the existence of useful genes is unclear has a higher

cost-to-benefit ratio than does sequencing of cultivated

species. Also, genome sequencing is extremely difficult

in allopolyploid species [12]. For these reasons, con-

struction of a reference sequence by de novo assembly of

RNA-Seq reads has been tried repeatedly [13–15].

Several programs for de novo assembly of RNA-Seq

reads (e.g., Velvet, Trinity, and SOAP de novo) have been

developed [16–19]. Trinity is designed to assemble short

reads [20], and is expected to be suitable for construc-

tion of reference sequence from RNA-Seq reads. Indeed,

cDNA contigs assembled from RNA-Seq reads using

such assemblers have been used as reference sequence

for comprehensive gene detection via RNA-Seq [13–15].

Previously, methods for improvement of de novo assem-

bly were thoroughly investigated [21]; however, the num-

ber of cDNA contigs was still significantly higher than

the number of estimated genes. This suggests that mul-

tiple contigs are formed for individual genes because of

assembly of incomplete reads; these duplicate contigs

represent redundancy in the contig assembly. The exist-

ence of such contig redundancy is likely to pose difficul-

ties in comparative analysis aimed at detecting DEGs

[22]. If redundant contigs are used as a reference

sequence for RNA-Seq data, several contigs derived from

the same gene would be incorrectly identified as differ-

ent DEGs.

Several approaches for removal of redundant contigs

have been proposed. When RNA-Seq reads are assem-

bled with Trinity, a group of integrated contigs (called a

subcomponent) is formed when considering splicing var-

iants. Yang et al. tried to remove redundancy by select-

ing the longest contig from each subcomponent formed

by Trinity [15]. Several groups used CD-HIT to remove

redundant contigs from de novo contig assemblies by re-

moving contigs that showed homology; CD-HIT is a

program that selects as a representative sequence the

longest contig in each cluster of contigs [21, 23–25].

Though both approaches led to fewer, longer contigs,

the number of contigs was still large; moreover, the stud-

ies did not assess whether removal of redundant contigs

via these approaches actually improved the accuracy of

DEG detection via comparative RNA-Seq analysis.

Therefore, developing an effective method for removing

redundant contigs should specifically focus on improving

accurate detection of DEGs.

To re-create an accurate reference sequence for de-

tecting useful genes, several issues should be considered.

The set of contigs should contain no redundancy; in

other words, only unique contigs should remain, even if

removal of redundant contigs results in an incomplete

set of contigs. To create a redundancy-free reference se-

quence, we used BLAST, the Basic Local Alignment

Search Tool [26], which has been used for removing re-

dundancy together with the alignment program, CAP3,

as well as for annotation [27]. In these BLAST searches,

it is assumed that there will be contigs exhibiting hom-

ology with other contigs, and such contigs may be

regarded as redundant. Complete removal of all redun-

dant contigs by this method is expected to greatly

improve accurate detection of DEGs.

In this study, we evaluated the efficacy of removing re-

dundant contigs from a raw contig assembly of A. thali-

ana RNA-seq reads using the well-developed A.

thaliana gene database. We also compared two existing

methods for removal of redundant contigs with our

homology search-based method using BLAST alone with

regard to accurate detection of DEGs in a comparative

RNA-Seq analysis; one of these existing methods selects

the longest contig from each subcomponent; the other

method used CD-HIT to remove all shorter contigs that
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have homology with a longer contig. Our method se-

lected contigs with the highest bit score in a BLAST

search. Additionally, for application of our method to

plant species with unsequenced genomes, we removed

redundant contigs from the set of raw contigs via

BLAST searches with protein datasets of various plants

instead of A. thaliana gene datasets and confirmed the

effect on accuracy of DEGs detection.

Methods

Data

Datasets of A. thaliana RNA-Seq reads for de novo con-

tig assembly and comparative analysis were downloaded

via the SRA download page (http://www.ncbi.nlm.nih.-

gov/sra). Transcript sequence datasets from A. thaliana

(TAIR10; [28]) were downloaded via the TAIR database

(http://www.arabidopsis.org) for detection and removal

of redundant contigs. All protein-coding transcripts were

selected from the database, and a set of 35,385 transcript

sequences is referred to here as the gene dataset. GO

terms for A. thaliana were downloaded via the AgriGO

download page (http://bioinfo.cau.edu.cn/agriGO/down-

load.php) [29]. Protein datasets of Carica papaya, Can-

nabis sativa, Glycine max, Medicago truncatula, Oryza

sativa, Prunus persica, Populus trichocarpa, Ricinus

communis, Sorghum bicolor, Setaria italica, Solanum

lycopersicum, Selaginella smoellendorffii, Vitis vinifera,

and Zea mays were also downloaded via the AgriGO

download page. Protein datasets were used to remove

redundant contigs. The protein datasets for each of the

other 14 species (listed above) were combined; the com-

bined dataset was named Plant DB. A non-duplicative

database based on Plant DB was formed using the CD-

HIT program [23] with an identity setting of 0.5; this

database was designated the PlantClust50 DB.

De novo assembly of RNA-Seq reads

All reads for the RNA-Seq datasets derived from roots,

floral buds, or seedlings of 10-day-old A. thaliana seed-

lings (Table 1) were used for de novo assembly using the

Trinity platform [18]. Contigs assembled with a

minimum-contig-length parameter setting of 120 nucle-

otides; the default settings were used for all other pa-

rameters. Contigs generated via this primary assembly

process were considered raw contigs.

Detection of redundancies in raw contigs

Homology searches of raw contigs were performed lo-

cally using the blastn algorithm and the TAIR10 gene

dataset or using blastx and protein datasets, i.e. Plant

DB or PlantClust50 DB; neither an e-value nor an iden-

tity cut-off was used in these searches. Any contig show-

ing homology to any gene or protein was designated a

hit contig. If the contig showed homology to a single

gene or protein, it was classified as a unique hit contig.

Any contig that did not show homology to any gene was

classified as a no-hit contig. Contigs that showed hom-

ology to a single gene along with other contigs were cat-

egorized as multiple hit contigs. Based on the homology

search results, the gene or protein corresponding to each

contig was defined.

Removal of redundancies from raw contigs

We used three approaches to remove redundant contigs

from the set of raw contigs. 1) The longest contigs were

selected from each subcomponent of raw contigs gener-

ated by Trinity as described in Yang et al. [15]. 2) The

CD-HIT program was used to generate clusters of raw

contigs; the identity setting was 0.9 and the default pa-

rameters used were described previously [24, 25]; the

longest sequence in each cluster was identified and des-

ignated a clustered contig. 3) The contig with the high-

est BitScore for each respective gene or protein was

selected from raw contigs based on the results of hom-

ology searches that were designed to detect redundant

contigs; this highest-scoring contig was designated an

annotated contig. Annotated contigs were also selected

based on the results of blastx algorithm homology

searches with raw contigs as query sequences and the

protein datasets of Plant DB or PlantClust50 DB as the

reference dataset, and based on the dataset, each

Table 1 Summary of reads used for de novo assembly

Library Source Total number of reads Number of bases (giga base) Average length (bases)

SRR314813 11-day-old seedling, Col-0 28,783,170 2.4 83.4

SRR314814a 10-day-old root, Col-0 31,362,126 2.6 82.9

SRR314815a stage 12 floral bud, Col-0 28,988,204 2.4 82.8

SRR314816 11-day-old seedling, Can-0 27,886,057 2.3 82.5

SRR314817 10-day-old root, Can-0 33,556,983 2.8 83.4

SRR314818 stage 12 floral bud, Can-0 27,798,328 2.3 82.7

Total 178,374,868 14.8 83.0

a also used for short-read mapping

Col-0 and Can-0 indicates Columbia and Canary Island, the ecotype of A. thaliana respectively
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redundancy-removed contig was designated a Plant DB

contig or a PlantClust50 DB contig.

Detection of DEGs by comparative analysis of RNA-Seq

datasets

SRR314814 and SRR314815, which are two RNA-Seq

datasets from A. thaliana, were mapped with the Bow-

tie2 aligner [30] to the TAIR10 gene dataset, a raw con-

tig set, and a redundancy-removed contig set with the

options “-q -phred33 –sensitive-local -N 1”. The number

of reads per kilobase of exon per million mapped reads

(RPKM) of each gene or contig was calculated according

to Mortazavi et al. [31]. The RPKM value was added to

1 as a correlation value; the log2-fold change between

datasets was then calculated. The log2-fold change for

each contig was plotted against the log2-fold change of

the corresponding gene in TAIR10. To determine fold-

change in expression for each unique contig, correlation

coefficients were calculated between the gene dataset and

raw contigs or the gene dataset and each redundancy-

removed contig. Genes and contigs with a fold-change

greater than one were defined as DEGs or differentially

expressed contigs (DECs), respectively.

Evaluation of co-identity between DEGs and DECs

Co-identities between DEGs and DECs were evaluated

using gene ID and Gene Ontology (GO) analysis. DECs

were annotated with the corresponding A. thaliana gene

ID based on the homology search results. Then, the gene

IDs of DEGs and DECs were compared. The number

and the ratio of DECs that had the same gene ID as

DEGs were calculated. Analysis of GO slim term enrich-

ment of DEGs and DECs was performed using the

BLAST2go program [32]. The distribution of A. thaliana

GO slim terms in the DEG set and was compared that

in the DEC set to assess which methods were optimal

for removing contig redundancy. The Kolmogorov-

Smirnov test was used to quantify the distance between

the DEGs and the DECs with regard to GO term distri-

bution. In this analysis, the null hypothesis was that the

two distributions were the same. If the p-value was

under 0.05, the null hypothesis could be rejected. The

difference between the DEGs and the DECs with regard

to each GO slim annotation count was evaluated by

Fisher’s exact test.

Results

Redundancies in raw contigs

Number, average length, and N50 values were compared

between the gene dataset and raw contigs assembled de

novo (Table 2). The number of raw contigs (62,339) was

larger than the number of genes in the dataset (35, 385).

Both the mean length and mean N50 value for the raw

contig set were smaller than those of the gene dataset

(Table 2). The number of contigs exhibiting homology

with a gene (hit contigs) was 58,376 (93.64 % of total

contigs) (Table 3). Of these contigs, 10,119 (16.23 %)

were unique-hit contigs, and 48,257 (77.41 %) were mul-

tiple hit contigs.

Comparison of three methods for removal of redundant

contigs from the set of raw contigs

Each of three methods was used to remove redundant

contigs from the raw contig set, and each method pro-

duced a distinct set of contigs (longest contigs, clustered

contigs, or annotated contigs). Comparisons of contig

number, average length, and N50 value for these three

contig sets are shown in Table 2. Mean length and N50

value were higher for the annotated contig set than for

the longest contig or clustered contig set. Next, all con-

tigs in each contig set were annotated through homology

searches against the gene dataset (Table 3). Next all

multiple-hit contigs were removed from the annotated

contig set, so that all hit contigs in this set were unique-

hit contigs. In contrast, when all multiple-hit contigs

were removed from longest contig or clustered contig

set, the number and ratio of multiple-hit contigs de-

creased, while the number of unique-hit contigs slightly

increased (Table 3).

Comparison of redundancy-elimination methods with

regard to DEC detection

The gene dataset and individual contig groups were each

used as reference sequence for comparative analysis of

RNA-Seq datasets (SRR314814 and SRR314815 in

Table 1). A scatter plot of log2-fold changes was created

(Fig. 1), and the correlation coefficient between the gene

Table 2 Summary of gene dataset and reference contigs derived from de novo assembly of RNA-Seq reads in A. thaliana

Gene
dataset

Raw
Contigs

Longest
Contigs

Clustered
Contigs

Annotated
Contigs

Plant DB
Contigs

PlantClust50 DB
Contigs

Number 35,385 62,339 58,007 59,405 23,873 42,467 26,766

Min. length (base) 22 121 121 121 121 121 121

Median length (base) 1383 285 275 281 599 317 351

N50 (base) 1814 739 699 711 1042 826 987

Mean length (base) 1535 475 457 464 757 520 589
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Table 3 Summary of homology searches of contigs against TAIR10 gene dataset using BLAST

Raw Contigs Longest Contigs Clustered Contigs Annotated Contigs Plant DB Contigs PlantClust50 DB Contigs

Hit contigs 58,376 (93.64)* 54,175 (93.39) 55,857 (94.03) 23,873 (100) 40,179 (94.61) 24,784 (92.59)

Unique hit contigs 10,119 (16.23) 10,676 (18.40) 10,571 (17.79) 23,873 (100) 11,382 (26.80) 12,398 (46.32)

Multiple hit contigs 48,257 (77.41) 43,499 (74.99) 45,286 (76.23) 0 (0) 28,796 (67.81) 12,386 (46.28)

No hit 3963 (6.36) 3832 (6.61) 3548 (5.97) 0 (0) 2289 (0.05) 1982 (0.07)

Total 62,339 (100) 58,007 (100) 59,405 (100) 23,873 (100) 42,467 (100) 26,766 (100)

* Values in parentheses are percentages of all contigs

Fig. 1 Scatter plots of log2-fold changes in gene dataset vs. various reference sequences. Values for the log2-fold changes in genes were

calculated accurately, but erroneous contigs were included. a Scatter plot of log2-fold changes in the gene dataset vs. primary assembled contigs

(raw contigs). Scatter plot of log2-fold changes in gene dataset vs. various contig groups after removing redundant contigs by (b) Longest

method, (c) Clustered method, (d) Annotation using the gene dataset, (e) Annotation using combined plant protein database (Plant DB), (f) and

non-duplicated Plant DB (PlantClust50 DB). Panels b–f overlay data points of panel a, indicated by black dots
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dataset and each contig group was calculated (Table 4).

The correlation coefficient between the gene dataset and

raw contigs was 0.60 (Table 4). The highest correlation

coefficient was found between the gene dataset and the

annotated contig set (Fig. 1d, Table 4). In the scatter plot

of log2-fold changes in raw contigs vs. the gene dataset,

there were data points falling along X = 0 and Y = 0

(Fig. 1a). The data points falling along X = 0 indicated

that no contig correlated with any expressed gene. The

data points falling along Y = 0 indicated that these contig

exhibited no homology with genes. In the scatter plot of

annotated contigs, the number of data points with Y = 0

was very small (Fig. 1d); this result indicated that contigs

that did not correspond to any genes had been removed

from the annotated contig set. The longest contig set had

the most data points where Y = 0 (Fig. 1b). For the clus-

tered contig set, the number of data points with Y = 0 was

lower than for the raw contigs; nevertheless, there were

still many Y = 0 data points (Fig. 1c).

Evaluation of accuracy of DEC detection

Gene ID was used to evaluate co-identity between DEGs

and DECs for each contig set (Table 4, Fig. 2). Of the

24,362 DECs in the raw contig set, 8602 DECs were

identical to at least one DEG, and these 8602 DECs

accounted for 76.7 % of all DEGs (Fig. 2a). For each

other contig set, the number of DECs identical to a DEG

was almost the same as the number for the raw contig

set, i.e., 8331, 8506, and 8303 for the longest contig, the

clustered contig, and annotated contig sets, respectively

(Fig. 2b–d). Conversely, the number of DECs not identi-

cal with a DEG differed greatly between contig groups,

i.e., 14,219, 28,640, and 1372 DEC were not identical

with any DEG for the longest contig, clustered contig,

and the annotated contig sets, respectively (Fig. 2b–d).

Co-identity was also evaluated from comparison of the

A. thaliana GO slim term distribution of DECs and

DEGs (Figs. 3 and 4). A bar graph shows that, for the

raw contig set, the annotation count for the GO slim

terms in the DECs detected was larger than the annota-

tion count of GO slim terms in DEGs (Fig. 3a). The dis-

tribution of GO slim terms in DEGs closely fitted that in

DECs detected by annotated contigs (Fig. 3d). A

quantile-quantile plot showed that the GO slim term

distribution of DEGs best fit that of DECs detected by

annotated contigs (Fig. 4d). Fisher’s exact test showed

that the number of GO slim terms that were signifi-

cantly different in annotation count between DECs and

DEGs was least for the annotated contig set (Table 4).

Removal of redundancies for unsequenced plants

Redundant contigs were also removed from the raw con-

tig set via homology searches with duplicative or non-

duplicative protein datasets of various plants instead of

the A. thaliana gene dataset. Comparisons (the number,

the correlation coefficient for fold change, co-identity,

and p-value in the GO distribution of DECs) between

the two resulting contig sets (Plant DB contigs and

PlantClust50 DB contigs) are shown in Tables 2 and 4.

The number of PlantClust50 DB contigs was 26,766,

which was closer to the number of transcripts in the

gene dataset (35,385) than the number of Plant DB con-

tigs (42,463). A non-duplicative database based on Plant

DB was also formed with an identity setting of 0.8 and

0.3. 35,385 contigs were generated with an identity set-

ting of 0.8 (data not shown). The analysis took an enor-

mous amount of time when the identity was set to 0.3.

Thus the analysis was interrupted.

The scatter plot of the relationship of log2-fold change

in the gene dataset and contig groups showed that the

number of data points with Y = 0, which indicated con-

tigs that lacked any corresponding genes, decreased in

both Plant DB contigs and PlantClust50 DB contigs

(Fig. 1e, f ). The log2-fold changes in the gene dataset

and in Plant DB contigs or PlantClust50 DB contigs

were highly correlated, and similar to those of the anno-

tated contig set (Table 4). Conversely, the number of

DECs identical to DEGs in the Plant DB contigs and

Table 4 Summary of co-identity in redundancy-removed contigs

Raw
Contigs

Longest
Contigs

Clustered
Contigs

Annotated
Contigs

Plant DB
Contigs

PlantClust50 DB
Contigs

Correlation coefficient of log2-fold change
between gene dataset and reference sequences

0.60 0.60 0.88 0.88 0.83 0.73

No. of DECs exhibiting co-identity with DEGsa 8602 (73.8 %) 8331 (74.2 %) 8506 (75.8 %) 8303 (74.0 %) 7594 (67.7 %) 5878 (52.4 %)

No. of DECs redundant or not exhibiting
co-identity with DEGsb

15,706 (64.6 %) 14,219 (63.1 %) 28,640 (77.1 %) 1372 (14.2 %) 9052 (54.4 %) 4809(45.0 %)

P-valuec 0.44 0.20 0.01 1.00 0.93 0.93

Fisher’s exact testd 30 30 31 4 29 17

a Number of contigs identical to DEGs in gene dataset (values in parentheses are percentage of all DEGs identical to DECs)
b Number of contigs not corresponding DEGs in gene dataset (values in parentheses are percentage of contigs without corresponding genes in contig group)
c Correlation between gene database and contig group in GO slim term distribution calculated by Kolmogorov–Smirnov test
d No. of GO terms significantly different from gene dataset in annotation count
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PlantClust50 DB contigs was lower than those in the

raw contig and annotated contig sets (Table 4, Fig. 2e, f ).

The GO distribution in DECs detected by PlantClust50

DB contigs more closely fit the distribution in DEGs

than the distribution in DECs detected by Plant DB con-

tigs (Table 4, Figs. 3e, f and 4e, f ). Fisher’s exact test re-

vealed that the contig set that differed the least from the

gene dataset in annotation count of GO slim terms was

the PlantClust50 DB contig set (Table 4). The 0.8 setting

in forming non-duplicative database did not increase the

number of DECs assigned to the GO terms in the con-

tigs; 28 GO slim terms were significantly different in

annotateion count between DECs and DEGs in Plant-

Clust DB.

Discussion

Creation of redundant contigs by incomplete assembly

The number of contigs constructed by de novo assembly

(raw contigs) was larger than the total number of genes

in the A. thaliana gene dataset (Table 2). However, the

Fig. 2 Accuracy of detection of differentially expressed genes (DEGs) in reference sequences. Shown are the number of DEGs or differentially

expressed contigs (DECs). The gene dataset indicates DEGs in all panels. a Raw contigs: DECs in raw contigs, (b) Longest contigs: DECs in longest

contigs, (c) Clustered contigs: DECs in clustered contigs, (d) Annotated contigs: DECs in annotated contigs, (e) Plant DB contigs: DECs in Plant DB

contigs, (f) PlantClust50 contigs: DECs detected in PlantClust50
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Fig. 3 (See legend on next page.)
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number of contigs exhibiting homology with genes was

smaller than the total number of genes in A. thaliana.

The main cause of this discrepancy was due to multiple-

hit contigs, which were sets of contigs exhibiting hom-

ology to one gene, and thus regarded as redundant. Such

contigs accounted for 77 % of all contigs (Table 3). The

average length and N50 values of raw contigs were

smaller than those of the gene dataset (Table 2). Thus,

the redundancy detected in the raw contig set was pre-

sumably caused by incomplete contigs reconstructed

from insufficient reads. This assumption was supported

by the observation that when the RPKM of a gene was

under 30, short and incomplete sequences were likely to

be created (data not shown). Thus, it was predicted that

contigs would be constructed more accurately with an

increase in the read number. However, even if the

RPKM of a gene was over 30, multiple-hit contigs

emerged. This was presumably caused during next gen-

eration sequencing by limitations to de novo assembly.

For example, AT-rich sequences were difficult to read

[33], and repeat sequences were difficult to assemble

[34]. Thus, a solution for removing redundant contigs,

rather than simply increasing read number, was re-

quired. On the other hand, the contigs constructed by

de novo assembly included some not exhibiting any

homology with known genes. These were considered

contigs with sequencing errors created due to failure in

assembling reads. Such erroneous contigs should also be

removed.

Strategies for removal of redundant contigs

We discovered that redundant contigs resulted from

multiple contigs constructed from reads from single

genes. Hence, selecting one contig for each gene was

needed to remove redundant contigs. Until recently,

methods to remove redundant contigs have been stud-

ied, for example picking the longest contig of each sub-

component [15] and of each cluster [24, 25]. However,

the effect of removing redundant contigs by such

methods on RNA-Seq analysis had not been expressly

evaluated. In this study, a homology search-based

method using BLAST alone was developed and tested,

and the effects of each distinct method on removing re-

dundancy was evaluated. In strategies using clustered

contigs or longest contigs, contig numbers were not re-

duced, and average contig length and N50 values did not

increase compared with the raw contig set (Table 2).

The number of multiple-hit contigs also did not

decrease (Table 3). These results showed that these two

methods were not suitable for removing redundancy. In

contrast, using annotated contigs, the contig number de-

creased greatly, and the mean contig length and N50

value each increased (Table 2). Additionally, multiple-hit

contigs and no-hit contigs disappeared (Table 3). Thus,

these results suggested that our proposed method was

optimal for removing redundant contigs and erroneous

contigs. The clustered contig set was created by selecting

the longest contig in an individual cluster consisting of

contigs having 80 % or more identity. However, when

multiple and partial clusters were created from the reads

derived from one gene, no homology was exhibited

among these clusters. Thus, the contigs in such clusters

were not selected, and remained as redundant contigs in

the clustered contig set. The longest contig set consisted

of the longest contigs from each subcomponent. Sub-

components were created by Trinity, taking into account

splice variants. Thus, they included one or more contigs.

However, if two or more subcomponents were created

from one gene, it was predicted that the longest contigs

would be selected from the multiple subcomponents,

and therefore, the contigs in the multiple subcompo-

nents would remain as redundant contigs. In contrast,

annotated contigs were created by selecting the contig

exhibiting the highest homology to a gene from among

the various contigs exhibiting homology to that gene.

Thus, it was predicted that partial contigs and incom-

plete contigs would be removed.

Redundant and erroneous contigs lead to inaccurate

detection of DECs and inaccurate GO slim term

distribution for DECs

Our results suggested that the raw contig set contained

redundant contigs. The redundant contigs were removed

from the raw contig set to create the annotated contig

set, but had not been removed adequately via ap-

proaches based on longest contigs or clustered contigs.

In the annotated contig set, the correlation coefficient

was increased compared with raw contig set (Fig. 1d),

and erroneous contigs had been removed. There was not

much difference in the number of DECs exhibiting co-

identity with DEGs between the raw and annotated

contig sets. However, the number of DECs that did not

exhibit homology with DEGs in the annotated contig set

was less than in raw contig set. Consistency in the GO

distribution between DEGs and DECs was higher for the

annotated contig set than the raw contig set. In contrast,

(See figure on previous page.)

Fig. 3 Comparison of A. thaliana GO slim term distribution of differentially expressed genes and differentially expressed contig. The number of DEGs

or DECs assigned to the GO terms is plotted. Red bars and blue bars indicate DEGs and DECs, respectively. The reference sequences were, from top to

bottom, (a) Raw contigs, (b) Longest contigs, (c) Clustered contigs, (d) Annotated contigs, (e) Plant DB contigs, and (f) PlantClust50 contigs
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Fig. 4 (See legend on next page.)
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the number of DECs not exhibiting co-identity with

DEGs and the number of erroneous contigs were not de-

creased in the longest or clustered contig sets, which

each still included redundant contigs. Additionally,

consistency in GO distribution between DEGs and DECs

was not improved in either of these reference sequences.

These results suggested that the redundant contigs and

erroneous contigs in the raw contig set were inaccurately

detected as DECs, and were not identical to DEGs.

These inaccurate DECs would cause inaccurate GO dis-

tribution of DECs.

Removal of redundant contigs using an integrated plant

protein database with application for unsequenced plant

genomes

In this study, we selected A. thaliana as the model be-

cause its genome sequence has been determined and is

accompanied by detailed gene information. The presence

of redundant contigs was confirmed in primary contigs

constructed by assembly of RNA-Seq reads of A. thali-

ana. Consequently, it was also revealed that the low de-

tection accuracy of DECs was caused by redundant

contigs. We proposed a method involving homology

searches against the A. thaliana gene database for re-

moving redundant and erroneous contigs from the con-

tig set constructed by de novo assembly. Additionally, we

confirmed that the low detection accuracy of DECs was

eliminated when using the subset of contigs (annotated

contigs) obtained by applying this method. However,

when applying this method to a plant lacking a well-

developed gene database, a protein or gene database of

plants excluding the plant in question was required for

homology searching. Removing redundancy from contigs

of A. thaliana was tested using non-duplicative or dupli-

cative combined protein database (PlantClust50 DB or

Plant DB, respectively), which consisted of protein se-

quences of 14 species of plants. Using PlantClust50 DB,

a reduction in contig number and an increase in average

contig length and N50 value compared with the raw

contig set were confirmed. However, these improve-

ments were not observed when using PlantDB contig

set. The number of multiple-hit contigs also was lower

with the PlantClust50 DB contig set, but not with the

Plant DB contig set (Table 2). This suggested that the set

of Plant DB contigs had redundant contigs and that they

could be removed by eliminating the redundant se-

quences in Plant DB. Compared with the log2-fold

change plot of raw contigs vs. the gene dataset, the

correlation coefficient was improved and the number of

erroneous contigs was decreased by removing redundant

contigs using searches against Plant DB and Plant-

Clust50 DB (Table 4). These results suggested that the

number of erroneous contigs was reduced in both the

Plant DB and PlantClust50 contig sets.

Accurate GO distribution of DECs detected after removing

redundant contigs using non-duplicative plant protein

database

When detecting DECs using either the Plant DB or Plant-

Clust50 contig sets as reference sequences, the number of

DECs exhibiting co-identity with DEGs was decreased.

However, the number of DECs not identical with DEGs

was also decreased (Fig. 2). We confirmed that the con-

formity of GO distribution of DECs to the GO distribu-

tion of DEGs was improved to the same extent as for the

annotated contig set only with the PlantClust50 contig set

(Figs. 3 and 4). The increase in the number of DECs not

identical with DEGs was common to both the Plant DB

and PlantClust50 contig sets. The cause of the increase

was inferred to be the use of a protein database of plants

excluding A. thaliana to identify contig redundancy. The

protein database was estimated to contain well-conserved

sequences, but presumably not to contain sequences

unique to A. thaliana. If contigs to be detected as DECs

possessed a sequence unique to A. thaliana, such a se-

quence could not exhibit homology with the protein se-

quences in the database. Thus, it was estimated that only

contigs encoding the same functions as the contigs to be

detected would be selected as DECs. Therefore, we as-

sumed that the DECs identified as false positive in Plant-

Clust DB contig set corresponded to the DEGs that could

not be covered by the protein database.

When DECs were detected using PlantClust50 contig

sets as reference sequences, the number of DECs exhi-

biting co-identity with DEGs was decreased from Plant-

ClustDB. The GO distribution in DECs detected by

PlantClust50 DB contigs fitted more closely to the distri-

bution in DEGs than the distribution in DECs detected

by Plant DB contigs. Therefore, it was suggested that the

cause of decrease of identical DECs in PlantDB50 is that

the contigs identical with DEGs were removed and the

contigs which are resemble to the contigs identical with

DEGs were selected from the clusters as representative

sequences.

Additionally, we had set identity to 0.8 and 0.5 to form

the non-duplicative database based on Plant DB. 38,741

(See figure on previous page.)

Fig. 4 Conformity of annotation count of A. thaliana GO slim terms in differentially expressed contigs to differentially expressed genes. Quantile-

quantile-plot of gene dataset vs. DECs detected through reference sequences: (a) Raw contigs, (b) Longest contigs, (c) Clustered contigs, (d) Annotated

contigs, (e) Plant DB contigs, (f) PlantClust50 contigs. X-axis and y-axis indicate the number of DEGs and DECs in each GO term, respectively
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contigs were generated with an identity setting of 0.8, and

this number was closer to the number of transcript

(35,385) than for either other setting. However, the 0.8 set-

ting did not increase the number of DECs assigned to the

GO terms in the contigs; 28 GO slim terms were signifi-

cantly different in annotation count between DECs and

DEGs in PlantClust DB. Significantly different GO terms

in annotation count between DECs and DEGs were 30

and 17 in raw and PlantClust50 contig sets, respectively.

This discrepancy was assumed to be result from the dupli-

cate genes in the gene dataset. A more detailed study

should reveal the appropriate identity setting.

Conclusion

We designed and tested a method to create redundancy-

removed contig sets suitable for comparative analysis with

unsequenced plant genomes. Raw contigs were created by

de novo assembly using A. thaliana RNA-Seq reads to

confirm the accuracy of the assembled contigs. Redundant

contigs in raw contig set were estimated and removed by

our method, which involved BLAST searches; the result-

ing contig set was compared to sets created with each of

two existing methods. The homology-based method iden-

tified redundancy in the raw contig set expressly and re-

moved redundant contigs effectively. On the other hand,

redundant contigs were not removed adequately by either

of the two existing methods. Applying the homology-

based method improved the detection accuracy of DEGs

and distribution of GO terms in comparative RNA-Seq

analysis significantly, demonstrating that the method can

improve the possibility of detecting a useful gene by com-

parative analysis of RNA-Seq data in unsequenced plants.
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