®

Check for
updates

Removing Algebraic Data Types from
Constrained Horn Clauses Using
Difference Predicates

Emanuele De Angelis' 3@, Fabio Fioravanti'®)®, Alberto Pettorossi®*®,
and Maurizio Proietti?

! DEC, University ‘G. d’Annunzio’, Chieti-Pescara, Pescara, Italy
fabio.fioravanti@unich.it
2 DICII, University of Rome ‘Tor Vergata’, Rome, Italy
pettorossi@info.uniroma2.it
3 TASI-CNR, Rome, Italy
{emanuele.deangelis,maurizio.proietti}@iasi.cnr.it

Abstract. We address the problem of proving the satisfiability of Con-
strained Horn Clauses (CHCs) with Algebraic Data Types (ADTs), such
as lists and trees. We propose a new technique for transforming CHCs
with ADTs into CHCs where predicates are defined over basic types, such
as integers and booleans, only. Thus, our technique avoids the explicit
use of inductive proof rules during satisfiability proofs. The main exten-
sion over previous techniques for ADT removal is a new transformation
rule, called differential replacement, which allows us to introduce auxil-
iary predicates corresponding to the lemmas used when making induc-
tive proofs. We present an algorithm that applies the new rule, together
with the traditional folding/unfolding rules, for the automatic removal of
ADTs. We prove that if the set of the transformed clauses is satisfiable,
then so is the set of the original clauses. By an experimental evaluation,
we show that the use of the new rule significantly improves the effective-
ness of ADT removal, and that our approach is competitive with respect
to a state-of-the-art tool that extends the CVC4 solver with induction.

1 Introduction

Constrained Horn Clauses (CHCs) constitute a fragment of the first order pred-
icate calculus, where the Horn clause format is extended by allowing constraints
on specific domains to occur in clause premises. CHCs have gained popularity as
a suitable logical formalism for automatic program verification [3]. Indeed, many
verification problems can be reduced to the satisfiability problem for CHCs.
Satisfiability of CHCs is a particular case of Satisfiability Modulo Theories
(SMT), understood here as the general problem of determining the satisfiabil-
ity of (possibly quantified) first order formulas where the interpretation of some
function and predicate symbols is defined in a given constraint (or background)

This work has been partially supported by GNCS-INdAM, Italy.

© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12166, pp. 83-102, 2020.
https://doi.org/10.1007/978-3-030-51074-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51074-9_6&domain=pdf
http://orcid.org/0000-0002-7319-8439
http://orcid.org/0000-0002-1268-7829
http://orcid.org/0000-0001-7858-4032
http://orcid.org/0000-0003-3835-4931
https://doi.org/10.1007/978-3-030-51074-9_6

84 E. De Angelis et al.

theory [2]. Recent advances in the field have led to the development of a number
of very powerful SMT (and, in particular, CHC) solvers, which aim at solving sat-
isfiability problems with respect to a large variety of constraint theories. Among
SMT solvers, we would like to mention CVC4 [1], MathSAT [5], and Z3 [14],
and among solvers with specialized engines for CHCs, we recall Eldarica [22],
HSF [20], RAHFT [26], and Spacer [29].

Even if SMT algorithms for unrestricted first order formulas suffer from
incompleteness limitations due to general undecidability results, most of the
above mentioned tools work well in practice when acting on constraint theo-
ries, such as Booleans, Uninterpreted Function Symbols, Linear Integer or Real
Arithmetic, Bit Vectors, and Arrays. However, when formulas contain univer-
sally quantified variables ranging over inductively defined algebraic data types
(ADTs), such as lists and trees, then the SMT/CHC solvers often show a very
poor performance, as they do not incorporate induction principles relative to the
ADT in use.

To mitigate this difficulty, some SMT/CHC solvers have been enhanced by
incorporating appropriate induction principles [38,43,44], similarly to what has
been done in automated theorem provers [4]. The most creative step which is
needed when extending SMT solving with induction, is the generation of the
auxiliary lemmas that are required for proving the main conjecture.

An alternative approach, proposed in the context of CHCs [10], consists in
transforming a given set of clauses into a new set: (i) where all ADT terms are
removed (without introducing new function symbols), and (ii) whose satisfiabil-
ity implies the satisfiability of the original set of clauses. This approach has the
advantage of separating the concern of dealing with ADTs (at transformation
time) from the concern of dealing with simpler, non-inductive constraint theories
(at solving time), thus avoiding the complex interaction between inductive rea-
soning and constraint solving. It has been shown [10] that the transformational
approach compares well with induction-based tools in the case where lemmas
are not needed in the proofs. However, in some satisfiability problems, if suitable
lemmas are not provided, the transformation fails to remove the ADT terms.

The main contributions of this paper are as follows.

(1) We extend the transformational approach by proposing a new rule, called
differential replacement, based on the introduction of suitable difference
predicates, which play a role similar to that of lemmas in inductive proofs.
We prove that the combined use of the fold/unfold transformation rules [17]
and the differential replacement rule is sound, that is, if the transformed set
of clauses is satisfiable, then the original set of clauses is satisfiable.

(2) We develop a transformation algorithm that removes ADTs from CHCs by
applying the fold/unfold and the differential replacement rules in a fully
automated way.

(3) Due to the undecidability of the satisfiability problem for CHCs, our tech-
nique for ADT removal is incomplete. Thus, we evaluate its effectiveness
from an experimental point of view, and in particular we discuss the results
obtained by the implementation of our technique in a tool, called ADTREM.

Removing ADTs from CHCs Using Difference Predicates 85

We consider a set of CHC satisfiability problems on ADTSs taken from various
benchmarks which are used for evaluating inductive theorem provers. The
experiments show that ADTREM is competitive with respect to Reynolds
and Kuncak’s tool that augments the CVC4 solver with inductive reason-
ing [38].

The paper is structured as follows. In Sect. 2 we present an introductory, moti-
vating example. In Sect. 3 we recall some basic notions about CHCs. In Sect. 4
we introduce the rules used in our transformation technique and, in particular,
the novel differential replacement rule, and we show their soundness. In Sect. 5
we present a transformation algorithm that uses the transformation rules for
removing ADTs from sets of CHCs. In Sect. 6 we illustrate the ADTREM tool
and we present the experimental results we have obtained. Finally, in Sect.7 we
discuss the related work and make some concluding remarks.

2 A Motivating Example

Let us consider the following functional program Reverse, which we write using
the OCaml syntax [31]:

type list = Nil | Cons of int * list;;
let rec append 1 ys = match 1 with

| Nil -> ys | Cons(x,xs) -> Cons(x, (append xs ys));;
let rec rev 1 = match 1 with

| Nil -> Nil | Cons(x,xs) -> append (rev xs) (Cons(x,Nil));;
let rec len 1 = match 1 with

| Nil -> 0 | Cons(x,xs) -> 1 + len xs;;

The functions append, rev, and len compute list concatenation, list reversal,
and list length, respectively. Suppose we want to prove the following property:

V xs,ys. len (rev (append xs ys)) = (len xs) + (len ys) (1)

Inductive theorem provers construct a proof of this property by induction on the
structure of the list 1, by assuming the knowledge of the following lemma:

V x,1. len (append 1 (Cons(x,Nil))) = (lenl) + 1 (2)

The approach we follow in this paper avoids the explicit use of induction princi-
ples and also the knowledge of ad hoc lemmas. First, we consider the translation
of Property (1) into a set of constrained Horn clauses [10,43], as follows':

! In the examples, we use Prolog syntax for writing clauses, instead of the more verbose
SMT-LIB syntax. The predicates \= (different from), = (equal to), < (less-than),
>= (greater-than-or-equal-to) denote constraints between integers. The last argument
of a Prolog predicate stores the value of the corresponding function.

86 E. De Angelis et al.

1. false :- N2\=NO+N1, append(Xs,Ys,Zs), rev(Zs,Rs),
len(Xs,NO), len(Ys,N1), len(Rs,N2).
2. append([],Y¥s,¥s). 3. append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
4. rev([]1,[1). 5. rev([X|Xs],Rs) :- rev(Xs,Ts), append(Ts, [X],Rs).
6. len([],N) :- N=0. 7. len([X|Xs],N1) :- N1=NO+1, len(Xs,NO).

The set of clauses 1-7 is satisfiable if and only if Property (1) holds. However,
state-of-the-art CHC solvers, such as Z3 or Eldarica, fail to prove the satisfiability
of clauses 1-7, because those solvers do not incorporate any induction principle
on lists. Moreover, some tools that extend SMT solvers with induction [38,43]
fail on this particular example because they are not able to introduce Lemma (2).

To overcome this difficulty, we apply the transformational approach based on
the fold/unfold rules [10], whose objective is to transform a given set of clauses
into a new set without occurrences of list variables, whose satisfiability can be
checked by using CHC solvers based on the theory of Linear Integer Arithmetic
only. The soundness of the transformation rules ensures that the satisfiability of
the transformed clauses implies the satisfiability of the original ones. We apply
the Elimination Algorithm [10] as follows. First, we introduce a new clause:

8. newl1(NO,N1,N2) :- append(Xs,Ys,Zs), rev(Zs,Rs),
len(Xs,NO), len(Ys,N1), len(Rs,N2).

whose body is made out of the atoms of clause 1 which have at least one list
variable, and whose head arguments are the integer variables of the body. By
folding, from clause 1 we derive a new clause without occurrences of lists:

9. false :- N2\=NO+N1, newil(NO,N1,N2).

We proceed by eliminating lists from clause 8. By unfolding clause 8, we replace
some predicate calls by their definitions and we derive the two new clauses:

10. new1(NO,N1,N2) :- NO=0, rev(Zs,Rs), len(Zs,N1), len(Rs,N2).
11. new1(NO1,N1,N21) :- NO1=NO+1, append(Xs,Ys,Zs), rev(Zs,Rs),
len(Xs,NO), len(Ys,N1), append(Rs, [X],Rls), len(R1s,N21).

We would like to fold clause 11 using clause 8, so as to derive a recursive defini-
tion of newl without lists. Unfortunately, this folding step cannot be performed
because the body of clause 11 does not contain a variant of the body of clause 8,
and hence the Elimination Algorithm fails to eliminate lists in this example.

Thus, now we depart from the Elimination Algorithm and we continue our
derivation by observing that the body of clause 11 contains the subconjunc-
tion ‘append(Xs,Ys,Zs), rev(Zs,Rs), len(Xs,NO), len(Ys,N1)’ of the body of
clause 8. Then, in order to find a variant of the whole body of clause 8, we
may replace in clause 11 the remaining subconjunction ‘append(Rs, [X],R1s),
len(R1s,N21)’ by the new subconjunction ‘len(Rs,N2), diff(N2,X,N21)’, where
diff is a predicate, called difference predicate, defined as follows:

12. diff(N2,X,N21) :- append(Rs, [X],R1ls), len(R1s,N21), len(Rs,N2).

Removing ADTs from CHCs Using Difference Predicates 87

From clause 11, by performing that replacement, we derive the following clause:

13. new1(NO1,N1,N21) :- NO1=NO+1, append(Xs,Ys,Zs), rev(Zs,Rs),
len(Xs,NO), len(Ys,N1), len(Rs,N2), diff(N2,X,N21).

Now, we can fold clause 13 using clause 8 and we derive a new clause without
list arguments:

14. new1(NO1,N1,N21) :- NO1=NO+1, newl(NO,N1,N2), diff(N2,X,N21).

At this point, we are left with the task of removing list arguments from clauses 10
and 12. As the reader may verify, this can be done by applying the Elimination
Algorithm without the need of introducing additional difference predicates. By
doing so, we get the following final set of clauses without list arguments:

false :- N2\=NO+N1, newl(NO,N1,N2).

newl(NO,N1,N2) :- NO=0, new2(N1,N2).

newl (NO,N1,N2) :- NO=N+1, newl(N,N1,M), diff(M,X,N2).
new2(M,N) :- M=0, N=0.

new2(M1,N1) :- M1=M+1, new2(M,N), diff(N,X,N1).

diff (NO,X,N1) :- NO=0, Ni=1.

diff (NO,X,N1) :- NO=N+1, N1=M+1, diff(N,X,M).

The Eldarica CHC solver proves the satisfiability of this set of clauses by
computing the following model (here we use a Prolog-like syntax):

newl(NO,N1,N2) :- N2=NO+N1, NO>=0, N1>=0, N2>=0.
new2(M,N) :- M=N, M>=0, N>=0.
diff (N,X,M) :- M=N+1, N>=0.

Finally, we note that if in clause 12 we substitute the atom diff (N2,X,N21) by
its model computed by Eldarica, namely the constraint ‘N21=N2+1, N2>=0’, we get
exactly the CHC translation of Lemma (2). Thus, in some cases, the introduction
of the difference predicates can be viewed as a way of automatically introducing
the lemmas needed when performing inductive proofs.

3 Constrained Horn Clauses

Let LIA be the theory of linear integer arithmetic and Bool be the theory of
boolean values. A constraint is a quantifier-free formula of LIA U Bool. Let C
denote the set of all constraints. Let £ be a typed first order language with
equality [16] which includes the language of LIA U Bool. Let Pred be a set of
predicate symbols in £ not occurring in the language of LIA U Bool.

The integer and boolean types are said to be the basic types. For reasons
of simplicity we do not consider any other basic types, such as real number,
arrays, and bit-vectors, which are usually supported by SMT solvers [1,14,22].
We assume that all non-basic types are specified by suitable data-type declara-
tions (such as the declare-datatypes declarations adopted by SMT solvers), and
are collectively called algebraic data types (ADTSs).

88 E. De Angelis et al.

An atom is a formula of the form p(t1,...,t,), where p is a typed predicate
symbol in Pred, and t4,...,t, are typed terms constructed out of individual
variables, individual constants, and function symbols. A constrained Horn clause
(or simply, a clause, or a CHC) is an implication of the form A « ¢, B (for clauses
we use the logic programming notation, where comma denotes conjunction). The
conclusion (or head) A is either an atom or false, the premise (or body) is the
conjunction of a constraint ¢ € C, and a (possibly empty) conjunction B of
atoms. If A is an atom of the form p(ty,...,t,), the predicate p is said to be a
head predicate. A clause whose head is an atom is called a definite clause, and a
clause whose head is false is called a goal.

We assume that all variables in a clause are universally quantified in front,
and thus we can freely rename those variables. Clause C' is said to be a variant
of clause D if C can be obtained from D by renaming variables and rearranging
the order of the atoms in its body. Given a term t, by vars(t) we denote the set
of all variables occurring in ¢. Similarly for the set of all free variables occurring
in a formula. Given a formula ¢ in £, we denote by V() its universal closure.

Let D be the usual interpretation for the symbols in LIA U Bool, and let
a D-interpretation be an interpretation of £ that, for all symbols occurring
in LIA U Bool, agrees with D.

A set P of CHCs is satisfiable if it has a D-model and it is unsatisfiable,
otherwise. Given two D-interpretations I and J, we say that I is included in
J if for all ground atoms A, I = A implies J = A. Every set P of definite
clauses is satisfiable and has a least (with respect to inclusion) D-model, denoted
M(P) [24]. Thus, if P is any set of constrained Horn clauses and @ is the set of
the goals in P, then we define Definite(P)=P \). We have that P is satisfiable
if and only if M (Definite(P)) = Q.

We will often use tuples of variables as arguments of predicates and write
p(X,Y), instead of p(Xy,...,Xm,Y1,...,Ys), whenever the values of m (> 0)
and n (> 0) are not relevant. Whenever the order of the variables is not relevant,
we will feel free to identify tuples of distinct variables with finite sets, and we will
extend to finite tuples the usual operations and relations on finite sets. Given
two tuples X and Y of distinct elements, (i) their union X UY is obtained
by concatenating them and removing all duplicated occurrences of elements,
(ii) their intersection X NY is obtained by removing from X the elements which
do not occur in Y, (iii) their difference X\Y is obtained by removing from X the
elements which occur in Y, and (iv) X CY holds if every element of X occurs in
Y. For all m >0, (u1,...,um) = (v1,...,0m) iff Ai"; u; =v;. The empty tuple
() is identified with the empty set 0.

By A(X,Y), where X and Y are disjoint tuples of distinct variables, we
denote an atom A such that vars(A) = X UY. Let P be a set of definite clauses.
We say that the atom A(X,Y) is functional from X to'Y with respect to P if

(F1) M(P) EVX,Y,Z. AX, Y)NA(X,Z) - Y=Z
The reference to the set P of definite clauses is omitted, when understood from
the context. Given a functional atom A(X,Y), we say that X and Y are its input

Removing ADTs from CHCs Using Difference Predicates 89

and output (tuples of) variables, respectively. The atom A(X,Y) is said to be
total from X toY with respect to P if

(F2) M(P) EVX3Y. A(X,Y)
If A(X,Y) is a total, functional atom from X to Y, we may write A(X;Y),
instead of A(X,Y’). For instance, append(Xs,Ys,Zs) is a total, functional atom
from (Xs,Ys) to Zs with respect to the set of clauses 1-7 of Sect. 2.

Now we extend the above notions from atoms to conjunctions of atoms. Let F'
be a conjunction Aq(X1;Y7),..., An(Xp;Y,) such that: (i) X = (Uj, Xi)\
(UL, Y, (i) Y = (UL, Ys), and (iii) for ¢ = 1,...,n, Y; is disjoint from
(Uj=1 X5) U (U;;ll Y;). Then, the conjunction F is said to be a total, func-
tional conjunction from X toY and it is also written as F(X;Y). For F(X;Y),
the above properties (F1) and (F2) hold if we replace A by F. For instance,
append (Xs,Ys,Zs), rev(Zs,Rs) is a total, functional conjunction from (Xs,Ys) to
(Zs,Rs) with respect to the set of clauses 1-7 of Sect. 2.

4 Transformation Rules for Constrained Horn Clauses

In this section we present the rules that we propose for transforming CHCs, and
in particular, for introducing difference predicates, and we prove their soundness.
We refer to Sect. 2 for examples of how the rules are applied.

First, we introduce the following notion of a stratification for a set of clauses.
Let N denote the set of the natural numbers. A level mapping is a function
£: Pred — N. For every predicate p, the natural number ¢(p) is said to be the
level of p. Level mappings are extended to atoms by stating that the level ¢(A)
of an atom A is the level of its predicate symbol. A clause H < ¢, Aq,..., A, is
stratified with respect to € if, for i=1,...,n, {(H) > ((A;). A set P of CHCs is
stratified w.r.t. £ if all clauses in P are stratified w.r.t. £. Clearly, for every set P
of CHCs, there exists a level mapping ¢ such that P is stratified w.r.t. ¢ [33].

A transformation sequence from Py to P, is a sequence Py = P, = ... = P,
of sets of CHCs such that, for :=0,...,n—1, P41 is derived from P;, denoted
P; = P11, by applying one of the following Rules R1-R7. We assume that P
is stratified w.r.t. a given level mapping £.

(R1) Definition Rule. Let D be the clause newp(Xi,...,Xk) < ¢, A1,..., Apn,
where: (i) newp is a predicate symbol in Pred not occurring in the sequence Py =
P, = ... = P, (ii) cis a constraint, (iii) the predicate symbols of Ay,..., A,
occur in Py, and (iv) (X1,..., X;) C vars(c, A1, ..., An). Then, P,y = P,U{D}.
We set {(newp) = max{l(4;)|i=1,...,n}.

For ¢ =0,...,n, by Defs; we denote the set of clauses, called definitions,
introduced by Rule R1 during the construction of Py = P, = ... = P;. Thus,
() = Defsy C Defs; C However, by using Rules R2-R7 we can replace a

definition in P;, for >0, and hence it may happen that Defs;, | Z P; 1.

(R2) Unfolding Rule. Let C: H «— ¢,Gr, A,Gg be a clause in P;, where A is an
atom. Without loss of generality, we assume that vars(C) N vars(Py) = 0. Let
Cls: {Ky < ¢1,B1, ..., Kp < ¢m, B}, m > 0, be the set of clauses in Py, such

90 E. De Angelis et al.

that: for j =1,...,m, (1) there exists a most general unifier ¥, of A and K, and
(2) the conjunction of constraints (c,c;)d; is satisfiable. Let Unf(C, A, Py) =
{(H < ¢,¢;,Gr,B;,Gr)Y; | j = 1,...,m}. Then, by unfolding C w.r.t. A,
we derive the set Unf(C, A, Py) of clauses and we get Py = (P \ {C}H) U
Unf(C, A, P())

When we apply Rule R2, we say that, for j = 1,...,m, the atoms in the con-
junction B;1; are derived from A, and the atoms in the conjunction (G, Gg)?;
are inherited from the corresponding atoms in the body of C.

(R3) Folding Rule. Let C: H «— ¢,Gr,Q,Gr be a clause in P;, and let D:
K «— d, B be aclause in Defs;. Suppose that: (i) either H is false or {(H) > ¢(K),
and (ii) there exists a substitution ¥ such that @=Bv and D | V(c — dvJ). By
folding C' using definition D, we derive clause E: H « ¢,Gp, K9,GRr, and we
get Poyy = (P, \ {C}) U{EY.

(R4) Clause Deletion Rule. Let C: H «— ¢,G be a clause in P; such that the
constraint c is unsatisfiable. Then, we get P41 = P; \ {C}.

(R5) Functionality Rule. Let C: H «— ¢,Gr,F(X;Y), F(X;Z),GRr be a clause
in P;, where F(X;Y) is a total, functional conjunction in Definite(Py) U Defs,.
By functionality, from C we derive clause D: H — ¢,Y =Z,G,F(X;Y),Gg,
and we get P11 = (P \ {C})U{D}.

(R6) Totality Rule. Let C: H «— ¢,Gr, F(X;Y),GRr be a clause in P; such that
Y Nwars(H «— ¢,Gr,Gr) = 0 and F(X;Y) is a total, functional conjunction in
Definite(Py) U Defs,. By totality, from C we derive clause D: H «— ¢,Gr,Ggr
and we get P11 = (P \ {C})U{D}.

Since the initial set of clauses is obtained by translating a terminating func-
tional program, the functionality and totality properties hold by construction
and we do not need to prove them when we apply Rules R5 and R6.

(R7) Differential Replacement Rule. Let C: H «+— ¢,Gr,, F(X;Y),GRr be a clause
in P;, and let D: diff (Z) «— d, F(X;Y), R(V; W) be a definition clause in Defs,,
where: (i) F(X;Y) and R(V; W) are total, functional conjunctions with respect
to Definite(Po)U Defs,, (ii) WNwars(C) = 0, (iii) D = V(¢ — d), and (iv) £(H) >
L(diff). By differential replacement, we derive E: H «— ¢, G, R(V;W), diff (Z), Gr
and we get P11 = (P;\ {C}) U{E}.

Rule R7 has a very general formulation that eases the proof of the Soundness
Theorem, which extends to Rules R1-R7 correctness results for transformations
of (constraint) logic programs [17,18,39,42] (see [13] for a proof). In the trans-
formation algorithm of Sect. 5, we will use a specific instance of Rule R7 which
is sufficient for ADT removal (see, in particular, the Diff-Introduce step).

Theorem 1 (Soundness). Let Py = P, = ... = P, be a transformation
sequence using Rules R1-R7. Suppose that the following condition holds:

(U) fori=1,...,n—1, if P, = P11 by folding a clause in P; using a definition
D: H « ¢,B in Defs;, then, for some j € {1,...;i—1,i+1,...,n—1},
P; = Pj1 by unfolding D with respect to an atom A such that {(H) = £(A).

Removing ADTs from CHCs Using Difference Predicates 91

If P, is satisfiable, then Py is satisfiable.

Thus, to prove the satisfiability of a set Py of clauses, it suffices: (i) to con-
struct a transformation sequence Py = ... = P,, and then (ii) to prove that
P, is satisfiable. Note, however, that if Rule R7 is used, it may happen that
P, is satisfiable and P, is unsatisfiable, that is, some false counterexamples to
satisfiability, so-called false positives, may be generated, as we now show.

Example 1. Let us consider the following set P; of clauses derived by adding the
definition clause D to the initial set Py={C,1,2,3} of clauses:

C. false :- X=0, Y>0, a(X,Y).

1. a(X,Y) :- X=<0, Y=0. 2. a(X,Y) :- X>0, Y=1. 3. r(X,W) :- W=1.
D. diff(Y,w) :- a(X,Y), r(X,W).

where: (i) a(X,Y) is a total, functional atom from X to ¥, (ii) r(X,W) is a total,
functional atom from X to W, and (iii) D is a definition in Defs;. By applying
Rule R7, from P; we derive the set P,={E, 1,2,3,D} of clauses where:

E. false :- X=0, Y>0, r(X,w), diff(Y,W).

Now we have that P, is satisfiable, while P, is unsatisfiable.

5 An Algorithm for ADT Removal

Now we present Algorithm R for eliminating ADT terms from CHCs by using the
transformation rules presented in Sect. 4 and automatically introducing suitable
difference predicates. If R terminates, it transforms a set Cls of clauses into a new
set TransfCls where the arguments of all predicates have basic type. Theorem 1
guarantees that if TransfCls is satisfiable, then also Cls is satisfiable.

Algorithm R (see Fig.1) removes ADT terms starting from the set Gs of
goals in Cls. R collects these goals in InCls and stores in Defs the definitions of
new predicates introduced by Rule R1.

Algorithm R
Input: A set Cls of clauses;
Output: A set TransfCls of clauses that have basic types.

Let Cls = DsU Gs, where Ds is a set of definite clauses and Gs is a set of goals;
InCls :== Gs; Defs := 0; TransfCls := ();
while InCls#0 do
m Diff-Define-Fold(InCls, Defs, NewDefs, FldCls);
m Unfold(NewDefs, Ds, UnfCls);
m Replace(UnfCls, Ds, RCls);
InCls := RCls; Defs := DefsUNewDefs; TransfCls := TransfClsU FldCls;

Fig. 1. The ADT removal algorithm R.

Before describing the procedures used by Algorithm R, let us first introduce
the following notions.

92 E. De Angelis et al.

Given a conjunction G of atoms, bvars(G) (or adt—wvars(G)) denotes the
set of variables in G that have a basic type (or an ADT type, respectively).
We say that an atom (or clause) has basic types if all its arguments (or atoms,
respectively) have a basic type. An atom (or clause) has ADTs if at least one of
its arguments (or atoms, respectively) has an ADT type.

Given a set (or a conjunction) S of atoms, SharingBlocks(S) denotes the
partition of S with respect to the reflexive, transitive closure |lg of the rela-
tion |g defined as follows. Given two atoms A; and Ay in S, Ay | g Ao holds
iff adt-vars(Ay) N adt-vars(As) #0. The elements of the partition are called the
sharing blocks of S.

A generalization of a pair (c1,ca) of constraints is a constraint «(cq, ¢2) such
that D = V(c1 — alcr,c2)) and D = V(c2 — afcr,c2)) [19]. In particular, we
consider the following generalization operator based on widening [7]. Suppose
that ¢; is the conjunction (ai,...,a,,) of atomic constraints, then «(ci,cq) is
defined as the conjunction of all a;’s in (aj,...,a;) such that D E V(cx —
a;). For any constraint ¢ and tuple V' of variables, the projection of ¢ onto V
is a constraint w(c, V) such that: (i) vars(w(c,V)) CV, and (ii) D E V(c —
m(c,V)). In our implementation, (¢, V) is computed from JY.c, where ¥ =
vars(c) \ V, by a quantifier elimination algorithm in the theory of booleans and
rational numbers. This implementation is safe in our context, and avoids relying
on modular arithmetic, as is often done when eliminating quantifiers in LIA [37].

For two conjunctions Gy and G of atoms, G1 g G2 holds if G1 = (A4, ..., Ay)
and there exists a subconjunction (By, ..., B,) of G3 (modulo reordering) such
that, for ¢ = 1,...,n, B; is an instance of A;. A conjunction G of atoms is
connected if it consists of a single sharing block.

m Procedure Diff-Define-Fold (see Fig.2). At each iteration of the body of the
for loop, the Diff-Define-Fold procedure removes the ADT terms occurring
in a sharing block B of the body of a clause C': H < ¢, B,G’ of InCls. This is
done by possibly introducing some new definitions (using Rule R1) and applying
the Folding Rule R3. To allow folding, some applications of the Differential
Replacement Rule R7 may be needed. We have the following four cases.

e (Fold). We remove the ADT arguments occurring in B by folding C using a
definition D introduced at a previous step. Indeed, the head of each definition
introduced by Algorithm R is by construction a tuple of variables of basic type.
o (Generalize). We introduce a new definition GenD : genp(V) «— a(d,c), B
whose constraint is obtained by generalizing (d,c), where d is the constraint
occurring in an already available definition whose body is B. Then, we remove
the ADT arguments occurring in B by folding C using GenD.

e (Diff-Introduce). Suppose that B partially matches the body of an avail-
able definition D: newp(U) <« d,B’, that is, for some substitution ¢, B =
(M,F(X;Y)), and B'Y = (M, R(V;W)). Then, we introduce a difference predi-
cate through the new definition D: diff (Z) — w(c¢,X), F(X;Y), R(V; W), where
Z = bvars(F(X;Y),R(V;W)) and, by Rule R7, we replace the conjunction
F(X;Y) by (R(V; W), diff (Z)) in the body of C, thereby deriving C’. Finally,

Removing ADTs from CHCs Using Difference Predicates 93

Procedure Diff-Define-Fold(InCls, Defs, NewDefs, FldCls)
Input: A set InCls of clauses and a set Defs of definitions;
Output: A set NewDefs of definitions and a set FldCls of clauses with basic types.

NewDefs := 0; FldCls := ();
for each clause C: H < ¢,G in InCls do
if C has basic types then InCls:=InCls\{C}; FldCls := FldCls U {C}
else
let C be H + ¢, B,G’ where B is a sharing block in G that contains at least one
atom that has ADTs;
e (Fold) if in Defs U NewDefs there is a (variant of) clause D: newp(V) « d, B
such that D |= V(c — d) then fold C using D and derive E: H + ¢, newp(V),G’;
e (Generalize) else if in Defs U NewDefs there is a (variant of a) clause
newp(V) < d, B and D [~ V(c — d) then
introduce definition GenD: genp(V) + «(d,c), B;
fold C using GenD and derive E: H < c, genp(V), G';
NewDefs := NewDefs U { GenD};
o (Diff-Introduce) else if in Defs U NewDefs there is a (variant of a) clause
D: newp(U) <+ d, B such that: (i) vars(C)Nvars(D)=10, and (ii) B'J B then
take a maximal subconjunction M of B, if any, such that:
(i) B = (M,F(X;Y)), for some connected conjunction M and non-
empty conjunction F(X;Y), (ii) B'Y = (M,R(V;W)), for some sub-
stitution ¥ such that W N vars(C) = @, and (iii) for every atom A in
{F(XGY), R(V W)}, L(H) > £(A);
introduce definition D: diff (Z) < 7(c,X), F(X;Y),R(V; W)
where Z = bvars(F(X;Y), R(V;W));
NewDefs := NewDefs U {ﬁ},
replace F(X;Y) by (R(V; W), diff(Z)) in C, and derive clause
C' H < ¢, M,R(V; W), diff(2),G;
it D = V(e — d9)
then fold C’ using D and derive E: H < ¢, newp(U9Y), diff (Z), G';
else | introduce definition GenD: genp(U’) +a(d¥, ¢), B'0
where U’ = bvars(B’9);
fold C" using GenD and derive E: H < ¢, genp(U"), diff (2),G';
NewDefs := NewDefs U { GenD};
e (Project) else
introduce definition ProjC: newp(V') < n(c,V), B where V = buvars(B);
fold C using ProjC and derive clause E: H < c, newp(V),G";
NewDefs := NewDefs U { ProjC’};
InCls:=(InCls\ {C}) U{E};

Fig. 2. The Diff-Define-Fold procedure.

we remove the ADT arguments in B by folding C’ using either D or a clause
GenD whose constraint is a generalization of the pair (dv, ¢) of constraints.
The example of Sect.2 allows us to illustrate this (Diff-Introduce) case.
With reference to that example, clause C: H «+ ¢,G that we want to fold
is clause 11, whose body has the single sharing block B: ‘append(Xs,Ys,Zs),

94 E. De Angelis et al.

rev(Zs,Rs), len(Xs,NO), len(Ys,N1), append(Rs, [X],R1s), len(R1s,N21)’. Block B
partially matches the body ‘append(Xs,Ys,Zs), rev(Zs,Rs), len(Xs,NO), len
(Ys,N1), 1len(Rs,N2)’of clause8of Sect.2 which playsthe roleof defini-
tion D: newp(U) «—d, B’ in this example. Indeed, we have that:

M= (append(Xs,Ys,Zs), rev(Zs,Rs), len(Xs,N0), len(Ys,N1)),
F(X;Y)=(append(Rs, [X],R1s), len(R1s,N21)), where X=(Rs,X), Y=(R1s,N21),
R(V;W)=1en(Rs,N2), where V= (Rs), Y= (N2).

In this example, ¥ is the identity substitution. Morevover, the condition on
the level mapping /¢ required in the Diff-Define-Fold Procedure of Fig.2 can be
fulfilled by stipulating that ¢(new1) > ¢(append) and {¢(new1) > {(len). Thus, the
definition D to be introduced is:

12. diff(N2,X,N21) :- append(Rs, [X],R1ls), len(R1s,N21), len(Rs,N2).

Indeed, we have that: (i) the projection (¢, X) is w(N01=NO+1, (Rs,X)), that is, the
empty conjunction, (ii) F(X;Y), R(V;W) is the body of clause 12, and (iii) the
head variables N2, X, and N21 are the integer variables in that body. Then, by
applying Rule R7, we replace in clause 11 the conjunction ‘append(Rs, [X],R1s),
len(R1s,N21)’ by the new conjunction ‘len(Rs,N2), diff (N2,X,N21)’, hence deriv-
ing clause C’, which is clause 13 of Sect.2. Finally, by folding clause 13 using
clause 8, we derive clause 14 of Sect. 2, which has no list arguments.

e (Project). If none of the previous three cases apply, then we introduce a
new definition ProjC: newp(V) « w(c,V), B, where V = bvars(B). Then, we
remove the ADT arguments occurring in B by folding C' using ProjC.

The Diff-Define-Fold procedure may introduce new definitions with ADT's
in their bodies, which are added to NewDefs and processed by the Unfold pro-
cedure. In order to present this procedure, we need the following notions.

The application of Rule R2 is controlled by marking some atoms in the body
of a clause as unfoldable. If we unfold w.r.t. atom A clause C: H «+— ¢,L, A, R
the marking of the clauses in Unf(C, A, Ds) is handled as follows: the atoms
derived from A are not marked as unfoldable and each atom A” inherited from an
atom A’ in the body of C is marked as unfoldable iff A’ is marked as unfoldable.

An atom A(X;Y) in a conjunction F(V;Z) of atoms is said to be a source
atom if X CV. Thus, a source atom corresponds to an innermost function call
in a given functional expression. For instance, in clause 1 of Sect. 2, the source
atoms are append(Xs,Ys,Zs), len(Xs,NO), and len(Ys,N1). Indeed, the body of
clause 1 corresponds to len(rev(append xs ys)) # (len xs)+(len ys).

An atom A(X;Y) in the body of clause C: H «— ¢, L, A(X;Y), R is a head-
instance w.r.t. a set Ds of clauses if, for every clause K « d, B in Ds such that:
(1) there exists a most general unifier ¢ of A(X;Y) and K, and (2) the constraint
(¢, d)¥ is satisfiable, we have that X9 = X. Thus, the input variables of A(X;Y")
are not instantiated by unification. For instance, the atom append ([X|1Xs],Ys,Zs)
is a head-instance, while append(Xs,Ys,Zs) is not.

In a set Cls of clauses, predicate p immediately depends on predicate g, if in Cls
there is a clause of the form p(...) « ...,q(...),... The depends on relation is

Removing ADTs from CHCs Using Difference Predicates 95

the transitive closure of the immediately depends on relation. Let < be a well-
founded ordering on tuples of terms such that, for all terms ¢, u,if ¢ < u, then,
for all substitutions 9, t9 < ud. A predicate p is descending w.r.t. < if, for all
clauses, p(t;u) «— ¢, p1(ti;u1),. .., pn(tn;uy), for i=1,... n, if p; depends on p
then ¢; <t. An atom is descending if its predicate is descending. The well-founded
ordering < we use in our implementation is based on the subterm relation and
is defined as follows: (z1,...,2%) < (y1,...,ym) if every x; is a subterm of some
y; and there exists x; which is a strict subterm of some y;. For instance, the
predicates append, rev, and len in the example of Sect. 2 are all descending.

B Procedure Unfold (see Fig.3) repeatedly applies Rule R2 in two phases. In
Phase 1, the procedure unfolds the clauses in NewDefs w.r.t. at least one source
atom. Then, in Phase 2, clauses are unfolded w.r.t. head-instance atoms. Unfold-
ing is repeated only w.r.t descending atoms. The termination of the Unfold pro-
cedure is ensured by the fact that the unfolding w.r.t. a non-descending atom is
done at most once in each phase.

Procedure Unfold(NewDefs, Ds, UnfCls)
Input: A set NewDefs of definitions and a set Ds of definite clauses;
Output: A set UnfCls of clauses.

UnfCls := NewDefs; Mark as unfoldable a nonempty set of source atoms in the body

of each clause of UnfCls;

- while there exists a clause C: H < ¢, L, A, R in UnfCls, for some conjunctions L
and R, such that A is an unfoldable atom do

UnfCls :== (UnfCls — {C}) U Unf(C, A, Ds);

- Mark as unfoldable all atoms in the body of each clause in UnfCls;

- while there exists a clause C: H < ¢, L, A, R in UnfCls, for some conjunctions L
and R, such that A is a head-instance atom w.r.t. Ds and A is either unfoldable or
descending do

UnfCls := (UnfCls — {C}) U Unf(C, A, Ds);

Fig. 3. The Unfold procedure.

m Procedure Replace simplifies some clauses by applying Rules R5 and R6 as long
as possible. Replace terminates because each application of either rule decreases
the number of atoms.

Thus, each execution of the Diff-Define-Fold, Unfold, and Replace procedures
terminates. However, Algorithm R might not terminate because new predicates
may be introduced by Diff-Define-Fold at each iteration of the while-do of R.
Soundness of R follows from soundness of the transformation rules [13].

Theorem 2 (Soundness of Algorithm R). Suppose that Algorithm R ter-
minates for an input set Cls of clauses, and let TransfCls be the output set of
clauses. Then, every clause in TransfCls has basic types, and if TransfCls is
satisfiable, then Cls is satisfiable.

96 E. De Angelis et al.

Algorithm R is not complete, in the sense that, even if Cls is a satisfiable set
of input clauses, then R may not terminate or, due to the use of Rule R7, it may
terminate with an output set TransfCls of unsatisfiable clauses, thereby gener-
ating a false positive (see Example 1 in Sect.4). However, due to well-known
undecidability results for the satisfiability problem of CHCs, this limitation can-
not be overcome, unless we restrict the class of clauses we consider. The study
of such restricted classes of clauses is beyond the scope of the present paper and,
instead, in the next section, we evaluate the effectiveness of Algorithm R from
an experimental viewpoint.

6 Experimental Evaluation

In this section we present the results of some experiments we have performed for
assessing the effectiveness of our transformation-based CHC solving technique.
We compare our technique with the one proposed by Reynolds and Kuncak [38],
which extends the SMT solver CHC4 with inductive reasoning.

Implementation. We have developed the ADTREM tool for ADT removal, which
is based on an implementation of Algorithm R in the VeriMAP system [8].

Benchmark Suite and Ezperiments. Our benchmark suite consists of 169 verifi-
cation problems over inductively defined data structures, such as lists, queues,
heaps, and trees, which have been adapted from the benchmark suite consid-
ered by Reynolds and Kuncak [38]. These problems come from benchmarks used
by various theorem provers: (i) 53 problems come from CLAM [23], (ii) 11 from
HipSpec [6], (iii) 63 from IsaPlanner [15,25], and (iv) 42 from Leon [41]. We have
performed the following experiments, whose results are summarized in Table 12
(1) We have considered Reynolds and Kuncak’s dtt encoding of the verification
problems, where natural numbers are represented using the built-in SMT type
Int, and we have discarded: (i) problems that do not use ADTSs, and (ii) problems
that cannot be directly represented in Horn clause format. Since ADTREM does
not support higher order functions, nor user-provided lemmas, in order to make a
comparison between the two approaches on a level playing field, we have replaced
higher order functions by suitable first order instances and we have removed all
auxiliary lemmas from the input verification problems. We have also replaced
the basic functions recursively defined over natural numbers, such as the plus
and less-or-equal functions, by LIA constraints.

(2) Then, we have translated each verification problem into a set, call it P,
of CHCs in the Prolog-like syntax supported by ADTREM by using a modified
version of the SMT-LIB parser of the ProB system [32]. We have run Eldarica and
733 which use no induction-based mechanism for handling ADTs, to check the
satisfiability of P. Rows ‘Eldarica’ and ‘Z3’ show the number of solved problems,
that is, problems whose CHC encoding has been proved satisfiable.

2 The tool and the benchmarks are available at https://fmlab.unich.it/adtrem/.
3 More specifically, Eldarica v2.0.1 and Z3 v4.8.0 with the Spacer engine [28].

https://fmlab.unich.it/adtrem/

Removing ADTs from CHCs Using Difference Predicates 97

(3) We have run algorithm R on P to produce a set T of CHCs without ADTs.
Row “R’reports the number of problems for which Algorithm R terminates.

(4) We have converted T into the SMT-LIB format, and then we have run Eldar-
ica and Z3 for checking its satisfiability. Rows ‘Eldaricaj,oapr’ and ‘Z3 noapT’
report outside round parentheses the number of solved problems. There was
only one false positive (that is, a satisfiable set P of clauses transformed into an
unsatisfiable set T'), which we have classified as an unsolved problem.

(5) In order to assess the improvements due to the use of the differential replace-
ment rule we have applied to P a modified version, call it R°, of the ADT
removal algorithm R that does not introduce difference predicates, that is, the
Diff-Introduce case of the Diff-Define-Fold Procedure of Fig. 2 is never executed.
The number of problems for which R° terminates and the number of solved
problems using Eldarica and Z3 are shown within round parentheses in rows
“R’, ‘Eldaricayoapt’, and ‘Z3,oaDT , respectively.

(6) Finally, we have run the cved4+ig configuration of the CVC4 solver extended
with inductive reasoning [38] on the 169 problems in SMT-LIB format obtained
at Step (1). Row ‘CVC4+Ind’ reports the number of solved problems.

Table 1. FExperimental results. For each problem we have set a timeout limit of 300
seconds. Experiments have been performed on an Intel Xeon CPU E5-2640 2.00 GHz
with 64GB RAM under CentOS.

CLAM | HipSpec | IsaPlanner | Leon Total

Number of problems | 53 11 63 42 169
Eldarica 0 2 4 9 15

73 6 0 2 10 18

R (18) 36 | (2) 4 (56) 59 (18) 30| (94) 129
Eldarica noaDT (18) 32| (2) (56) 57 (18) 29| (94) 122
Z3 noADT (18) 29| (2) 3 (55) 56 (18) 26 | (93) 114
CVC4+Ind 17 5 37 15 74

Evaluation of Results. The results of our experiments show that ADT removal
considerably increases the effectiveness of CHC solvers without inductive reason-
ing support. For instance, Eldarica is able to solve 15 problems out of 169, while
it solves 122 problems after the removal of ADTs. When using Z3, the improve-
ment is slightly lower, but still very considerable. Note also that, when the ADT
removal terminates (129 problems out of 169), the solvers are very effective (95%
successful verifications for Eldarica). The improvements specifically due to the
use of the difference replacement rule are demonstrated by the increase of the
number of problems for which the ADT removal algorithm terminates (from 94
to 129), and of the number of problems solved (from 94 to 122, for Eldarica).
ADTREM compares favorably to CVC4 extended with induction (compare
rows ‘Eldaricayoapt’ and ‘Z3poapt’ to row ‘CVC4+Ind’). Interestingly, the effec-
tiveness of CVC4 may be increased if one extends the problem formalization with

98 E. De Angelis et al.

extra lemmas which may be used for proving the main conjecture. Indeed, CVC4
solves 100 problems when auxiliary lemmas are added, and 134 problems when,
in addition, it runs on the dti encoding, where natural numbers are represented
using both the built-in type Int and the ADT definition with the zero and suc-
cessor constructors. Our results show that in most cases ADTREM needs neither
those extra axioms nor that sophisticated encoding.

Finally, in Table 2 we report some problems solved by ADTREM with Eldarica
that are not solved by CVC4 with induction (using any encoding and auxiliary
lemmas), or vice versa. For details, see https://fmlab.unich.it/adtrem/.

Table 2. A comparison between ADTREM with Eldarica and CVC4 with induction.

Problem Property proved by ADTREM and not by CVC4
CLAM goal6 Vz,y. len(rev(append(z, y))) = len(z) + len(y)
CLAM goal49 Vz. mem(z, sort(y)) = mem(z,y)

IsaPlanner goal52 n,l. count(n,l) = count(n, rev(l))

IsaPlanner goal80 Vi. sorted(sort(l))

Leon heap-goall3 Va,l. len(gheapsorta(z, 1)) = hsize(z) + len(1)
Problem Property proved by CVC4 and not by ADTREM
CLAM goall8 Vz,y. rev(append(rev(z), y)) = append(rev(y),)
HipSpec rev-equiv-goald | Vx, y. greva(greva(z, y), nil) = greva(y,)

HipSpec rev-equiv-goal6 | Vz, y. append(greva(z, y), z) = greva(z, append(y, z))

7 Related Work and Conclusions

Inductive reasoning is supported, with different degrees of human intervention,
by many theorem provers, such as ACL2 [27], CLAM [23], Isabelle [34], Hip-
Spec [6], Zeno [40], and PVS [35]. The combination of inductive reasoning and
SMT solving techniques has been exploited by many tools for program verifica-
tion [30,36,38,41,43,44].

Leino [30] integrates inductive reasoning into the Dafny program verifier
by implementing a simple strategy that rewrites user-defined properties that
may benefit from induction into proof obligation to be discharged by Z3. The
advantage of this technique is that it fully decouples inductive reasoning from
SMT solving. Hence, no extensions to the SMT solver are required.

In order to extend CVC4 with induction, Reynolds and Kuncak [38] also
consider the rewriting of formulas that may take advantage from inductive rea-
soning, but this is done dynamically, during the proof search. This approach
allows CVC4 to perform the rewritings lazily, whenever new formulas are gen-
erated during the proof search, and to use the partially solved conjecture, to
generate lemmas that may help in the proof of the initial conjecture.

https://fmlab.unich.it/adtrem/

Removing ADTs from CHCs Using Difference Predicates 99

The issue of generating suitable lemmas during inductive proofs has been also
addressed by Yang et al. [44] and implemented in ADTIND. In order to conjec-
ture new lemmas, their algorithm makes use of a syntax-guided synthesis strat-
egy driven by a grammar, which is dynamically generated from user-provided
templates and the function and predicate symbols encountered during the proof
search. The derived lemma conjectures are then checked by the SMT solver Z3.

In order to take full advantage of the efficiency of SMT solvers in checking
satisfiability of quantifier-free formulas over LIA, ADTSs, and finite sets, the Leon
verification system [41] implements an SMT-based solving algorithm to check the
satisfiability of formulas involving recursively defined first-order functions. The
algorithm interleaves the unrolling of recursive functions and the SMT solving of
the formulas generated by the unrolling. Leon can be used to prove properties of
Scala programs with ADTs and integrates with the Scala compiler and the SMT
solver Z3. A refined version of that algorithm, restricted to catamorphisms, has
been implemented into a solver-agnostic tool, called RADA [36].

In the context of CHCs, Unno et al. [43] have proposed a proof system that
combines inductive theorem proving with SMT solving. This approach uses Z3-
PDR [21] to discharge proof obligations generated by the proof system, and has
been applied to prove relational properties of OCaml programs.

The distinctive feature of the technique presented in this paper is that it
does not make use of any explicit inductive reasoning, but it follows a transfor-
mational approach. First, the problem of verifying the validity of a universally
quantified formula over ADTs is reduced to the problem of checking the satisfi-
ability of a set of CHCs. Then, this set of CHCs is transformed with the aim of
deriving a set of CHCs over basic types (i.e., integers) only, whose satisfiability
implies the satisfiability of the original set. In this way, the reasoning on ADTs
is separated from the reasoning on satisfiability, which can be performed by spe-
cialized engines for CHCs on basic types (e.g. Eldarica [22] and Z3-Spacer [29]).
Some of the ideas presented here have been explored in [11,12], but there neither
formal results nor an automated strategy were presented.

A key success factor of our technique is the introduction of difference predi-
cates, which can be viewed as the transformational counterpart of lemma genera-
tion. Indeed, as shown in Sect. 6, the use of difference predicates greatly increases
the power of CHC solving with respect to previous techniques based on the trans-
formational approach, which do not use difference predicates [10].

As future work, we plan to apply our transformation-based verification tech-
nique to more complex program properties, such as relational properties [9].

References

1. Gopalakrishnan, G., Qadeer, S. (eds.): CAV 2011. LNCS, vol. 6806. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22110-1

2. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305-343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_11

https://doi.org/10.1007/978-3-642-22110-1
https://doi.org/10.1007/978-3-319-10575-8_11

100

10.

11.

12.

13.

14.

15.

16.

E. De Angelis et al.

Bjgrner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn Clause Solvers for
Program Verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24-51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2
Bundy, A.: The automation of proof by mathematical induction. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 845-911. North
Holland (2001)

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93-107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7
Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392-406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, POPL 1978, pp. 84-96. ACM (1978)

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Abrahdm, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 568-574. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_47. http://www.map.uniroma2.it/VeriMAP
De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification
through Horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol.
9837, pp. 147-169. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53413-7_8

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Solving Horn clauses
on inductive data types without induction. Theor. Pract. Logic Program. 18(3-4),
452-469 (2018). Special Issue on ICLP 2018

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Lemma generation for
Horn clause satisfiability: a preliminary study. In: Lisitsa, A., Nemytykh, A.P.
(eds.) Proceedings Seventh International Workshop on Verification and Program
Transformation, VPT@Programming 2019, EPTCS, Genova, Italy, 2nd April 2019,
vol. 299, pp. 4-18 (2019)

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Proving properties
of sorting programs: a case study in Horn clause verification. In: De Angelis,
E., Fedyukovich, G., Tzevelekos, N., Ulbrich, M. (eds.) Proceedings of the Sixth
Workshop on Horn Clauses for Verification and Synthesis and Third Workshop
on Program Equivalence and Relational Reasoning, HCVS/PERRQETAPS 2019,
EPTCS, Prague, Czech Republic, 6-7 April 2019, vol. 296, pp. 48-75 (2019)

De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Removing algebraic
data types from constrained Horn clauses using difference predicates - Preliminary
version. CoRR (2020). http://arXiv.org/abs/2004.07749

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Dixon, L., Fleuriot, J.: IsaPlanner: a prototype proof planner in Isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279-283. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45085-6_22

Enderton, H.: A Mathematical Introduction to Logic. Academic Press, Cambridge
(1972)

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-54862-8_47
https://doi.org/10.1007/978-3-642-54862-8_47
http://www.map.uniroma2.it/VeriMAP
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-662-53413-7_8
http://arXiv.org/abs/2004.07749
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-45085-6_22

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Removing ADTs from CHCs Using Difference Predicates 101

Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci.
166, 101-146 (1996)

Fioravanti, F., Pettorossi, A., Proietti, M.: Transformation rules for locally strat-
ified constraint logic programs. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 291-339. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25951-0-10

Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Generalization strategies
for the verification of infinite state systems. Theor. Pract. Logic Program. 13(2),
175-199 (2013). Special Issue on the 25th Annual GULP Conference
Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2012, pp. 405-416
2012

%Iode]?7 K., Bjorner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157-171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

Hojjat, H., Riilmmer, P.: The ELDARICA Horn solver. In: Bjgrner, N., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, 30 Oct-2 Nov 2018, pp. 1-7. IEEE (2018)

Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom.
Reason. 16(1), 79-111 (1996)

Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program.
19(20), 503-581 (1994)

Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
291-306. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
521

Kafle, B., Gallagher, J.P., Morales, J.F.: RAHFT: a tool for verifying Horn clauses
using abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 261-268. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4_14

Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Berlin (2000)

Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17-34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_2
Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846-862. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8_59

Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315-331. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_21

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system, Release 4.06. Documentation and user’s manual, Institut National de
Recherche en Informatique et en Automatique, France (2017)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987).
https://doi.org/10.1007/978-3-642-83189-8

https://doi.org/10.1007/978-3-540-25951-0_10
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-27940-9_21
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-83189-8

102

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

E. De Angelis et al.

Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748-752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8_217

Pham, T.-H., Gacek, A., Whalen, M.W.: Reasoning about algebraic data types
with abstractions. J. Autom. Reason. 57(4), 281-318 (2016)

Rabin, M.O.: Decidable theories. In: Barwise, J. (ed.) Handbook of Mathematical
Logic, pp. 595-629. North-Holland, Amsterdam (1977)

Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80-98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

Seki, H.: On Inductive and coinductive proofs via unfold/fold transformations.
In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 82-96. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12592-8_7

Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., Konig, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407-421. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5_28

Suter, P., Koksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298-315. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7_23

Tamaki, H., Sato, T.: A generalized correctness proof of the unfold/fold logic pro-
gram transformation. Technical Report 864, Ibaraki University, Japan (1986)
Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving Horn clauses.
In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571-591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_30

Yang, W., Fedyukovich, G., Gupta, A.: Lemma synthesis for automating induction
over algebraic data types. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol.
11802, pp. 600-617. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30048-7_35

https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-12592-8_7
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.1007/978-3-030-30048-7_35
https://doi.org/10.1007/978-3-030-30048-7_35

	Removing Algebraic Data Types from Constrained Horn Clauses Using Difference Predicates
	1 Introduction
	2 A Motivating Example
	3 Constrained Horn Clauses
	4 Transformation Rules for Constrained Horn Clauses
	5 An Algorithm for ADT Removal
	6 Experimental Evaluation
	7 Related Work and Conclusions
	References

