
Removing Rolling Shutter Wobble

Simon Baker, Eric Bennett, Sing Bing Kang, and Richard Szeliski

March 2010

Technical Report

MSR-TR-2010-28

We present an algorithm to remove wobble artifacts from a video captured with a rolling shutter camera

undergoing large accelerations or jitter. We show how estimating the rapid motion of the camera can be

posed as a temporal super-resolution problem. The low-frequency measurements are the motions of pixels

from one frame to the next. These measurements are modeled as temporal integrals of the underlying

high-frequency jitter of the camera. The high-frequency estimated motion of the camera is then used to

re-render the sequence as though all the pixels in each frame were imaged at the same time. We also present

an auto-calibration algorithm that can estimate the time between the capture of subsequent rows in the

camera.

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Whereas historically video cameras and camcorders pri-

marily used CCD sensors, most digital still cameras, cell-

phone cameras, and webcams use CMOS sensors. CMOS

video cameras are also increasingly becoming popular,

from the low-end Flip camera [12] to the high-end Red

camera [13]. To maximize the fill factor, CMOS sensors

are commonly read out line-by-line and use a rolling shut-

ter; ie. the effective capture time of each row is slightly

after that of the previous row.

Rolling shutter cameras suffer from three main arti-

facts [16]: (1) skew, (2) partial exposure, and (3) wob-

ble. Skewing occurs when the camera undergoes a con-

stant (or smoothly varying) motion. Skewing can be cor-

rected by computing the global motion and then warping

the frames appropriately [11, 7]. In the presence of in-

dependently moving (but slowly accelerating) objects, a

full optical flow field can be used to perform the correc-

tion [5]. Partial exposure occurs when a rolling shutter is

used to image fast changing illumination such as a flash, a

strobe light, or lightning. This effect can result in images

that are darker in some regions and lighter in others [5].

Wobble occurs when there are large accelerations or

the motion is at a higher frequency than the frame rate of

the camera. Wobble is particularly pronounced for cam-

eras mounted on helicopters, cars, and motorbikes. Fig-

ure 1(a) contains one frame from a video with wobble ar-

tifacts. The straight lines on the building have become

curved. Note, however, that wobble artifacts are far more

apparent in videos than they are in any single frame. See

the videos in the supplementary material for examples.

About the only prior work that has come close to address-

ing rolling shutter wobble is [8]. This paper uses camera

motion and context-preserving warps for video stabiliza-

tion. Empirically, the authors noted that their algorithm

tends to reducing rolling shutter wobble. However, the al-

gorithm does not model the high-frequency temporal mo-

tion [10, 1] necessary for general purpose rolling shutter

correction.

In this paper, we present an algorithm to remove rolling

shutter wobble in video. In particular, we show how es-

timating the high-frequency jitter of the camera can be

posed as a temporal super-resolution problem [3, 14]. The

temporal low-frequency measurements (analogous of the

low resolution pixels) are the motions of pixels from one

(a) Rolling Shutter Input (b) Corrected Output

Figure 1: Example: (a) One frame from a video with rolling

shutter wobble artifacts. (b) The output of our algorithm. No-

tice how the curved lines on the building have become far more

straight. Note, however, that rolling shutter wobble artifacts are

far more apparent in the video than they are in any single frame.

See the videos in the supplementary material for examples.

frame to the next. These measurements are modeled as

temporal integrals of the underlying high-frequency jitter

of the camera. The estimated high-frequency motion of

the camera is then used to re-render the video as though

all the pixels in each frame were imaged at the same time.

We begin in Section 2.1 by deriving our algorithm for

a high-frequency (e.g. per row) translational jitter model,

analogous to the one in [6]. In Section 2.2 we show how to

generalize this model to a high-frequency affine model. In

Section 2.3 we generalize the model to include indepen-

dently moving objects. In particular, we model the motion

of each pixel as the combination of a low-frequency inde-

pendent motion and a high-frequency camera jitter.

Our algorithm has a single calibration parameter,

namely, the time between the capture of two subsequent

rows as a fraction of the time between two subsequent

frames. This parameter is a measure of how severe the

rolling shutter is. When the parameter is zero, the camera

has a global shutter. As the parameter increases, rolling

shutter artifacts become more pronounced.

In Section 2.4 we investigate the calibration of this pa-

rameter. We first derive a closed-form expression relating

the solution of the temporal super-resolution constraints

with the correct parameter to the solution with another

setting (for the translational model). This result is impor-

tant because it indicates that the performance of our algo-

rithm should be robust to the setting of the calibration pa-

rameter, a result which we empirically validate. Second,

we present an auto-calibration algorithm that can estimate

the calibration parameter from a short segment of a video

containing some jitter.

1

Time0 0+t 0+2t 1 1+t 1+2t

Row

Time0+b 1+b

Image 0 Image 1

R
o
ll

in
g
 S

h
u
tt

er
G

lo
b
al

 S
h
u
tt

er

Exposure Time Readout

Capture

Figure 2: Image Capture Model: In a rolling shutter camera,

each row is exposed and read out at a slightly later time than the

previous row. We denote the difference in the capture times to be

τ , where one time unit is the time between subsequent frames.

2 Theory and Algorithms

Denote the rolling shutter video:

IRS
T (X,Y) for T = 0, 1, 2, . . . (1)

Assume that the Y th row in image IRS
T (X,Y) is captured

at time T + τY , where we define the capture time of each

row to be the mid-point of the exposure period for that

row. See Figure 2 for an illustration. The non-zero ex-

posure period means motion blur may be present. The

shift over time in the mid-point of the exposure period

still causes rolling shutter artifacts even in the presence

of motion blur. Note that in this paper we do not address

motion blur removal [6].

For now, we assume that τ is known or has been cal-

ibrated. See [5] for an algorithm to calibrate a camera

in the lab. In Section 2.4 we present a method to perform

auto-calibration for a video obtained from a camera that is

no longer available for calibration. We wish to correct the

rolling shutter images IRS
T (X,Y) to generate a sequence

IGS
T (X,Y) that might have been captured by a camera

with a global shutter. We are free to choose the time T+β
that the global shutter image IGS

T (X,Y) would have been

captured. If the number of rows in the images is M , a

natural choice for β is:

β = τ × (M − 1)/2 (2)

because it tends to minimize the maximum correction and

means that the center of the image will require the least

correction. In this paper, we always use the value of β in

Equation (2). Note that β is not a calibration parameter,

but can be specified arbitrarily.

2.1 High-Frequency Translational Jitter

We first consider a high-frequency translational model of

the camera jitter. By high-frequency, we mean that each

row in the image could potentially have a different trans-

lation. The motion of all the pixels in each row are as-

sumed to be the same, however. The actual model is a

continuous function of time; at any given continuous time

t, we model the instantaneous translational motion. We

only discretize the model into a finite sampling of param-

eters to perform the optimization. Our translational jitter

model is analogous to the one used in [6] for motion blur.

Empirically we found it to be a good approximation for

many videos.

2.1.1 Motion Model

Denote the temporal trajectory of the projected location of

a scene point x(t) = (x(t), y(t)). We use lower case t, x,

y to denote continuous variables and upper case T , X , Y
to denote integer frame, column, and row numbers. Note

that we model the continuous path of the point x(t) even

through time periods that it is not imaged. If the camera

is jittering, x(t) will vary rapidly between the capture of

two subsequent frames T and T + 1. We assume that this

high-frequency variation can be described by the follow-

ing differential equation:

dx

d t
= mhf(x;p(t)). (3)

The parameters p(t) are a function of continuous time t.
At any given time t, mhf(x;p(t)) describes a low para-

metric spatial motion model. For example, mhf could be

a translation. In this case, the parameter vector p(t) =
(p1(t), p2(t)) has two components, and:

mhf(x;p(t)) = (p1(t), p2(t)) . (4)

In the remainder of this section, we use this translational

model. See Section 2.2 for the derivation of our algorithm

2

for the corresponding affine model. In the translational

model, all the points in the image are moving with the

same motion. However, over the duration of a frame from

T to T + 1, the translation may vary arbitrarily. In the

context of image deblurring with a global shutter camera

[6], this translational model can result in arbitrarily com-

plex blur kernels. The blur kernels are the same at each

pixel, however. In our case of a rolling shutter sequence,

the low-frequency (frame-to-frame) motion of each row in

the image can be different because each row is imaged at

a different time. Although a translation model may seem

too simple, the fact that it is high-frequency allows it to

explain many non-rigid image deformations such as those

in Figure 1 that are perceived as wobble in rolling shutter

video.

Equation (3) defines a differential equation for x(t). To

proceed, this equation must be solved. In the translational

case, the continuous analytical solution is:

x(t) = x(t0) +

∫ t

t0

p(s) ds. (5)

Deriving an analytic solution of Equation (3) for more

complicated motion models may be impossible. In such

case, an approximate or numerical solution must be used

instead. See Section 2.2 (affine) and Section 2.3 (inde-

pendent motion) for two examples.

2.1.2 Measurement Constraints

We assume that measurements of the motion are available

in the form of point correspondences. In this paper, all

correspondences are obtained using the Black and Anan-

dan optical flow algorithm [4]. Note that rolling shutter

distortions do not affect the extent to which brightness

constancy holds. We subsample the optical flow fields,

as described in detail in Section 3, to obtain a discrete set

of correspondences. An alternative approach would be to

use a feature detection and matching algorithm such as

[9]. Note, however, that care should be taken as non-rigid

image deformations do affect the values of most feature

descriptors.

We assume each correspondence takes the form:

Corri = (Ti, Ti +Ki,xTi
,xTi+Ki

) . (6)

This expression means that a point xTi
= (xTi

, yTi
) in

image IRS
Ti

was matched, tracked, or flowed to the corre-

M
o
ti

o
n
 P

ar
am

et
er

 p
i(

t)

TimeT+tyT

Dashed/Dotted Lines: Constraints from points in next 2 rows after yT

T+K+tyT+K

Figure 3: Measurement Constraints: Each constraint in

Equation (7) specifies a known value for the integral of the un-

known higher-resolution temporally varying motion parameters

over a known interval. The constraints from points in nearby

rows closely overlap each other, analogously to how sub-pixel

shifts generate overlapping constraints in image super-resolution

[3].

sponding point xTi+Ki
= (xTi+Ki

, yTi+Ki
) in the sec-

ond image IRS
Ti+Ki

. The times Ti and Ti+Ki are integers.

Although in many cases, the first location xTi
is integer

valued, the second location xTi+Ki
should be estimated

with sub-pixel accuracy. For consistency and generality

we denote both as real-valued.

Each correspondence generates a measurement con-

straint by substituting into Equation (5):

MC(Corri) = xTi+Ki
−xTi

−

∫ Ti+Ki+τyTi+Ki

Ti+τyTi

p(s) ds

(7)

where ideally MC(Corri) = 0. Note that the integral is

from the time that the point was imaged in the first image

Ti+τyTi
to the time at which it was imaged in the second

image Ti + Ki + τyTi+Ki
; i.e. the length of the interval

is not exactly Ki. Also note that the constraints in Equa-

tion (7) are temporal analogs of the constraints in image

super-resolution [3]. Each constraint specifies a value for

the integral of the unknown higher-resolution temporally

varying motion parameters over a known interval. See

Figure 3 for an illustration. The constraints from points in

neighboring rows closely overlap each other, analogously

to how sub-pixel shifts create overlapping constraints in

image super-resolution [3].

One important difference between our problem and im-

age super-resolution is that the integral in Equation (7)

is 1D (albeit of a 2D vector quantity), whereas in image

3

super-resolution, the constraints are 2D area integrals (of

1-3 band images). Image super-resolution is known to

be relatively poorly conditioned [3]. Obtaining resolu-

tion enhancement beyond a factor of 4–6 or so is difficult,

even in ideal conditional. In [14], however, it was shown

that 1D super-resolution problems are far better condi-

tioned. Roughly speaking, the condition number in 1D

is the square-root of the condition number in the corre-

sponding 2D case. Consistent with this theoretical analy-

sis, empirically we only encountered diminishing returns

when attempting to enhance the temporal resolution by a

factor of more than 30 or so.

2.1.3 Regularization and Optimization

We regularize the measurement constraints using a first

order smoothness term that encourages the temporal

derivative of the motion p to be small. We use L1 norms

to measure errors in both the measurement constraints and

regularization. In particular, we used the following global

energy function:

∑

Corri

|MC(Corri)| + λ
∑

j=1,2

∫
∣

∣

∣

∣

d pj
d s

∣

∣

∣

∣

ds. (8)

The measurement constraints are likely to contain a num-

ber of outliers, both due to independently moving objects

and gross errors in the flow field. An L1 norm is there-

fore preferable to an L2 norm. We could also use an even

more robust energy function, but such a choice would

make the optimization more complex. We also use an L1

norm rather than an L2 norm for the regularization term,

as it is reasonable to expect the motion to be piecewise

smooth, with (near) discontinuities during very rapid ac-

celerations.

We represent the continuous motion p with a uniform

sampling across time into a finite number of parameters.

We typically used between 25 and 35 samples per image

(around 1 sample every 10 rows in a 320 × 240 image or

1 sample every 20 rows for a 640× 480 image). As men-

tioned above, higher sampling rates yielded diminishing

returns and simply require more computation. The exact

number of samples used in each experiment is reported

in Section 3. As in [3], we use a piecewise constant in-

terpolation of the samples when estimating the integral

in the measurement constraints. With this representation,

Time t
Row y

Rolling Shutter Pixels

on Plane t = T + t y

T T+b

0

Path of Global

Shutter Pixel in

Equation (10)

Intersection Point

T+t(M-1)
M-1

Global Shutter

Pixel (X,Y)

Figure 4: Correction Process: A 2D (y, t) slice through 3D

(x, y, t) space. The rolling shutter pixels IRS

T (x, y) lie on the

plane t = T + τy. The global shutter pixel IGS

T (X,Y) starts at

3D location (X,Y, T + β) and moves along the path in Equa-

tion (10.) The correction process operates by first computing

the intersection between the rolling shutter plane and the global

shutter path. The rolling shutter image is then interpolated at

this point.

both the measurement constraints and the regularization

term are linear in the unknown motion parameters. We

solved the resulting convex L1 optimization using linear

programming.

2.1.4 Correction Process

We wish to estimate the global shutter pixels IGS
T (X,Y)

using the rolling shutter pixels IRS
T (x, y). We assume that

X , Y , and T are known integer values, whereas x and y
are unknown subpixel locations. Once we know x and y,

we can (bicubically) interpolate the rolling shutter image.

To estimate x and y, it helps to also estimate the time t
at which this rolling shutter pixel was captured. Figure 4

contains an visualization of a 2D (y, t) slice through 3D

(x, y, t) space. We project out the x variable and only

show one pixel in each row of the image. Under the trans-

lational model, the motion of each pixel in a row is iden-

tical.

The rolling shutter pixels IRS
T (x, y) lie on the plane:

t = T + τy. (9)

Compensating for the estimated motion, the global shutter

pixel IGS
T (X,Y) starts at 3D location (X,Y, T + β) and

4

moves along the path:

(

x
y

)

=

(

X
Y

)

+

(

∫ t

T+β
p1(s) ds

∫ t

T+β
p2(s) ds

)

. (10)

The correction process begins by solving the pair of

simultaneous Equations (9) and (10). Plugging Equa-

tion (9) into the y row of Equation (10) gives:

t− T

τ
= Y +

∫ t

T+β

p2(s) ds. (11)

The solution of Equation (11) for t is independent of X .

For the translational model, the correction:

(

∫ t

T+β
p1(s) ds

∫ t

T+β
p2(s) ds

)

(12)

for each pixel in a row is the same. Equation (11) there-

fore only needs to be solved once per row. The solu-

tion of Equation (11) can be obtained by stepping through

the discrete representation of the motion parameters p(t),
considering each pair of samples in turn, and approximat-

ing the integral in Equation (11). For the time interval be-

tween each pair of motion samples, Equation (11) is linear

in the unknown t. It is therefore easy to check whether

there is a solution in this interval. Note that, assuming

the absolute value of the vertical motion p2(t) is not too

large (is bounded above by 1
τ
− ǫ for some ǫ > 0), the

solution of Equation (11) is unique. A single pass can

therefore be made through each neighboring pair of mo-

tion samples, with early termination if a solution is found.

If no solution is found, the pixel must have moved outside

the image. Once the solution of Equation (11) has been

computed for t, the correction in Equation (12) can be

computed and then applied to each pixel in the row using

Equation (10).

2.2 Affine Model of Camera Jitter

We now consider a high-frequency affine model of the

camera jitter. It simplifies the equations to use two sets

of parameters, the 2D translational motion vector p(t) =
(p1(t), p2(t)) and the 2× 2 matrix:

q(t) =

(

q1(t) q2(t)
q3(t) q4(t)

)

. (13)

The six affine parameters at each time t can be concate-

nated into a single vector (p1, p2, q1, q2, q3, q4) if so de-

sired. In this paper, we just keep two sets of parameters,

the vector p(t) and the matrix q(t). We then define the

high-frequency affine jitter model to be:

dx

d t
= mhf(x;p(t);q(t)) = p(t) + xq(t). (14)

The solution of Equation (14) can be approximated:

x(t) ≈ x(t0) +

∫ t

t0

[p(s) + x(t0)q(s)] . (15)

Equation (15) is approximate in the following way. First

note that Equation (14) is a differential definition. The pa-

rameters p = 0, q = 0 correspond to the identity trans-

formation since dx

d t
= 0 corresponds to the identity. The

corresponding finite difference affine transform to the one

in Equation (14) would use the matrix:

(

1 + q1(t) q2(t)
q3(t) 1 + q4(t)

)

; (16)

i.e. the differential definition models the change that must

be applied in addition to the identity transformation. The

parameters of the composition of two affine transforms

parameterized using Equation (16) is equal to the sum of

the parameters neglecting second order terms. Integrating

the differential definition in Equation (14) therefore cor-

responds to integrating the parameters neglecting second

order terms.

We validated the approximation in Equation (15) em-

pirically. With reasonable values for p(t) and q(t), we

found that a difference between a correctly warped image

and one approximated using Equation (15) only begins to

appear visually after accumulating the warps for over 15

frames (t − t0 > 15). In our algorithms, the approxima-

tion only needs to hold for the duration of the measure-

ment constraints K. In all our experiments K = 1 and in

most reasonable scenarios K << 15.

Given Equation (15), the measurement constraints in

Equation (6) become: MC(Corri) =

xT+K−xT −

∫ T+K+τyT+K

T+τyT

[p(s) + xTq(s)] ds. (17)

5

We add a regularization term for q:

δ

4
∑

j=1

∫
∣

∣

∣

∣

d qj
d s

∣

∣

∣

∣

ds (18)

to the global energy function in Equation (8). The path of

the global shutter pixel in the correction process changes

from Equation (10) to:

x = X+

∫ t

T+β

[p(s) +Xq(s)] . (19)

The time of intersection of this path with the plane of

rolling shutter pixels in Equation (9) is no longer inde-

pendent of X . The intersection therefore needs to be per-

formed for each pixel, rather than just once for each row.

This process can be sped up if so desired, albeit introduc-

ing a small approximation, by solving the intersection on

a subsampled mesh and then upsampling.

2.3 Low-Frequency Independent Motion

The L1-based energy function in Equation (8) is relatively

robust to outliers. Empirically, we find that the algorithms

in Sections 2.1 and 2.2 lock onto the dominant motion,

even in the presence of fairly large independently moving

objects, and whether the global camera motion is jittery,

smooth, or zero.

The correction applied to independently moving ob-

jects ignores their independent motion, however. Inde-

pendently moving objects may still have residual defor-

mations that are uncompensated. We now extend our

translational algorithm in Section 2.1 to explicitly model

independently moving objects and correct for their inde-

pendent motion. A similar extension could also be derived

for the affine algorithm in Section 2.2.

We use a low-frequency model of the independently

moving objects for two reasons. First, in most cases, in-

dependently moving objects undergo relatively slow ac-

celeration. There are exceptions, of course, such as ro-

tating helicopter blades. However, common cases such

as people moving and cars passing are relatively low fre-

quency. Second, modeling independently moving objects

with a high-frequency model would be extremely chal-

lenging and ambiguous. Such a model would require a

large number of unknowns for each pixel in the video.

Sampling at roughly the same frequency as the transla-

tional model, say, 30 samples per frame, would require 60

unknowns for each pixel in the video. Such a formulation

of the problem, while conceivable, would require very ag-

gressive regularization and would likely be very sensitive

to noise in the input flow fields.

We generalize the motion model in Equation (3) to:

dx

d t
= mhf(x;p(t)) +mlf

⌊t⌋(x), (20)

where mlf
0 , mlf

1 , . . . is a low-frequency motion (constant

within each frame). The spatial variation in mlf
⌊t⌋(x) is

dense, however. The low-frequency motion mlf
⌊t⌋(x) can

be thought of as a per-pixel flow field, where each pixel

flows with a temporally constant velocity between each

pair of consecutive frames across time.

The low-frequency term mlf
⌊t⌋(x) makes analytically

solving Equation (20) hard, as the dependence on x is es-

sentially arbitrary. To obtain an approximate solution, we

assume that the spatial variation in mlf
⌊t⌋(x) is small and

treat this term as a constant. Using the translational model

of Equation (4) for the high-frequency term, the approxi-

mate solution of Equation (20) is:

x(t) ≈ x(t0) +

∫ t

t0

p(s) ds+ (t− to)m
lf
⌊t⌋(xt0) (21)

which yields the measurement constraints: MC(Corri)

= xTi+Ki
− xTi

−

∫ Ti+Ki+τyTi+Ki

Ti+τyTi

p(s) ds (22)

−(Ki + τyTi+Ki
− τyTi

)mlf
Ti
(xTi

). (23)

We regularize the low-frequency model by adding the fol-

lowing two terms to the global energy function:

γ
∑

T

∫

∥

∥∇mlf
T (x)

∥

∥

1
dx+ ǫ

∑

T

∫

∥

∥mlf
T (x)

∥

∥

1
dx.

(24)

The first term encourages the low-frequency model to

vary smoothly across the image. We also spatially sub-

sample mlf
T (x) to reduce the number of unknowns. See

Section 3. The second term is needed to resolve an am-

biguity between the low-frequency and high-frequency

models. We favor the high-frequency model by adding

a (very small) penalty to non-zero independent motion.

6

During the correction process, the path of the global

shutter pixel in Equation (10) becomes:

x = X+

∫ t

T+β

p(s) ds+ (t− T − β)mlf
T (X). (25)

As is the case for the affine model in Section 2.2, the time

of intersection of this path with the plane of rolling shut-

ter pixels in Equation (9) depends on X . The intersec-

tion needs to be performed independently for each pixel,

rather than just once for each row. Again, note that this

process can be sped up, by solving for the correction on a

subsampled mesh and then upsampling.

2.4 Calibrating τ

The only image formation parameter in our model is τ ,

the time between the capture of neighboring rows (see

Figure 2.) In some cases, it is possible to calibrate τ for

a camera in the lab [5]. In many cases, however, all we

have is a video obtained from an unknown source. Two

key questions are: (1) how sensitive is our algorithm to an

erroneous setting of τ , and (2) can we auto-calibrate τ?

In Section 2.4.1, we address the first question by deriving

an expression relating two solutions of the measurement

constraints with different values of τ . This result indicates

that the performance of our algorithm should be robust to

the exact setting of τ , a result which we empirically val-

idate in Section 3.5. In Section 2.4.2, we derive an auto-

calibration algorithm to estimate τ from a short segment

of jittery video.

2.4.1 Analyzing the Effect of Incorrect Calibration

Denote the duty cycle d = (M − 1)τ , where M is the

number of rows in the video. The camera is active cap-

turing image IRS
T (X,Y) between time T and time T + d.

Between time T+d and time T+1, the camera is inactive

in the sense that no new rows are imaged. See Figure 5

for a visualization.

Now consider two solutions to the measurement con-

straints in Equation (7). Suppose the first solution uses

the correct τ = τ1, duty cycle d1 = (M − 1)τ1, and

the second solution uses an incorrect τ = τ2, duty cycle

d2 = (M − 1)τ2. Let r = d1/d2 = τ1/τ2. Also, split the

M
o
ti

o
n
 P

ar
am

et
er

 p
i(

t)

Time0 0+d

Image 0 Image 1

1 1+d

Active Solution

Inactive Solution

Figure 5: Analysis of Calibration: In general, rolling shutter

cameras are not capturing rows of the image at all times. Typi-

cally, the camera is active, capturing images over the duty cycle

from time T to time T + d where d = (M − 1)τ and M is the

number of rows in the image. In Equation (27) we derive an ex-

pression relating two solutions of the measurement constraints

during the active period for two different settings of τ .

solutions into their active and inactive parts:

pi(t) =

{

pact
i (t) if t− ⌊t⌋ <= di

pina
i (t) if t− ⌊t⌋ > di

i = 1, 2

(26)

where pact
i (t) is the active part of the solution and pina

i (t)
is the inactive part.

Below we show that if all the correspondences have

K = 1 and so take the form (T, T + 1,xT ,xT+1), and:

pact
2 (t) ≈ rpact

1 (r(t− ⌊t⌋) + ⌊t⌋) + c⌊t⌋ (27)

where:

c⌊t⌋ =
1

d2

[

∫ ⌊t⌋+1

⌊t⌋+d1

pina
1 (s) ds−

∫ ⌊t⌋+1

⌊t⌋+d2

pina
2 (s) ds

]

(28)

then the integrals in Equation (7) are the same:

∫ T+1+τ2yT+1

T+τ2yT

p2(s) ds =

∫ T+1+τ1yT+1

T+τ1yT

p1(s) ds.

(29)

For a correspondence (T, T + 1,xT ,xT+1) with K =
1, the left hand side of Equation (29) is:

∫ T+1+τ2yT+1

T+τ2yT

p2(s) ds =

∫ T+d2

T+τ2yT

pact
2 (s) ds+

7

∫ T+1

T+d2

pina
2 (s) ds+

∫ T+1+τ2yT+1

T+1

pact
2 (s) ds. (30)

Plugging Equation (27) into the first term on the right

hand side of Equation (30) gives:

∫ T+d2

T+τ2yT

rpact
1 (r(s− ⌊s⌋) + ⌊s⌋) + c⌊s⌋ ds (31)

which after substituting s′ = r(s−T)+T and ds′ = rds
simplifies to:

∫ T+d1

T+τ1yT

pact
1 (s′) ds′ + cT (d2 − τ2yT). (32)

Similarly the third term on the right hand side of Equa-

tion (30) simplifies to:

∫ T+1+τ2yT+1

T+1

pact
1 (s′) ds′ + cT τ2yT+1. (33)

Substituting the expressions in Equations (32) and (33)

back into Equation (30), making the approximation that

yT+1 ≈ yT , simplifying, and then finally substituting the

expression for c⌊t⌋ from Equation (28) yields the right

hand side of Equation (29).

Our derivation makes one approximating assumption,

that yT ≈ yT+1. This assumption is reasonable because

the vertical motion between two consecutive frames is

generally only a small fraction of the frame.

Equation (27) provides an approximate relationship be-

tween the active part of two solutions of the measurement

constraints for two different settings of τ . Due to reg-

ularization and discretization, the final solution obtained

by our algorithm will not exactly match Equation (27). It

should hold approximately, however.

What does Equation (27) mean in terms of the final

correction applied? First, note that only the active part

of the solution is used in the correction process. Fig-

ure 4 illustrates how only the motion between T and

T + d = T + τ(M − 1) is used in the correction pro-

cess. Second, note that if c⌊t⌋ = 0 then Equation (27)

would mean that exactly the same correction is applied.

The proof of this fact follows a similar argument to the

one above. Suppose that (x, t2), where x = (x, y), is a

solution of Equations (9) and (10) for τ2. Then we claim

that (x, t1) = (x, r(t2 − T) + T) is a solution of Equa-

tions (9) and (10) for τ1. Because the spatial location x in

both of these solutions is the same, our algorithm would

apply the same correction. Note that, in both cases we

set β using Equation (2); i.e. β1 = τ1(M − 1)/2 and

β2 = τ2(M − 1)/2.

First consider Equation (9). Starting with:

t1 = r(t2 − T) + T (34)

and substituting t2 = T + τ2y because t2 is a solution of

Equation (9) yields:

t1 = T + rτ2y. (35)

Using the fact that r = τ1/τ2 shows that (x, y, r(t2−T)+
T) is a solution of Equation (9) for τ1.

Now consider the right hand side of Equation (10):

X+

∫ t1

T+β1

pact
1 (s) ds. (36)

Substituting the appropriate expressions for β1 and t1
yields:

X+

∫ T+r(t2−T)

T+rβ2

pact
1 (s) ds. (37)

After substituting s = r(s′ − T) + T and rds′ = ds, this

expression simplifies to:

X+

∫ t2

T+β2

rpact
1 (r(s′ − T) + T) ds′. (38)

Substituting the expression for pact
2 from Equation (27)

with c⌊t⌋ = 0, and using the fact that (x, t2) is a solution

of Equation (10) for τ2 and β2 shows that Equation (38)

simplifies to x, which in turn shows that (x, t1) is a solu-

tion of Equation (10) for τ1 and β1.

The difference in the two corrections is therefore en-

tirely due to c⌊t⌋, a constant motion for each frame. The

two corrections will therefore approximately differ by a

global affine warp. In general, c⌊t⌋ will vary from frame

to frame, as c⌊t⌋ is related to the motion in the inactive

period. See Equation (27).

In summary, theory shows that, with an incorrect value

of τ (close enough that the effects of discretization, reg-

ularization, and the yT+1 ≈ yT approximation are not

too pronounced), the applied correction will only differ

from the one that would have been obtained with the cor-

rect value of τ by a slightly different affine warp for each

8

frame. Although estimating τ wrongly may add a little

global jitter to the output, our algorithm can be expected

to be relatively robust in the sense that there is little dan-

ger of gross artifacts being added.

2.4.2 An Auto-Calibration Algorithm

We now describe an algorithm to calibrate τ from a short

segment of video. No other information is required. Note,

however, that if the chosen segment only contains con-

stant (or no) motion, calibration is ambiguous. If the mo-

tion is constant, the rolling shutter simply introduces a

skew in the video. It is impossible to detect this skew

from the motion alone. The motion is still constant in

the skewed video; the x-component is the same, the y-

component will be slightly reduced or exaggerated de-

pending whether the camera is moving up or down. Con-

ceptually, the simplest way to calibrate a rolling shutter

camera in the lab is to first capture an image of a scene

with the camera static, and then capture a short video of

the same scene with the camera undergoing a constant

motion [15]. The rolling shutter parameter τ can then

be estimated from an estimate of the skew between the

first image and a frame in the video, and the motion in the

video. The key element in this set-up is that the data con-

tains imagery with two different motions (zero and con-

stant.) For our auto-calibration process not to be ambigu-

ous, we require the video to contain temporally varying

motion. Generally speaking, the more jitter the better.

The analysis in Section 2.4.1 shows that if the value of

τ is wrong, we can expect the corrected video to contain

a small residual affine jitter from frame to frame. We at-

tempt to detect and minimize this residual affine jitter, as

follows. Note that although the analysis in Section 2.4.1

assumes a translation jitter model and makes several ap-

proximations, our auto-calibration algorithm is a reason-

able approach in a much wider setting. Also note that, al-

though our calibration algorithm amounts to a brute force

search, the 1D search range can be sampled sparsely and

the algorithm only needs to be run on a short segment of

the input video.

We perform rolling shutter correction for a sampling of

different values of τ ∈ [0, 1
M−1] and compute optical flow

across each output video. Denote the result:

FT (X,Y) for T = 0, 1, 2, . . . (39)

We then compute a measure of how “translational” the

optical flow is on average across the sequence. We first

break the frames in the video into a number of patches P i,

where each patch denotes a subset of pixels. In our im-

plementation, we used overlapping 15× 15 pixel patches,

spaced every 5 pixels in x and y, with a border of 30 pixels

around each image. We then compute the median flow for

each patch:

Mi
T = Median(X,Y)∈P i(FT (X,Y)). (40)

Next, we measure the median deviation of each flow from

the median to give the following measure of how transla-

tional the motion is for that patch:

TransiT = Median(X,Y)∈P i

∣

∣FT (X,Y)−Mi
T

∣

∣ (41)

Finally, we compute the median value of this measure

across the patches, and then the mean across the frames

to yield the final measure that we optimize:

MeanT (Mediani(Trans
i
T)). (42)

We used a median across patches because some patches

will lie across motion discontinuities or contain substan-

tial parallax. We used a mean across frames because typ-

ically each frame has a number of outliers, but otherwise

is reasonable. Note, however, that the details of our al-

gorithm (the patch sizes, the sampling interval, the choice

of medians or means) are somewhat arbitrary, and do not

affect the results significantly.

Finally, we plot the measure in Equation (42) across τ ,

smooth the result slightly, and then perform the calibra-

tion by choosing τ to take the minimum value.

3 Experimental Results

To avoid the size of the optimization growing arbitrar-

ily with the length of the video, we solved Equation (8)

for a fixed size window that is slid one frame at a time

through the video. Empirically we found a dramatic im-

provement in performance up to a window size of around

7-11 frames. All the results in this paper use a window

size of 9 frames (four frames before and four frames after

the frame we are currently correcting.)

We obtained correspondences in the form of Equa-

tion (6) by sub-sampling optical flow fields computed us-

ing the Black and Anandan algorithm [4]. In the affine and

9

independent motion cases, we sample the flow every row

and every 10th column, excluding flows within 6 pixels of

the edge of the image to avoid boundary errors in the flow

field. In the translational case, the correction is constant

along each row. In this case, we use a single correspon-

dence per row, obtained by median filtering the flow along

each row (after subsampling every 10th column as we did

in the affine and independent motion cases.) We experi-

mented with K > 1 but only found a small benefit. The

results in this paper all use K = 1.

We experimented with different sampling rates for the

motion parameters. We found diminishing returns beyond

around 25-35 samples per frame. All results in this paper

use 30 samples of p (60 unknowns) per frame. In the

affine case, we sample q 15 times per frame, adding an

additional 60 unknowns per frame. We subsample mlf
i (x)

spatially every 10 rows and every 10 columns. We use bi-

linear interpolation to upsample mlf
i (x) in the algorithm;

i.e. in Equations (21) and (25).

With the translational model we use the regularization

weight λ = 300. In the affine and independent mo-

tion cases, the system has more flexibility and so we use

λ = 600. The affine regularization weight is δ = 400, 000
(the units are different from λ.) The independent motion

regularization weights are γ = 10 and ǫ = 1. Most of

our test sequences were downloaded from the web and so

we do not know the camera details. For all sequence, we

estimated τ using the algorithm in Section 2.4.2. We gen-

erally found that τ ∈ [0.75/(M−1), 0.95/(M−1)]. Note

that Gunnar Thalin has calibrated a number of cameras in

a laboratory setting and published the results online [15].

3.1 An Illustrative Synthetic Example

We begin with a synthetic example to illustrate the steps

in our algorithm. This synthetic video also allows us

to compare our motion estimates with ground-truth. In

Figure 6(a) we include one frame from the video in

city.mp4. In the top left we show the input rolling

shutter video which was generated synthetically using the

translation model in Equation (3). The ground-truth high-

frequency motion that we applied was generated with a

dynamical model that periodically applies random accel-

erations to the current motion, but with a slight bias to-

wards moving the camera back towards it position at the

top of the first frame. Visually, the resulting artifacts are

similar to those in the real data in Section 3.2.

In the bottom left of Figure 6(a) we include the optical

flow, where the horizontal flow is coded in the red chan-

nel and the vertical flow is coded in the green channel. In

the bottom right, we include the corrected video, which

still contains global high-frequency jitter. The non-rigid

wobble has been removed, however. We include a stabi-

lized version of the corrected output in the top right. We

stabilize the videos by simply low-pass filtering the mo-

tion of the center of the frame and then applying a global

correction for each frame. More sophisticated algorithms

such as [8] could now be applied because each frame has

been re-rendered as though all the pixels were captured at

the same time.

In Figures 6(b) and (c) we compare the input op-

tical flow (median filtered across each row), the esti-

mated high-frequency motion, and the ground-truth high-

frequency motion. We plot the value of the flow and mo-

tion on the y-axis. On the x-axis we plot time, which in

the case of the optical flow corresponds to the row in the

video that the flow was measured at. Note how the optical

flow is relatively smoothly varying across time, whereas

both the ground-truth and estimated motions are higher

frequency. There is also a phase shift of approximately

half a frame between the optical flow and the real camera

motion.

We also include a video in shear.mp4 comparing the

input, output, and ground-truth for a similar synthetic se-

quence generated with constant motion. This video con-

firms that our algorithm handles a simple skew correctly;

i.e. when we apply temporal super-resolution to constant

motion, no unexpected high-frequency motion is gener-

ated and the result is still approximately constant motion.

For super-resolution in the image domain [3], this test cor-

responds to checking that an algorithm applied to a con-

stant image still results in a constant image. Note, how-

ever, that for both results in this section, the rolling shutter

algorithm is applied to the result of the real optical flow al-

gorithm, not to synthetically generated correspondences.

3.2 Translational Model

Our main evaluation consists of a set of qualitative results

on real videos. In skool.mp4, vegas1.mp4,

vegas2.mp4, bike.mp4, reverse.mp4 and

race.mp4 we present results on 6 videos. In Fig-

10

(b) Motion in x Direction

(c) Motion in y Direction

-15

-10

-5

0

5

10

15

0 2 4 6 8

Optical Flow Estimated Motion GT Motion

-10

-5

0

5

10

0 2 4 6 8

Optical Flow Estimated Motion GT Motion

(a) One Frame From a Synthetically

Generated Movie

Figure 6: An Illustrative Example: We generated a synthetic sequence to illustrate our algorithm, and allow a comparison with

ground-truth. (a) One frame from the video in city.mp4. Our algorithm first computes the optical flow (a, bottom left). We then

compute a corrected video without the non-rigid wobble artifacts, but which still contains global jitter (a, bottom right). We then

stabilize the result (a, top right.) (b) and (c) A comparison of the low-frequency optical flow with the estimated and ground-truth

high-frequency motion. Note how the input optical flow field is far lower frequency than the ground-truth motion. There is also a

phase shift of roughly half a frame. The estimated motion approximates the ground-truth motion far better than the input optical

flow.

11

(a) skool.mp4 (b) vegas1.mp4 (c) vegas2.mp4

(d) bike.mp4 (e) reverse.mp4 (f) race.mp4

Figure 7: Inputs to Qualitative Evaluation: Our main evaluation consists of a set of qualitative results on real videos.

In skool.mp4, vegas1.mp4, vegas2.mp4, bike.mp4, reverse.mp4 and race.mp4 we present results on 6

videos. In this figure, we include the first frame of each input video.

ure 7, we include the first frame of each input video.

skool.mp4 contains results on an aerial sequence,

shot from a helicopter. The movies vegas1.mp4 and

vegas2.mp4 also include results on aerial videos.

These two results show the robustness of our algorithm to

low light conditions, saturation, and motion blur (which

we do not attempt to remove.) The video bike.mp4

contains results on a video captured on a fast moving

motorbike. It shows that our algorithm is robust to very

noisy input, where the computed flow is very noisy.

The video reverse.mp4 shows a more subtle case,

where a motorbike is being pulled backwards. This video

is more typical of rolling shutter wobble in hand-held

videos. This video shows that our algorithm can handle

such subtle cases, and also performs reasonably in the

presence of some rotational motion. Finally, race.mp4

contains footage from a car involved in a high-speed race.

Most of the video is well corrected. It does, however,

illustrate one failure case of our algorithm. As the car

goes over the rumble strips, the optical flow algorithm

fails completely due to the large induced motion. These

errors lead to a couple of “bumps” in the output video.

The output video is still a dramatic improvement over the

input. This result shows that our algorithm does not lead

to complete video corruption, even when optical flow

completely fails.

All of the videos in skool.mp4, vegas1.mp4,

vegas2.mp4, bike.mp4, reverse.mp4 and

race.mp4 are formatted the same. The layout is

illustrated in Figure 8, which includes one frame from

skool.mp4. In the top left frame we include the

input. In the top right we include the stabilized output of

our algorithm. In the bottom left we include the result

of stabilization without correcting the rolling shutter

distortions. We also implemented the algorithm in [7]

and the morphing algorithm in [5]. Empirically, we found

the algorithm in [7] to perform better than the one in [5].

We only present the results for the algorithm in [7] in the

bottom right of Figure 8 and the corresponding videos

in the supplementary material. When implementing [7]

we used the same Black and Anandan flow [4] used by

our algorithm, rather than the block matching described

in [7]. We also used the median filtered flow for every

row, as in our algorithm, rather that the four samples in

[7]. These changes should only improve the algorithm

in [7] and make the comparison fairer. The algorithm

in [7] does not perform any high-frequency analysis or

super-resolution. Instead it performs an interpolation of

12

Figure 8: Qualitative Comparison: One frame from the video

in skool.mp4 to illustrate the layout in all our main qual-

itative comparisons in skool.mp4, vegas1.mp4,

vegas2.mp4, bike.mp4, reverse.mp4 and

race.mp4. In the top left, we include the original rolling

shutter video. We compare the output of our algorithm (top

right) with the result of naive stabilization (bottom left) and

the result obtained with the algorithm described in [7] (bottom

right).

the motion. While [7] corrects some artifacts, it does not

remove all of the wobble.

3.3 Affine Model

In office.mp4 we include an example where the trans-

lational jitter model of Section 2.1 is insufficient. The

video compares the results obtained with the translational

model (bottom right) and the results obtained with the

affine jitter model described in Section 2.2 (top right).

Figure 1(a) contains one input frame from this video and

Figure 1(b) contains the corresponding output frame ob-

tained with the affine model. As can be seen in the video

in office.mp4, the obliquely sloping office building is

far better modeled by the affine jitter model than the trans-

lational model. In our experience, however, the results in

office.mp4 are somewhat unusual. It is relatively rare

for the affine model to result in a significantly better cor-

rection than the translational model.

3.4 Independent Motion

In balloon.mp4, toggle.mp4 and

checker.mp4 we compare the independent mo-

tion algorithm of Section 2.3 with the translational

model of Section 2.1 and the morphing algorithm of

Bradley et al. [5]. Figure 9(a) contains one frame of

balloon.mp4, which contains results on a synthetic

video of a balloon moving across the sky, imaged by a

translationally jittering camera. In the video we include

the input (top left), the output of our independent motion

algorithm (top right), the output of our translational

algorithm (bottom right), and the results obtained by

Bradley et al. [5] (bottom left.)

As can be seen in balloon.mp4, the morphing al-

gorithm of Bradley et al. [5], which is specifically de-

signed to handle independent motion, cannot handle high-

frequency jitter. Also note that the translational model

is robust to the independent motion, through the median

filtering of the flows and the L1 norms. It corrects the

video very well. Finally, note that the residual skew on

the balloon is largely imperceptible in balloon.mp4.

The balloon is moving too quickly and there is no

frame of reference against which to perceive the skew.

In toggle.mp4, we toggle between the ground-truth

frames and the ones estimated by the translational and in-

dependent motion algorithms. In this video, the residual

skew of the balloon without the independent motion algo-

rithm is readily apparent.

In checker.mp4 and Figure 9(b) we include an ex-

ample of a rotating checkerboard, similar to one of the ex-

amples presented in [5]. Our example also contains high-

frequency jitter not present in the example in [5]. Rota-

tional motion is a useful tool when evaluating indepen-

dent motion modeling because errors make straight lines

appear curved. Errors are then more perceptible. As can

be seen in checker.mp4 and Figure 9(b), the transla-

tional algorithm of Section 2.1 is unable to correct the

sequence very well. Significant curvature remains in the

output. The algorithm in [5] performs fairly well, but the

unmodelled jitter leads to gross artifacts and some resid-

ual curvature in some of the frames. On the other hand,

our independent motion model is able to correct the entire

video very well.

13

(a) balloon.mp4 (b) checker.mp4

Figure 9: Independent Motion Results: (a) One frame from the video in balloon.mp4. In this video, the balloon moves

across the sky in front of a jittering camera. Without the independent motion model, the balloon has a residual skew which is not

corrected. The video in toggle.mp4 toggles between the estimated frames and the ground-truth, clearly showing this residual

skew. In balloon.mp4 we also compare with the algorithm in Bradley et al. [5], which fails to remove the camera jitter fully.

(b) One frame from the video in checker.mp4. This video contains a rotating checkerboard imaged by a jittering camera. The

results show that the translational model is insufficient to correct the rotational motion, that the algorithm of Bradley et al. [5] leads

to various artifacts and fails to compensate for the jitter fully, but that our independent motion model corrects the video far better.

(a) Calibration on Online Resource 1 (b) Calibration on Online Resource 3

0.0069

0.007

0.0071

0.0072

0.0073

0.0074

0.0075

0.0076

0 0.2 0.4 0.6 0.8 1

N
o

n
-T

ra
n

sl
at

io
n
al

 F
lo

w

M
ea

su
re

Relative Value of t

0.053

0.054

0.055

0.056

0.057

0.058

0.059

0 0.2 0.4 0.6 0.8 1

N
o

n
-T

ra
n

sl
at

io
n
al

 F
lo

w

M
ea

su
re

Relative Value of t

Figure 10: Quantitative Calibration Results: (a) Auto-calibration results on a version of city.mp4 where the ground-truth

relative value of τ is 0.5. The estimated minimum is very close to 0.5 as it should be. (b) Auto-calibration results on skool.mp4.

We do not know the real value for this sequence, as the video was downloaded from the web. In skool cal.mp4 we present a

comparison of the correction results obtained with the relative value of τ = 0.25, 0.5, 0.75, and 1.0. This video confirms that the

calibration result of 0.75 is reasonable (the results for τ = 0.75 are slightly better than the others) and illustrates the robustness of

our algorithm (the results for the other settings of τ are visually not much worse.)

14

3.5 Calibration

We first re-generated city.mp4 using τ = 1
2

1
M−1 ; i.e.

half of the maximum value. In Figure 10(a) we present

the results of our auto-calibration algorithm. These show

a clear minimum close to the ground-truth value of 0.5.

In Figure 10(b) we present calibration results for the

skool.mp4 video. We downloaded this video from

the web and so do not know the real value of τ . In

skool cal.mp4 we present a qualitative comparison

of the affect of varying the relative value of τ (i.e. multi-

plied by M − 1). These results confirm two things. First,

the calibrated relative value of τ = 0.75 does appear to

be reasonable. If anything, the results for τ = 0.75 are

slightly better than the results for the other settings. The

difference in performance is quite small, demonstrating

that our algorithm is relatively insensitive to the exact

choice of τ . These results validate the analysis in Sec-

tion 2.4.1.

3.6 Timing Results

We have made no attempt to implement our algorithm ef-

ficiently and use the relatively slow Black and Anandan

algorithm [4]. We timed our algorithm on the 30 frame,

320×240 pixel video city.mp4, running our algorithms

on a 2.0Ghz Dual-Core HP nc8430 laptop. Computing the

flow and extracting the correspondences took 7.6 seconds

per frame. Solving the super-resolution problem took 2.1

seconds per frame for the translational model, 79.3 sec-

onds per frame for the affine model, and 102.4 seconds

per frame for the independent motion model. Correcting

the distortions and stabilizing the video took 0.2 seconds

per frame. One way to speed up our algorithm is to run

the flow and super-resolution on a downsampled video.

The computed high-frequency motion can then be scaled

up and applied to the original video. In timing.mp4we

compare results obtained on city.mp4 at the full reso-

lution with those obtained by computing the correction on

a half-size video, and then applying to the full resolution

video. There is little difference, indicating that speed-ups

are possible. To obtain real-time performance, however,

a far faster flow algorithm would be needed. It may also

be necessary to replace the L1/Linear Programming algo-

rithm with something more efficient. The investigation of

such trade-offs is deferred to future work.

4 Conclusion

We have presented an algorithm to remove rolling shutter

wobble in video. Our algorithm uses a form of temporal

super-resolution to infer the high-frequency motion of the

camera from optical flow. We extended our algorithm to

use an affine motion model and to model low-frequency

independent motion. Empirically, the improvements ob-

tained using these extensions are most perceptible when

comparing with the ground-truth on synthetic sequences.

Given the increased computational burden and sensitiv-

ity to errors in the input optical flow, these extensions

are probably more of theoretical interest at this time. We

showed both analytically and empirically that our algo-

rithm is robust to the setting of the image formation pa-

rameter τ . We also presented an auto-calibration algo-

rithm that can estimate this parameter from a short seg-

ment of the video.

One failure mode of our algorithm occurs when the mo-

tion is so great that the optical flow algorithm completely

fails; e.g. race.mp4 in Section 3.2. One possible solu-

tion is to fall back on sparse feature matching [9] in such

cases. The reduced density of correspondences will re-

sult in less accurate, but hopefully more robust results.

Secondly, our model is currently unable to model large

parallax between foreground and background objects. Fi-

nally, on very close inspection, some residual wobble can

be seen in the output, caused by the inherent limitations

of the super-resolution process [3, 14]. Novel priors or

longer-range correspondences (K > 1) could possibly re-

duce the residual wobble.

One possible future direction is to investigate the

choice of the error functions, regularization, and opti-

mization algorithm, both to improve quality and speed.

Another possibility is to explore the direct estimation of

the motion model parameters; i.e. without first estimating

optical flow or feature correspondences.

Acknowledgements

The first author would like to thank Iain Matthews for

suggesting working on this problem. We thank Michael

Black for providing his implementation of the Black

and Anandan algorithm [4]. A preliminary version of

this paper appeared in the IEEE Conference on Com-

15

puter Vision and Pattern Recognition [2]. Finally, thanks

to Russ Andersson of Andersson Technologies LLC

(http://www.ssontech.com/) for providing the “skool” se-

quence used in skool.mp4 and skool cal.mp4.

References

[1] O. Ait-Aider, A. Bartoli, and N. Andreff. Kinemat-

ics from lines in a single rolling shutter image. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2007.

[2] S. Baker, E. Bennett, S. Kang, and R. Szeliski. Re-

moving rolling shutter wobble. In Proceedings of

the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2010.

[3] S. Baker and T. Kanade. Limits on super-

resolution and how to break them. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,

24(9):1167–1183, 2002.

[4] M. J. Black and P. Anandan. The robust estima-

tion of multiple motions: Parametric and piecewise-

smooth flow fields. Computer Vision, Image Under-

standing, 63(1):75–104, 1996.

[5] D. Bradley, B. Atcheson, I. Ihrke, and W. Heidrich.

Synchronization and rolling shutter compensation

for consumer video camera arrays. In Proceedings

of the International Workshop on Projector-Camera

Systems, 2009.

[6] R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and

W. Freeman. Removing camera shake from a sin-

gle photograph. ACM Transactions on Graphics,

25(3):787–794, 2006.

[7] C.-K. Liang, L.-W. Chang, and H. Chen. Analy-

sis and compensation of rolling shutter effect. IEEE

Transations on Image Processing, 17(8):1323–

1330, 2008.

[8] F. Liu, M. Gleicher, H. Jin, and A. Agarwala.

Content-preserving warps for 3D video stabiliza-

tion. ACM Transactions on Graphics, 28(3), 2009.

[9] D. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Com-

puter Vision, 60(2):91–110, 2004.

[10] M. Meingast, C. Geyer, and S. Sastry. Geometric

models of rolling-shutter cameras. In Proceedings

of the International Workshop on Omnidirection Vi-

sion, Camera Networks, and Non-Classical Cam-

eras, 2005.

[11] S. Nicklin, R. Fisher, and R. Middleton. Rolling

shutter image compensation. In Proceedings of

RoboCup, 2006.

[12] Pure Digital Technologies, LLC. Flip video cam-

corder. http://www.theflip.com/.

[13] Red.com, Inc. Red digital camera.

http://www.red.com/.

[14] E. Shechtman, Y. Caspi, and M. Irani. Space-

time super-resolution. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(4):531–545,

2005.

[15] G. Thalin. Deshaker rolling shutter settings.

http://www. guthspot.se/video/deshaker.htm#rolling

shutter setting.

[16] Wikipedia, The Free Encyclopedia. Rolling shutter.

http://en.wikipedia.org/wiki/Rolling shutter.

16

