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Abstract

Technical variation plays an important role in microarray-based gene expression studies,

and batch effects explain a large proportion of this noise. It is therefore mandatory to elimi-

nate technical variation while maintaining biological variability. Several strategies have

been proposed for the removal of batch effects, although they have not been evaluated in

large-scale longitudinal gene expression data. In this study, we aimed at identifying a suit-

able method for batch effect removal in a large study of microarray-based longitudinal gene

expression. Monocytic gene expression was measured in 1092 participants of the Guten-

berg Health Study at baseline and 5-year follow up. Replicates of selected samples were

measured at both time points to identify technical variability. Deming regression, Passing-

Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and

ComBat were applied to eliminate batch effects between replicates. In a second step, quan-

tile normalization prior to batch effect correction was performed for each method. Technical
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variation between batches was evaluated by principal component analysis. Associations

between body mass index and transcriptomes were calculated before and after batch

removal. Results from association analyses were compared to evaluate maintenance of

biological variability. Quantile normalization, separately performed in each batch, combined

with ComBat successfully reduced batch effects and maintained biological variability. Repli-

cateRUV performed perfectly in the replicate data subset of the study, but failed when

applied to all samples. All other methods did not substantially reduce batch effects in the

replicate data subset. Quantile normalization plus ComBat appears to be a valuable

approach for batch correction in longitudinal gene expression data.

Introduction

Gene expression profiles measured by microarrays are subject to variations caused by biologi-

cal and technical effects. In a transcriptome study, systematic differences resulting from biolog-

ical conditions are of interest, whereas technical variation should be minimal. The highest

proportion of technical variation is systematic and potentially introduced by the RNA process-

ing steps [1]. In addition, RNA quality and sample storage time influence overall variation of

transcriptomes [2]. Therefore, it is mandatory to avoid batch effects wherever possible and to

set up a suitable strategy for technical noise reduction after mRNA quantification.

In the ideal experimental setting, all samples would be processed in a single batch. However,

caused by technical limitations for the number of samples that can be processed at once, this is

impossible when large sample sets are processed. For instance, RNA isolation can only be per-

formed for a small number of samples in parallel. Amplification and labeling of RNA is usually

carried out on well plates of 96 or 384 samples, and several of these plates are required for a

large-scale transcriptome study. In addition, batch sizes of the scanning step are currently lim-

ited to 48 samples on the Affymetrix platform and 172 samples for Illumina. RNA quality, sam-

ple storage time and plate layout are important additional technical factors influencing the

association analysis of gene expression data and common disease risk factors [2]. Conse-

quently, batch effects cannot be avoided in studies comprising a large number of subjects, and

removal of these effects is necessary for reliable differential expression analysis.

Technical factors, including batch effects, also affect longitudinal gene expression analysis.

As RNA is collected at different time points in these studies, additional factors possibly influ-

encing gene expression levels need to be considered. Depending on the time between measure-

ments, the biochemistry of the assays, the scanning device and even the microarray technology

may have changed. If samples from different time points are processed in parallel, storage time

of samples might affect gene expression levels, leading to batch effects. Consequently, it is man-

datory to reduce batch effects without eliminating biological variation and to demonstrate

repeatability of gene expression levels.

Several approaches have been proposed for batch effect removal from gene expression data

[3–7]. Linear models can be applied to estimate batch effects between technical replicates mea-

sured at each time point. Resulting effect estimates can then be utilized for correcting overall

gene expression levels between batches. An alternative regression approach is Deming regres-

sion [8], which allows to model normally distributed errors independently for two measure-

ment methods. Passing-Bablok regression also models errors independently [9], but this

approach does not introduce assumptions about the underlying error distributions. Workman

and colleagues [10] reported that linear models are not capable to fully correct for batch effects
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and proposed the non-linear method qspline. qspline integrates quantile information of gene

expression distributions and uses a cubic spline to fit all values dependent on signal intensities.

ComBat combines location and scale adjustment with empirical Bayes to remove batch effects

[11]. Location and scale parameters, representing mean and variance, are estimated for each

batch and each gene independently. Batch effects are estimated by empirical Bayes and used

for batch effect removal. ComBat has been successfully applied to several datasets [3, 12–14],

and using a single reference sample for each batch, its usefulness has been demonstrated for

cross-sectional data [13]. The aforementioned approaches assume that the batches are known.

Different matrix factorization-based methods were developed for the case that unwanted fac-

tors of variation are unknown, e.g. surrogate variable analysis (SVA) [15] or removal of

unwanted variation (RUV) [16]. On microarrays, background noise is often modelled by nega-

tive control genes. These should not be differentially expressed between biological conditions.

In contrast, observed differences between negative control genes can be considered as technical

variation. RUV utilizes negative controls combined with technical replicates when estimating

and correcting for batch effects (ReplicateRUV) [17]. So far, none of these methods for batch

effect removal has been evaluated in large-scale longitudinal gene expression studies.

The aim of this study was to identify the best method to remove batch effects in large-scale

longitudinal gene expression data. Seven different approaches were applied to gene expression

data sets consisting of 1092 individuals from the Gutenberg Health Study (GHS) available at

baseline and the 5-year follow up visit.

Materials and Methods

Study description

Study participants of both sexes aged between 35–74 years, were included into the Gutenberg

Health Study (GHS), a community-based, prospective, observational single-center cohort study

in the Rhine-Main region inWestern Mid-Germany. All subjects provided written informed

consent. The study was approved by the local ethics committee (Ethik-Kommission—Landesärz-

tekammer Rheinland-Pfalz) and by the local and federal data safety commissioners.

Monocytes enrichment and RNA isolation

For enrichment of monocytes and RNA isolation, the same methodological approach was used

at both time points [18]. In brief, for monocytes enrichment the RosetteSep Monocyte Enrich-

ment Cocktail (StemCell Technologies, Vancouver, Canada) was used directly after blood sam-

pling. Total RNA was extracted on the same day of blood sampling using Trizol extraction

(Invitrogen/Thermo Fisher, Darmstadt, Germany) and purification by the RNeasy Mini Kit

(Qiagen, Hilden, Germany). Monocyte enrichment and RNA isolation were performed in the

GHS study center by the same personnel for both baseline (BL) and follow up (FU) visit. The

integrity of the total RNA was assessed through analysis on an Agilent Bioanalyzer 2100 (Agi-

lent Technologies, Böblingen, Germany). Samples with a RNA integrity number (RIN)<7

were excluded. Total RNA was stored at –80°C until further processing; Time of storage was

2–14 month at both time points with the same time span for RNA samples of the same individ-

uals at BL and FU.

RNA processing and microarray hybridization

Different steps of the work flow were harmonized at baseline and follow up. Fig 1A illustrates

blood sampling, RNA preparation and processing as well as hybridization and scanning of

RNA samples.
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Fig 1. Experimental setting. A: Work flow of RNA extraction, processing and hybridization at study’s
baseline (BL) and follow up (FU) examination. I) Blood collection, monocyte enrichment and RNA isolation
were performed following the same standard operating procedures at the study center for both, BL and FU. II)
RNA processing including amplification, purification, and dilution was performed using the same protocol at
BL and FU, however, these steps were performed by different personnel a different study site. III) At BL, the
Illumina HT12 BeadChips version 3 was used for hybridization and at FU the Illumina HT12 BeadChips
version 4. At BL, the BeadArray Reader was used for the scan of the beadchips and at FU, the iScan was
used. B: Definition of replicated samples. 15 subjects were randomly selected. At BL and FU, RNA was
isolated from these 15 subjects. Based on the time point of RNA isolation and the time point of RNA
processing, hybridization (preparation) and scan, three groups of sample replicates were defined: i) RNA
isolated, prepared and arrays scanned at BL (BLrep), ii) RNA isolated at BL, stored for 5 years at -80°C, then
prepared and arrays scanned at FU (BLFUrep) and iii) RNA isolated, prepared and scanned at FU (FUrep). C:
Factors affecting observed gene expression differences between replicate measures. BLrep and BLFUrep

differ by the time point of RNA preparation and array scan and thus reflect technical differences. For BLFUrep

and FUrep, RNA preparation and array scan were performed at the same time point, therefore, observed
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RNA processing for gene expression analysis has been described before [18]. In brief, 200 ng

of total RNA was amplified and biotinylated using the Illumina TotalPrep-96 RNA Amplifica-

tion Kit (Ambion, Darmstadt, Germany). At baseline, cDNA and cRNA were automatically

purified using the MagMax Express96 magnetic particle processor (Applied Biosystems, Wal-

tham, MA, USA). At the follow up time point, cDNA and cRNA were automatically purified

using the Agilent Bravo system (Agilent, Santa Clara, CA, USA). Concentration of cRNA was

determined on a Tecan InfiniTE M200 (Tecan, Zürich, Switzerland) at both time points. Dilu-

tion of each cRNA sample to 140ng/μl was performed automatically with the Tecan Freedom

EVOlyzer (BL) or the Agilent Bravo system (FU).

For hybridization onto microarrays, 700 ng of purified and diluted cRNA were used at both

time points. At BL, cRNA was hybridized to the Human HT-12 v3 BeadChip (Illumina) at

58°C for 16-18h. After hybridization, BeadChips were washed and stained according to the

manufacture´s instruction. BeadChips were scanned using Illuminas´ Bead Array Reader. At

FU, cRNA was hybridized to the Human HT-12 v4 BeadChip (Illumina) at 58°C for 16-18h.

After hybridization, BeadChips were washed and stained according to the manufactures

instruction. BeadChips were scanned using the Illumina iScan.

Replicates of RNA samples

To distinguish batch effects from biological differences between baseline visit (BL) and 5-year

follow up (FU), replicates of RNA samples were measured as illustrated in Fig 1B and 1C. To

this end, 15 GHS participants were randomly selected and duplicates or triplicates of RNA iso-

lated at each time point were measured as depicted in Table 1. In total, 132 measures were

used, which are assigned to three different groups:

1. BLrep: 35 measurements of RNA isolated from the 15 individuals, processed, hybridized and

scanned only at BL as duplicates or triplicates.

2. BLFUrep: 43 measurements of RNA isolated from the 15 individuals at BL, and processed,

hybridized and scanned as duplicates or triplicates repeatedly at FU.

3. FUrep: 54 measurements of RNA isolated from the 15 individuals at FU and processed,

hybridized and scanned only at FU.

Observed overall gene expression differences between BLrep and BLFUrep are largely due to

batch effects, whereas differences between BLFUrep and FUrep mainly reflect biological differ-

ences between examination dates (Fig 1C). Observed differential expression between BLrep and

FUrep comprise both, biological variation and batch effects. These properties were utilized to

evaluate removed technical and preserved biological variation after applying batch effect

removal strategies.

Data pre-processing and QC

Pre-processing. Microarray data of both time points was read into the R environment

using the R/Bioconductor package beadarray [19]. To process Illumina iScan data from FU

visit, they had to be converted using the beadarray function processSwathData. In total, 1251

arrays were available for BL and 1266 for FU with hybridized RNA from both examination

variation mainly reflects biological differences. Observed differences between BLrep and FUrep comprise
technical and biological variation. (rep = replicated sample).

doi:10.1371/journal.pone.0156594.g001

Batch Effect Removal from Large-Scale Longitudinal Gene Expression

PLOS ONE | DOI:10.1371/journal.pone.0156594 June 7, 2016 5 / 23



dates. The signal to noise ratio (SNR), defined as the 95th percentile divided by the 5th percen-

tile of all expression values for one array, was used as sample quality filter. Only microarrays

with an SNR>6 were kept for further analysis. Within each batch, mean log2-transformed gene

expression was calculated for each sample, and a quality filter of mean expression levels ± 3

standard deviations was applied. None of the samples were excluded based on these filters.

Shared probes between chip versions. Illumina HT12 version 3 arrays used at BL visit,

contained 48,803 probes on each chip. For HT12 version 4, which was used 5 years later,

47,231 probes were available. 39,426 probes with 100% sequence identity were shared between

both Illumina HT12 versions. Before performing further pre-processing steps, all probes that

were disjunctive between chip versions were removed. Only these probes were used for all fur-

ther pre-processing steps.

Removal of mixed-up samples. Two strategies were applied to identify and remove

mixed-up samples based on their gene expression differences between BL and FU. In a first

step, sex-specific gene expression was utilized to identify samples with changed expression

between time points. Therefore, differences of X inactive specific transcript (XIST, expressed in

females) and eukaryotic translation initiation factor 1A, Y-linked (EIF1AY, expressed in males)

Table 1. Number of RNAmeasurements used for evaluating batch effect removal approaches at baseline and 5-year follow up.

RNA isolated at

Baseline 5-year follow up

RNA hybridized and scanned at RNA hybridized and scanned at

Subject Baseline (BLrep
a) Baseline and 5-year follow up (BLFUrep

b) 5-year follow up (FUrep
c) Sum of measurements

1 2 3 3 8

2 2 3 3 8

3 3 2 3 8

4 2 3 4 9

5 2 3 4 9

6 2 3 4 9

7 2 3 4 9

8 2 3 4 9

9 2 3 4 9

10 2 2 4 8

11 3 3 4 10

12 3 3 2 8

13 2 3 4 9

14 3 3 4 10

15 3 3 3 9

Sum of measurements 35 43 54 132

RNA samples of 15 distinct individuals were extracted at baseline and 5-year follow up. Samples extracted at baseline were processed, hybridized and

scanned in duplicates or triplicates at baseline and follow up. Different overall gene expression between time points for those repeated measures reflect

batch effects, because respective RNA samples origin from the same time point. Hence, those groups were used to assess batch effects and evaluate

batch effect removal methods. Samples isolated at follow up were processed, hybridized and scanned in duplicates or triplicates at follow up only.

Differences between those measurements and replicates isolated and measured at baseline can be explained by technical and biological differences. For

each individual the number of measurements according to the different groups is given in this table.
aBLrep: RNA was isolated, processed, hybridized and scanned at baseline visit.
bBLFUrep: RNA was isolated at baseline and processed, hybridized and scanned at follow up.
cFUrep: RNA was isolated, processed, hybridized and scanned at the 5-year follow up.

doi:10.1371/journal.pone.0156594.t001
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mRNA between BL and FU were assessed. In total, 35 sample pairs with expression changes

more than 3 standard deviations from the mean differences were excluded. In a second step,

the polymorphism-in-probe problem [20] was utilized given the fact that single nucleotide

polymorphisms (SNPs) do not change over time. For this purpose, SNP rs8676 located in the

Illumina probe ILMN_2399463 was selected based on its high minor allele frequency

(MAF = 47%) from Ramasamy et al [20]. Mean expression of ILMN_2399463 was highly

dependent on rs8676 alleles (AA: = 6.5, AG: = 8.8, GG: = 9.9). Nineteen sample pairs with

strong ILMN_2399463 expression changes between BL and FU (> 3 standard deviations from

the mean difference) were identified, of which 8 were already identified based on sex-specific

signatures in the first step. After excluding potentially mixed-up samples, 1092 samples with

gene expression data available at BL and FU were kept for further analysis.

Filtering expressed probes. Illumina GenomeStudio built-in function for detecting

expressed probes was compared with the corresponding function from beadarray R package

[19]. Both methods use negative control probes to consider background noise. Because beadar-

raymethod Detect was more robust to outliers of the intensity distribution of negative controls,

it was used for expression detection calling. Each probe with a detection above background

(DABG) p-value< 0.05 was marked as detected for one individual. No sample met the exclu-

sion criteria of< 6000 detected probes. For further analyses, 20,399 probes were kept which

were called expressed in> 10% of all BL and> 10% of all FU samples. Expression values for

all samples were summarized using beadarray summarize function, log2 transformed and

transformed into objects accessible by R/Bioconductor package lumi [21].

Assessment of batch effects on gene expression data

Distributions and variance of overall gene expression were evaluated in different ways. Density

plots were created using the lumimethod plotDensity and assigned to batches by different col-

ors. For comparing distributions of probe expression between BL replicates measured at differ-

ent time points, boxplots were used. Principal component analyses (PCA) were performed by

applying R function prcomp to separate overall variance into independent components. Princi-

pal components reflect different sources of technical or biological variability. The first few prin-

cipal components explain the highest proportion of overall gene expression variance: by

plotting principal component 2 against principal component 1 potential batch effects can be

visualized. Overall gene expression was hierarchically clustered based on pairwise Euclidean

distances between samples using R function hclust and plotted in a dendrogram to visualize

clustering of samples into batches.

Methods used for batch adjustment

Seven methods for batch effect removal were compared: (i) Deming regression, (ii) Passing-

Bablok regression, iii) linear mixed models, iv) third order polynomial regression, v) qspline,

vi) ComBat [11] and vii) ReplicateRUV[17]. For i)–iv), differences in gene expression between

BLrep and BLFUrep measurements were estimated by the particular regression model. Effect

estimates were then used to correct batch effects in BLrep measurements by rescaling gene

expression levels of all probes. For methods v), vi) and vii), R/Bioconductor packages affy [22],

sva [5] and RUVnormalize [17] were applied to all BLrep and BLFUrep measurements. Different

linear regression models were applied to estimate a linear equation, which was subsequently

used to rescale gene expression data of BLrep measurements. The set, in which correction

parameters were estimated, slightly differed between the models as described in the following.

Deming regression. For Deming regression [8], R packagemcr was used to estimate

parameters for fitting BL to FU expression values. All pairs of BLrep and BLFUrep

Batch Effect Removal from Large-Scale Longitudinal Gene Expression
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measurements (Table 1) were included for all probes. In this model, random measure errors

for both time points were taken into account under the assumption that those are independent

and normally distributed.

Passing-Bablok regression. Passing-Bablok regression [9] extends simple regression

models and allows independent measurement errors without making assumptions about error

distributions. PaBALarge from the R packagemcr was employed. Since the implementation of

Passing-Bablok regression is CPU-intensive for large sample sizes, the number of probes had

to be reduced. Therefore, the probe-wise mean expression over all replicates within each batch

was used.

Linear mixed model. R package nlme was used to estimate correction parameters in a lin-

ear mixed model. All probes in all BLrep / BLFUrep sample pairs (Table 1) were included for

testing. Expression values for BLFUrep measurements were used as dependent, BLrep sample

measures as independent variables. Since expression values not only depend on batch member-

ship, but also on the biological condition, it is reasonable to take the sample origin into

account. In the replicates, biological differences are reflected by the GHS individual the RNA

was isolated from. In the linear mixed model, duplicates / triplicates of samples were assigned

to GHS individuals by the random variable.

Polynomial regression. Non-linear relationships between expression of BLrep and

BLFUrep measurements were modeled by multivariate 3rd grade polynomial regression based

on standard R function lm. As in the linear mixed models, all probes and all samples were

employed in this model. An independent variable representing the GHS individual the RNA

was isolated from was used to account for biological variation.

Qspline. The qsplinemethod was conducted as described in [10] to fit expression of each

probe and each sample from BL to the mean distribution of all BLFU measurements. There-

fore, the function normalize.qspline from the R/Bioconductor package affy was applied.

ComBat. Batch effect correction was performed using the function ComBat [11] from R/

Bioconductor package sva [5]. For this purpose, BLrep measurements were treated as first batch

and BLFUrep and FUrep as second batch.

ReplicateRUV. The function NaiveReplicateRUV from the R/Bioconductor package RUV-

normalize, here referred to as ReplicateRUV, was utilized to remove batch effects. ReplicateRUV

estimates and removes unwanted variation based on negative control genes and sample repli-

cates. The function requires the parameter k, an estimated number of factors causing unwanted

variation, and a matrix defining sample membership of replicates. To avoid removal of biologi-

cal variation, only BLrep and BLFUrep replicates were used. Jacobs et al [17] propose to set k to

the number of samples / 4 or to the number of replicates, if the latter is smaller than the former.

In this study, the median number of replicates per sample from BLrep and BLFUrep is five, thus

k = 5. However, also k = 2 and k = 33 (132 samples / 4) was tested.

In a second step, all batch effect correction methods were repeated after batches were quan-

tile normalized separately.

Assessment of maintained biological variability

Successful batch effect removal methods were evaluated for their capability to preserve biologi-

cal variability by four approaches.

1. Clustering of BLrep and BLFUrep measurements from 15 GHS individuals was used to assess

biological variability. Clustering was visualized using dendrograms. Samples from one GHS

individual falling into the same cluster were considered to be a strong indicator for main-

tained biological effects. Separation of the dendrogram into different time points of hybrid-

ization and scanning was rated as an indicator for preserved batch effects.

Batch Effect Removal from Large-Scale Longitudinal Gene Expression
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2. Principal variation component analysis (PVCA) [23] was used to quantify to which degree

technical and biological sources affect overall variation. R/Bioconductor package pvca was

utilized to estimate source and proportion of variation in two steps according to Chen et al

[3]: First, PCA was performed in overall gene expression of all replicates. Principal compo-

nents (PCs) accounting for 60% of total variation were retained for the next step. Secondly,

variant component analysis (VCA) was applied to match each PC to selected sources of var-

iation by linear mixed models. Following sources were selected: i) the time point of RNA

measurement to quantify batch effects, ii) time point of RNA extraction for biological differ-

ences after 5 years, and iii) the ID of the GHS individual representing biological differences

between participants and residuals containing remaining variation.

3. Quantile normalization followed by ComBat and quantile normalization plus ReplicateRUV

were compared for their capability to retain biological variation. The underlying assumption

of this step is that a gene expression profile is specific for each subject and that a large set of

genes does not change its expression patterns over time. Thus, the overall gene expression

of an individual should be very similar to measurements of the same individual 5 years later.

In 22 iterations, 50 subjects were drawn without replacement from all 1092 GHS individu-

als. Overall gene expression at BL and FU was hierarchically clustered based on pairwise

Euclidian distances. Subsequently, the number of subjects with BL and FU measurements,

clustering together was counted.

4. Association analysis of gene expression to a phenotype was used to assess biological variabil-

ity in 1092 GHS subjects. Association analyses were performed between body mass index

(BMI) and transcriptomes. Regressions were performed in following subsets independently:

i) quantile normalized BL data, ii) quantile normalized and ComBat corrected BL data, iii)

quantile normalized FU data and iv) quantile normalized plus ComBat corrected FU data. A

linear mixed model was applied with the expression as dependent variable and sex, age and

BMI as covariates. According to Schurmann et al. [2], technical variation was taken into

account by a random variable. Genome-wide significance level was set to a Benjamini-

Hochberg based FDR< 0.05 [24]. Correlation coefficients were calculated between beta

estimates / log10(p-value) from linear mixed models applied in i) and ii) for BL data and

between iii) and iv) for FU data respectively.

Results

Strong batch effects are present between baseline and 5-year follow up
gene expression levels

Expression levels were detected for 20,399 probes in 1092 GHS subjects at baseline (BL) and

5-year follow up (FU). To distinguish batch effects from biological differences between BL and

FU, RNA of 15 randomly selected GHS individuals with samples available at both time points

and measured in duplicates or triplicates as depicted in Table 1 and Fig 1B and 1C. Overall

expression differences between RNA isolated and measured at BL (BLrep) and RNA isolated at

BL and repeatedly measured at FU (BLFUrep) represent batch effects. Differences between BLrep
measurements and replicates isolated and measured at FU (FUrep) are explained by batch effects

and longitudinal gene expression changes (Fig 1B and 1C). Strong differences of overall gene

expression distributions for replicates between both time points were observed for the replicates

(Fig 2A), and principal component analysis (PCA) clearly separated BL from FU samples (Fig

2B). FUrep samples fell into one cluster with BLFUrep, and they were separated from BLrep sam-

ples pointing towards strong batch effects. Distributions of overall gene expression can clearly
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be assigned to batches instead of biological time points as shown for measurements from one

subject in Fig 2C. This was observed for all 15 individuals with available BLrep, BLFUrep and

FUrepmeasurements (S1 Fig). When differential gene expression analysis between BLrep and

BLFUrep was performed, more than 90% of all probes were significantly differentially expressed

C

BA

Fig 2. Batch effects between baseline and 5-year follow up samples.Replicates of RNA samples were measured at baseline and follow up.
Overall gene expression of those groups were used to generate plots visualizing distributions and variation of transcriptomes. A: Density plots
show a clear shift between samples measured at baseline and follow up, with higher expression at 5-year FU measurement. B: The plot of
principal component (PC) 1 against PC2 from PC analysis indicate strong batch effects between examination dates. Measurements from the
same date (BLFUrep and FUrep) are very similar to each other, although RNA was extracted 5 years apart. C: Boxplots of 9 measurements from
the same GHS individual grouped by BLrep, BLFUrep and FUrep. Again, distributions of samples measured within the same batch are very similar
to each other. BLrep: RNA extracted and measured at BL, BLFUrep: RNA extracted at BL and measured at FU, FUrep: RNA extracted and
measured at FU. Red: Replicates from the group of BLrep measurements, Blue: BLFUrep measurements and dark grey: FUrep measurements.

doi:10.1371/journal.pone.0156594.g002

Batch Effect Removal from Large-Scale Longitudinal Gene Expression

PLOS ONE | DOI:10.1371/journal.pone.0156594 June 7, 2016 10 / 23



at a false discovery rate (FDR)< 0.05, showing that this analysis is influenced by batch effects.

Potential sources of technical variation were i) dilution, labeling and hybridization of RNA at

different study sites by different personnel, ii) distinct versions of the Illumina HT12 microarray

and iii) the use of different Illumina microarray scanners (Fig 1A).

ComBat and ReplicateRUV efficiently reduced batch effects in the study
subset of replicates

In order to find the best approach for batch effect removal, 7 methods to adjust for batch effects

were compared: i) Deming regression, ii) Passing-Bablok regression, iii) linear mixed models,

iv) 3rd order polynomial regression, v) qspline, vi) ComBat and vii) ReplicateRUV. Each method

was first tested on raw log2-transformed data and, in a second step, after quantile normaliza-

tion of batches. For the first four methods, differences in gene expression between BLrep and

BLFUrep measurements were estimated by the respective regression model. Effect estimates

were then used to correct batch effects in BLrep samples by rescaling gene expression levels of

all probes. For methods v),vi) and vii) R/Bioconductor packages affy, sva [5] and RUVnorma-

lize [17] were applied to all BLrep and BLFUrep samples. Variation attributable to batch effects

before and after batch adjustment were identified using plots of principal component analysis

(PCA) and principal variation component analysis (PVCA). PCA plots for all methods are

depicted in Fig 3. The number of differentially expressed genes and the estimated proportion

of variance explained by batch and potential biological differences for each method is summa-

rized in Table 2.

Gene expression correction based on estimates from linear models (Fig 3A–3C) was not

capable to remove batch effects as indicated by clusters between BLrep and BLFUrep samples.

Quantile normalization, performed separately in both batches prior to batch effect correction,

did not improve the methods (S2A–S2C Fig). Overall variance explained by batches was not

remarkably reduced compared to uncorrected data and was still around 50% (Table 2). Expres-

sion differences between uncorrected BL replicates measured at BL and FU were plotted against

mean expression from both batches using Bland-Altman plots for one GHS participant [25].

As shown in Fig 4A (and S3 Fig), gene expression differences depended on measured gene

expression levels, while they were highest for low gene expression values. A non-linear relation

was observed between gene expression levels at baseline and those repeatedly measured at fol-

low up. However, neither third-order polynomial regression nor the non-linear method qspline

led to a substantial reduction of technical variation (Fig 3D and 3E and S2D Fig). The propor-

tion of genome-wide significantly differentially expressed Illumina probes between batches

remained high for linear and non-linear model based correction, ranging from 69.4% (linear

mixed models) to 73.2% (Deming regression).

Next, gene expression levels of BL and FU samples were jointly corrected using ComBat

[11]. As illustrated in the PCA plot, no clustering of sample replicates into batches was

observed (Fig 3F). None of the probes showed differences in gene expression levels between

BLrep and BLFUrep samples at an FDR of 0.05 (Table 2), indicating a great improvement as

compared to the more than 90% differentially expressed genes from the uncorrected data sets.

The estimated proportion of batch effects on total variation was reduced to 4.6% after ComBat,

and the explained variance by differences between individuals was 55.1% (Table 2). Quantile

normalization prior to ComBat led to a slightly improved batch effect removal (4.2%). Replica-

teRUV almost removed batch effects with an estimated explained variation of 0.3% by batches

and 59.7% by differences between individuals. Previous quantile normalization led to decreased

technical variation (0.1%) making biological variation more prominent (65%). In the next step,

removal of technical variation and retention of biological effects were investigated by
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hierarchical clustering based on pairwise Euclidian distances of all BLrep and BLFUrep measure-

ments from the 15 GHS subjects. Observed gene expression between BLrep and BLFUrep should

only differ by batch effects. Thus, a successful batch effect removal should ideally lead to 15

clusters, one for each individual with mixed BLrep and BLFUrep measures. Clustering results

Fig 3. Comparison of different batch effect removal approaches.Replicates of RNA samples extracted at BL were hybridized on Illumina HT12
microarrays at both examination dates. Overall gene expression rescaled by seven different approaches. Components of variance are visualized as PCA
plots. Replicate samples extracted and measured at baseline (BLrep) are marked red and repeated measures at 5-year follow up (BLFUrep) in blue.
Correction based on A: Deming regression, B: Passing-Bablok regression, C: linear mixed models, D: 3rd order polynomial regression and E: qspline [10]
was not capable to remove batch effects from gene expression data. The PCA plots show clusters between replicates extracted, processed and hybridized
at both time points. F: After applyingComBat, G: quantile normalization followed by ComBat, H: ReplicateRUV and I: quantile normalization plus
ReplicateRUV, no clustering of samples was observed indicating successful removal of batch effects.

doi:10.1371/journal.pone.0156594.g003
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were visualized as dendrograms in Fig 5. After ComBat, replicates from 9 individuals were

partly clustered correctly, meaning that some (but not all) BLrep and BLFUrep measures of one

individual fell into the same cluster (Fig 5A). Combining ComBat with quantile normalization

greatly improved clustering, leading to 8 correct and 6 partly correct classifications (Fig 5B).

ReplicateRUV performed comparably with 8 proper and 4 partly correct clusters (Fig 5C).

Quantile normalization followed by ReplicateRUV resulted in an almost perfect classification,

with just one replicate classified incorrectly. In summary, quantile normalization plus ComBat

or ReplicateRUV substantially reduced batch effects in the dataset containing replicates of 15

GHS individuals.

ComBat outperformed ReplicateRUV, when applied in the whole study
dataset

The aforementioned analyses were performed in a subset of 15 individuals with repeated mea-

sures of up to 6 replicates per sample. Next, quantile normalization followed by ComBat or

ReplicateRUV was applied in the entire dataset of the study. Principal component analyses of

corrected gene expression showed more prominent clusters between BL and FU samples for

ReplicateRUV (Fig 6A) compared to ComBat (Fig 6B). Clusters between batches were also

observed for ReplicateRUV when using different values for the parameter k (S4 Fig). In Replica-

teRUV corrected data, 17,974 (88.1%) out of 20,399 probes were differentially expressed

Table 2. Comparison of batch effect removal methods.

No. differentially expressed genes between
replicates measured at both time points

PVCA (%)

Benjamini-Hochberga) Bonferronib) Batch Time point Individuals Residuals

Uncorrected data 18,526 (90.8%) 15,631 (76.6%) 35.7 3.4 37.6 23.2

Deming regression 14,939 (73.2%) 8,137 (39.9%) 35.7 3.4 37.6 23.2

Passing-Bablok regression 14,257 (69.9%) 7,935 (38.9%) 35.7 3.4 37.6 23.2

Linear mixed model 14,147 (69.4%) 7,933 (38.9%) 35.9 3.4 37.7 22.9

Polynomial regression 14,558 (71.4%) 7,936 (38.9%) 34.0 3.6 38.0 24.4

Qspline 14,771 (72.4%) 8,700 (42.6%) 34.4 3.5 37.7 24.4

ComBat 0 (0%) 0 (0%) 4.6 2.7 55.1 37.6

QN + ComBat 0 (0%) 0 (0%) 4.2 2.5 56.7 36.6

ReplicateRUV 0 (0%) 0 (0%) 0.3 9.8 59.7 30.2

QN+ReplicateRUV 0 (0%) 0 (0%) 0.1 8.1 65.0 26.8

Batch effect removal was evaluated in terms of differential expression between replicates and principal variance component analysis (PVCA) after

correcting overall gene expression. Differential expression was calculated between 35 RNA replicates isolated and measured at baseline and 43 RNA

replicates isolated at baseline and hybridized at 5-year follow up. Since both groups were isolated from the same monocytic cells and differ only by the

measurement time point, observed differences can be assigned to batch effects. In uncorrected data, more than 90% of all probes were significantly

differentially expressed. ComBat and ReplicateRUV eliminated differential expression between batches. None of the other approaches notably reduced

the number of differentially expressed genes. For PVCA, additionally 54 RNA replicates isolated and hybridized at follow up were included in the analysis.

PVCA was applied after batch effect correction to estimate the proportion of variance on overall gene expression variation explained by the batches

(Batch), potential biological differences after 5 years (Time point), potential biological differences between 15 individuals the RNA was isolated from

(Individual) and remaining variation (Residual). The estimated explained variance attributable to batches was largely reduced after applying ComBat.

ReplicateRUV almost fully removed batch effects. Quantile normalization (QN) prior to ComBat or ReplicateRUV slightly improved batch effect removal.

The other approaches did not reduce batch effects.
a: significance level defined as Benjamini-Hochberg corrected FDR < 0.05;
b: significance level defined as Bonferroni corrected p-value < 0.05.

doi:10.1371/journal.pone.0156594.t002
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Fig 4. Comparison of gene expression data between baseline and 5-year follow up. Bland-Altman plots were produced using microarray
data from one GHS individual to evaluate agreement of repeated measures before and after batch effect removal. Expression differences
between technical replicates hybridized at baseline and 5-year follow up were therefore plotted against the mean expression of both time points
for each probe. Each dot represents one probe and dense clusters of probes are marked blue. The majority of probes had low expression
values. A: In uncorrected data, large expression differences between baseline and follow up data could be observed. Those differences were
strongly dependent on the mean expression. B: After applyingComBat, differences were largely reduced, but were increased for probes with
high expression. C: When quantile normalization was performed separately in each batch followed by ComBat, the best results were obtained
in terms of agreement between repeated measures.

doi:10.1371/journal.pone.0156594.g004
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Fig 5. Clustering of sample replicates after batch effect correction. RNA samples extracted at BL and measured at BL (BLrep) or FU (BLFUrep) were
clustered based on pairwise distance of overall gene expression. Each GHS individual is represented with an ID between 1 and 15. Batch membership is
indicated by the labels BL for BLrep and BLFU for BLFUrep. RNA used for hybridization and scanning was utilized from the same stock at both time points. As
a consequence, overall gene expression for one individual should be very similar between technical replicates. Before batch effect correction, samples fell
into two clusters representing batches. A: After applying ComBat clustering improved. B: Quantile normalization plus ComBat led to clusters, which mainly
discriminate between individuals, indicating retained biological effects. C: ReplicateRUV led to comparable results and D: quantile normalization plus
ReplicateRUV led to almost perfect classification.

doi:10.1371/journal.pone.0156594.g005
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between BL and FU at a FDR� 0.05, indicating that batch effects were still present. In contrast,

ComBat corrected data did not show any significant differential expression between time

points. To study, whether biological variation was preserved after batch effect correction, 22

subsets, each containing 50 individuals, were built and used for hierarchical clustering. The

underlying assumption was that intra-individual biological variation between time points is on

average lower than inter-individual differences of gene expression profiles. To evaluate this

assumption, BLFUrep and FUrep measurements were clustered (Fig 6F). Both groups were pro-

cessed and scanned at FU. Thus, variation between BLFUrep and FUrep for one individual

should reflect biological differences after 5 years. For 7 out of 15 individuals (46.7%), all repli-

cates from both time points fell into the same cluster. This indicated that the assumption holds

for a substantial proportion of individuals. An exemplifying dendrogram for quantile normal-

ized plus ReplicateRUV corrected data is shown in Fig 6D. Only one individual (43.BL and 43.

FU) was found in direct proximity for this subset. Fig 6E shows an example for quantile nor-

malized and ComBat corrected data. Here, 16 out of 50 (32%) individuals were found with BL

and FU within one cluster. The proportions of intra-individual pairs per 50 samples are sum-

marized in Fig 6C. The mean proportion was 0.8% after ReplicateRUV and 0.3% after quantile

normalization plus ReplicateRUV. Batch effect correction by ComBat increased the proportion

of pairs to 13.5%. The best results were achieved after quantile normalization and ComBat with

a mean proportion of 27.9%. Similar results can be observed, when comparing Euclidian dis-

tances without subsequent clustering (S5 Fig). In addition, Bland-Altman plots showed that

the latter approach led to an increased reproducibility of repeated measures when compared to

ComBat alone (Fig 4B and 4C). Taken together, quantile normalization plus ComBat efficiently

removed batch effect and retained intra-individual variation.

Quantile normalization plus ComBatmaintained biological variability

Approaches to remove batch effects should not eliminate biological variation. Hence, batch

effect removal was evaluated for their capability to preserve biological variability by comparing

summary statistics of association analysis between body mass index (BMI) and gene expression

in two different settings.

First, we investigated whether ComBat reduced biological variation within one batch, i.e.

within BL or FU data. Associations between BMI and each probe were calculated in quantile-

normalized data individually before and after batch effect removal. Within the BL data, 1498

probes were significantly associated with BMI at a FDR<0.05 and after application of ComBat,

indicating that rescaling of gene expression during batch effect removal did not affect biological

variation. The same result was observed in FU samples with 2281 significant associations

before and after batch correction. Effect estimates of BMI probe associations were highly corre-

lated between datasets in BL (r = 0.995) and FU (r = 0.986) (Fig 7A and 7B). Differing effect

sizes between datasets can be explained by change in the overall expression levels and variance

after ComBat. All probes with deviating effect estimates showed differences in standard errors.

P-values from BMI association tests were almost identical between quantile normalized and

ComBat corrected data (S6 Fig).

In a second step, summary statistics of BMI associations were compared between the two

time points. Since all subjects were five years older at the time of the follow up, a perfect corre-

lation between BL and FU was not expected. However, they should be comparable. BMI effect

estimates of quantile normalized BL data were correlated with those from quantile normalized

FU data (r = 0.781) (Fig 7C). Larger effect sizes were lower in FU compared to BL data. The

correlation between BMI effect estimates from BL and FU after quantile normalization and

ComBat was slightly higher (r = 0.787) (Fig 7D) when compared to the correlation in quantile
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Fig 6. Comparison of batch effect removal byReplicateRUV andComBat in the full dataset.Overall gene expression was
corrected for batch effects by either ReplicateRUV or ComBat. A, B: Components of variance are visualized as PCA plots. Samples
extracted and measured at baseline (BL) are marked red, repeated measures at 5-year follow up (BLFUrep) in blue and follow-up
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normalized data. Differences between large effect estimates from BL and FU data became less

prominent.

Taken together with the results from hierarchical clustering, these findings clearly show

maintained biological variability of overall gene expression after batch effect removal through

quantile normalization followed by ComBat.

Discussion

The combination of quantile normalization and ComBat in large-scale, longitudinal gene

expression data is the best approach for removal of batch effects in our study dataset. Observed

batch effects between BL and FU replicated samples were strong. Probes with low gene expres-

sion levels were> 2-fold higher in FU compared to BL. In contrast, expression levels were

comparable for medium to high signal intensities. Batch effects were largely reduced from an

estimated proportion of 35.7% on overall variation to 4.2%. When focusing on the dataset of

sample replicates, ReplicateRUV outperformed ComBat in terms of batch effect removal and

retention of biological variation. Technical variation between batches was almost fully removed

after quantile normalization and ReplicateRUV, leaving 0.1% estimated explained variation by

batch effects. Sample replicates repeatedly measured at both time points (BL and FU), fell into

virtually perfect clusters indicating maintained biological variation. However, when batch

effect removal was applied on the full dataset of 1092 GHS subjects, quantile normalization

plus ComBat performed better compared to quantile normalization followed by ReplicateRUV

or ReplicateRUV alone. Different numbers of ReplicateRUV parameter k, which gives an esti-

mate of the number of unwanted factors, were tested. The estimates did not substantially

improve batch effect removal, leaving the relatively low proportion of replicates compared to

the large study cohort as potential cause for these divergent results.

After quantile normalization plus ComBat, biological variation was preserved as shown by

repeated measures of RNA replicates, maintained intra-individual similarity and by BMI asso-

ciation analyses in all 1092 GHS participants with expression data available at both time points.

All other approaches, i.e., Deming regression, Passing-Bablok regression, linear mixed models

and non-linear approaches did not adequately reduce the batch effects. Thus, quantile normali-

zation followed by ComBat was the only approach tested which successfully removed batch

effects.

Quantile normalization followed by ComBat performed better than ComBat alone. As indi-

cated by hierarchical clustering and analysis of inter- and intra-individual distances, quantile

normalization prior to batch effect removal led to improved retention of biological signals. In

addition, quantile normalization, performed separately in batches, led to a slightly improved

reduction of technical variation. Briefly, ComBat works in three steps: i) data standardization,

ii) empirical estimation of prior distribution hyperparameters from standardized data and sub-

sequent estimation of batch effect parameters, which are iii) used to correct batches. The first

(FU) samples in grey. Batch correction based on A: quantile normalization plus ReplicateRUV resulted in clusters indicating
remaining batch effects, while B: quantile normalization plusComBat removed those effects. C: 50 subjects with BL and FU gene
expression data available were drawn from 1092 individuals in 22 iterations. Gene expression was hierarchically clustered and the
number of subjects with BL and FU falling into direct proximity was counted. On the y-axis, the proportion of correctly clustered pairs
is shown for different batch effect removal approaches. Quantile normalization plus ComBat led to the highest proportion of pairs
indicating maintained intra-individual similarity between time points. D: Example dendrogram from hierarchical clustering after
quantile normalization plus ReplicateRUV. Each individual is represented with an ID between 1 and 50. The labels BL and FU
represent time points. One subject was identified with “BL” and “FU” (BL: Baseline, FU: 5y follow-up) clustered in direct proximity
(40.BL, 40.FU). E: Clustering based on quantile normalized andComBat corrected data led to 16 individuals with BL and FU in the
same cluster. F: Hierarchical clustering of quantile normalized data for 15 subjects with BLFUrep and FUrep measurements. Here, for
7 individuals (46.7%) all measurements fell into the same cluster.

doi:10.1371/journal.pone.0156594.g006
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Fig 7. Maintenance of biological variation after quantile normalization andComBat. To assess whether biological sources of variability were
maintained after batch effect removal, associations between each probe and body mass index (BMI) were calculated using linear mixed models
within each batch containing 1092 samples before and after applyingComBat. A, B: For each probe, we plotted the effect of BMI on expression in
ComBat corrected data on the x-axis and the quantile-normalized but uncorrected on the y-axis. BMI beta estimates were highly correlated between
corrected and uncorrected datasets in A: BL samples (R = 0.995) and B: FU samples (R = 0.986). C, D: The effect of BMI on gene expression in BL
samples was plotted against the effect observed in FU samples after C: quantile normalization and D: quantile normalization followed by ComBat.
The correlation between BMI effect estimates at BL and FU was slightly higher for ComBat corrected data (r = 0.787) compared data, which was
only quantile normalized (r = 0.781).

doi:10.1371/journal.pone.0156594.g007
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step aims to reduce biases, when estimating hyperparameters. Distributions of overall gene

expression in follow-up samples were narrower and more skewed towards zero, had lower

interquartile ranges and altogether higher values compared to the other batch. Quantile nor-

malization reduced variances within each batch and maintained ranking of genes. Thus, a pos-

sible explanation for the observations is that prior quantile normalization helped to facilitate

bias reduction during batch effect parameter estimation by ComBat and therefore led to an

improved batch effect removal.

The successful application of ComBat reported in this study is the first report on perfor-

mance of ComBat in large-scale longitudinal gene expression data and confirms data from the

current literature. Kitchen et al. [4] used repeated hybridizations of human reference RNA rep-

licates in 18 chips spread over 5 batches to evaluate transcriptome variation within and across

batches. Both, intra- and inter-batch correlation between replicates greatly increased after

quantile normalization within each batch plus ComBat. Chen et al. investigated 6 methods for

batch effect removal using two microarray datasets from brain RNA samples and two simu-

lated datasets [3]. ComBat outperformed the other 5 methods by most metrics. Quantile nor-

malization plus ComBat was also recommended for batch effect removal in Illumina

methylation data [26]. ComBat was capable to combine different datasets from GEO (ncbi.

nlm.nih.gov/geo) as shown by Chmielewski et al. for differential expression analysis of athero-

sclerotic plaques [14]. Cross-platform integration of microarray data from Illumina and Affy-

metrix was reported to produce meaningful results when applying ComBat [27].

A limitation of this work is that the sources for the strong batch effects are confounded by

variation in time point of measurement and changes in the microarray version. However, the

technology of Illumina HT12 BeadChip arrays, used in this study remained stable over time and

less than 20% of all designed probes differ between versions 3 and 4. It can thus be assumed that

shifts in overall gene expression levels represented by light signal intensities can primarily be

attributed to scanning using BeadArray Reader at BL and iScan at FU, respectively (Fig 2). Com-

Bat has also been shown to be a valuable approach for batch effect removal from oligonucleo-

tide-based Affymetrix chips [28]. However, in this study, RNA hybridization was performed on

Illumina HT12 BeadChip arrays only and results cannot be generalized to other platforms.

In summary, quantile normalization followed by ComBat is the best approach for removing

batch effects when applied to large-scale longitudinal gene expression data. All other

approaches investigated in this work failed. Batch effects were largely removed by ComBat as

indicated by repeated measures of RNA replicates. Evaluation based on biological replicates

showed that biological variation after ComBat was maintained. BMI association analyses per-

formed separately before and after applying ComBat additionally pinpointed towards main-

tained biological variation, which is essential for future association analyses between changes

in gene expression and clinical phenotypes over time in GHS.

Supporting Information

S1 Fig. Batch effects between baseline and 5-year follow up samples. Boxplots of samples

summarized for each of the 15 GHS individuals measured in distinct batches (BL and BLFU)

and with RNA isolated and measured 5 years later. Distributions clearly indicate that batch

effects outweigh biological effects.

(PDF)

S2 Fig. Comparison of different batch effect removal approaches. Replicates of RNA samples

extracted at BL were hybridized on Illumina HT12 microarrays at both examination dates.

Overall gene expression was quantile normalized batch-wise and rescaled between batches by

four different approaches. Components of variance are visualized as PCA plots. Replicate
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samples extracted and measured at baseline (BLrep) are marked red and repeated measures at

5-year follow up (BLFUrep) in blue. The PCA plots show clusters between replicates extracted,

processed and hybridized at both time points for correction based on A: Deming regression, B:

Passing-Bablok regression, C: linear mixed models, D: 3rd order polynomial regression.

(TIF)

S3 Fig. Direct comparison of expression between batches. Bland-Altman plots were pro-

duced using microarray data from one GHS individual to evaluate agreement of repeated mea-

sures before batch effect removal. Expression differences between technical replicates

hybridized at baseline and 5-year follow up were therefore plotted against the mean expression

of both time points for each probe. Each dot represents one probe and dense clusters of probes

are marked blue. The majority of probes had low expression values. In uncorrected data, large

expression differences between baseline and follow up data could be observed. Those differ-

ences were strongly dependent on the mean expression.

(PDF)

S4 Fig. Comparison of different parameters for ReplicateRUV. Different values for the

parameter k, for the specification of an estimated number of unwanted factors of variation,

were tested. Components of variance are visualized as PCA plots. Samples extracted and mea-

sured at baseline (BL) are marked red, repeated measures at 5-year follow up (BLFUrep) in blue

and follow-up (FU) samples in grey. Batch correction based on ReplicateRUV with A: k = 2, B:

k = 5 and C: k = 33 was performed.

(TIF)

S5 Fig. Euclidean distances between samples before / after batch effect correction. Intra-

individual variation between time points was calculated by pairwise Euclidean distances

between BL and FU for each individual. Inter-individual variation is specified by the mean

Euclidean distance between one individual and all other individuals. A-C: replicate data set. A:

Quantile normalized data from BLFUrep and FUrep samples—measured within one batch—

mainly reflect biological differences and results are thus used as a reference. In contrast,

observed differences between BLrep and FUrep include batch effects and biological variation

between time points. A batch effect removal strategy that retains biological variation should

therefore result in distributions comparable to A. Mean Euclidean distances are shown for batch

effect removal by B: quantile normalization (QN) plus ComBat and C: QN followed by Replica-

teRUV. The comparison of batch effect removal in the entire dataset by D: QN plus ComBat

and E: QN plus ReplicateRUV indicates that QN followed by ComBat achieved the best results.

(TIF)

S6 Fig. Maintenance of biological variation after quantile normalization and ComBat. To

assess whether biological sources of variability were maintained after batch effect removal,

associations between each probe and body mass index (BMI) were calculated using linear

mixed models within each batch containing 1092 samples before and after applying ComBat.

A, B: For each probe, we plotted the p-values from ComBat corrected data on the x-axis and

the quantile-normalized but uncorrected on the y-axis. BMI p-values were almost identical

between corrected and uncorrected datasets in A: BL samples and B: FU samples. C.D: The

BMI p-values from BL samples was plotted against the p-values observed in FU samples after

C: quantile normalization and D: quantile normalization followed by ComBat.

(TIF)

S1 Material. Equations used for batch effect removal.

(PDF)
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