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Abstract. Illumination conditions cause problems for many computer
vision algorithms. In particular, shadows in an image can cause segmenta-
tion, tracking, or recognition algorithms to fail. In this paper we propose
a method to process a 3-band colour image to locate, and subsequently
remove shadows. The result is a 3-band colour image which contains all
the original salient information in the image, except that the shadows
are gone.
We use the method set out in [1] to derive a 1-d illumination invariant
shadow-free image. We then use this invariant image together with the
original image to locate shadow edges. By setting these shadow edges to
zero in an edge representation of the original image, and by subsequently
re-integrating this edge representation by a method paralleling lightness
recovery, we are able to arrive at our sought after full colour, shadow free
image. Preliminary results reported in the paper show that the method
is effective.
A caveat for the application of the method is that we must have a
calibrated camera. We show in this paper that a good calibration can
be achieved simply by recording a sequence of images of a fixed outdoor
scene over the course of a day. After calibration, only a single image is
required for shadow removal. It is shown that the resulting calibration is
close to that achievable using measurements of the camera’s sensitivity
functions.

Keywords. Texture, shading, & colour, shadow removal, lightness re-
covery, illuminant invariance.

1 Introduction

Illumination conditions can confound many algorithms in vision. For example,
changes in the colour or intensity of the illumination in a scene can cause prob-
lems for algorithms which aim to segment the image, or to track or recognise,
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objects in the scene. One illumination effect which can cause particular prob-
lems for these algorithms is that of shadows. The disambiguation of edges due to
shadows and those due to material changes is a difficult problem and has a long
history in computer vision research [2]. In addition, the investigation of shadows
as cues for image understanding has an even older lineage [3]. Recently, the im-
portance of understanding shadows has come to the fore in digital photography
applications including colour correction[4] and dynamic range compression[5].

One possible solution to the confounding problems of shadows is to derive
images which are shadow free: that is to process images such that the shadows
are removed whilst retaining all other salient information within the image. Re-
cently, a study [6] aimed at lightness computation [7] set out a clever method to
attenuate the effect of shadows in an image. Unfortunately however, this method
requires not just a single image, but rather a sequence of images, captured with
a stationary camera over a period of time such that the illumination in the scene
(specifically the position of the shadows) changes considerably.

The example used by the author was a sequence of grey-scale images of a fixed
outdoor scene, captured over the course of a day. Assuming that material changes
are constant in the scene and that shadows move as the day progresses, it follows
that the median edge map (for the sequence) can be used to determine material
edges (shadow edges since they move are transitory and so do not effect the
median). Given the material edge-map it is possible to create an intrinsic image
that depends only on reflectance. This reflectance map might then be compared
against the original sequence and an intrinsic illuminant map for each image
recovered. While this method works well a major limitation of the approach is
that the illumination independent (and shadow free) image can only be derived
from a sequence of time varying images.

In this paper we propose a method for removing shadows from images which
in contrast to this previous work requires only a single image. The approach is
founded on an application of a recently developed method for eliminating from
an image the colour and intensity of the prevailing illumination [1,8]. The method
works by finding a single scalar function of image an RGB that is invariant to
changes in light colour and intensity i.e. it is a 1-dimensional invariant image
that depends only on reflectance. Because a shadow edge is evidence of a change
in only the colour and intensity of the incident light, shadows are removed in
the invariant image. Importantly, and in contrast to antecedent invariant cal-
culations, the scalar function operates at a pixel and so is not confounded by
features such as occluding edges which can affect invariants calculated over a
region of an image.

Fig. 1(a) shows a 3-band colour image, taken in outdoor lighting using an ex-
perimental Hewlett-Packard HP912 digital still camera modified to produce raw
output. For purposes of display, the raw camera RGB values have been converted
to the standard sRGB[9] colour space. The image shows two people photograph-
ing a lawn — their shadows are prominent. It is important to realise that the
shadows in this image, and shadows in outdoor scenes in general, represent a
change in both intensity and colour of the prevailing illumination. In the image
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Fig. 1. (a): Original image. (b): Grey-scale illuminant-invariant image. (c): Grey-scale
non illuminant-invariant image. (d): Edge map for invariant image. (e): Edge map for
non-invariant image. (f): Recovered, shadow-free image.

in Figure 1, the region of the footpath which is not in shadow is illuminated by
a mixture of sunlight and skylight, whereas the shadowed region is lit only by
skylight. Thus, there is a change in the effective correlated colour temperature
of the illumination in the two regions. Fig. 1(b) shows the invariant, reflectance
only, image. There are two features of this image which are worthy of comment.
First is the fact that the shadows present in the original image are effectively
removed in the invariant image. Second, it is important to notice that the invari-
ant image is grey scale — in removing the effect of the scene illumination at each
pixel in the image, information is lost. Shadows are removed but we have moved
from a rich colourful RGB image to a shadowless grey-scale representation.

In this paper we address this problem and set out to recover an RGB colour
image from which the shadows are removed. To achieve this we focus on the
derivative images of both the original image and the illumination invariant image.
More specifically we look at the differences in the edge maps of the two images.
We reason that material edges should occur in both RGB and invariant images.
In effect, we can use the invariant edge map as a mask to locate non-shadow
edges in the RGB edge map. Re-integrating the material-edge-only map should
result in a full colour image where shadows are removed.

Before proceeding it is useful to make a couple of caveats. First, that the
generation of an invariant image requires calibration. In [1] the calibration was
performed off-line using measurements of a camera’s sensor sensitivity functions.
Here we investigate what can be done when these measurements are unavailable.
In particular we show that the calibration step can be achieved using a sequence
of images of a fixed scene, taken under a variety of daylight conditions. This offers
the possibility that both the method presented here, and indeed, the method to
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derive the invariant grey-scale image can be used with uncalibrated cameras in,
for example, tracking or surveillance applications. The second caveat we make
is about the nature of cast shadows. Implicit in our technique is the idea that
shadow edges appear in the edge-maps of RGB images. For very diffuse shadow
boundaries this may in fact not be the case. However, in this worst case when
shadows are not found, the method will basically reintegrate to the original
image. However, experiments demonstrate that our method strongly attenuates
shadows in a variety of images even when shadow boundaries are not sharp. In
all images we have tried shadows are less prominent after processing than before.

In Section 2, we set out the method used for forming an invariant image, and
in Section 3 we detail how we use this invariant image to remove shadows from
a colour image. Section 4 considers the issue of camera calibration and Section 5
shows further results and states some conclusions.

2 Invariant Image Formation

Suppose we image a set of coloured surfaces under a particular Planckian light,
in a controlled light box, say. If surfaces are Lambertian, then for each pixel the
log of the chromaticity {r, g} appears as a dot in a 2-d plot; for flat or curved
surfaces every pixel in each patch is approximately collapsed into the same dot.
Fig. 2(b) illustrates the log-chromaticities for the 24 surfaces of the Macbeth
Color Checker Chart shown in Fig. 2(a). The plot shows 19 distinct clusters of
points — each cluster corresponds to chromaticities from a single patch, there
are 19 clusters rather than 24 since the patches in the last row of the chart are
all neutral in colour and so have the same chromaticity.
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Fig. 2. (a): Macbeth Color Checker Chart image under a Planckian light with an
HP912 Digital Still Camera. (b): Log-chromaticities of the 24 patches of the imaged
chart. (c): Chromaticities for 6 different patches, imaged under a set of different Planck-
ian illuminants.

Now if sensors are fairly narrow-band (and if they are not they can be made
more so via a spectral sharpening procedure [10]) then, for Planckian lights,
changing the lighting colour simply amounts to moving the log-chromaticity
colour vector along a direction multiplying a term which depends on the illumi-
nant temperature T and which is independent of the magnitude and direction
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of the lighting. Fig. 2(c) illustrates this for 7 patches of the colour chart shown
in Fig. 2(a); the figure shows the same 7 patches imaged under a range of dif-
ferent Planckian illuminants. Here, because the camera sensors are not exactly
narrow band, the linear shift of chromaticities is only approximate. As we will
see later though, this approximate linearity is sufficient for our needs. Assuming
that the change with illumination is indeed linear, projecting colours perpendic-
ular to this direction of change produces a 1-d greyscale image that is invariant
to lighting change.

This direction is in principle different for each camera, and thus must be
recovered from a calibration. While lighting may in fact not be truly Planckian,
most lights, and certainly all daylights, fall very near to the Planckian locus in
a chromaticity plot, and in practice the Planckian assumption is not crucial.

To see how this linear behaviour with lighting change is derived in the ideal
case we recapitulate the invariant image calculation here. Consider the RGB
colour formed at a pixel from illumination with spectral power distribution E(λ),
impinging on a surface with surface spectral reflectance function S(λ). If the
three camera sensor sensitivity functions form a set R(λ) then the RGB colour
ρ at any pixel results from an integral over the visible wavelengths

ρk =
∫

E(λ)S(λ)Qk(λ)dλ , k = R,G,B . (1)

If camera sensitivity Qk(λ) is exactly a Dirac delta function Qk(λ) = qkδ(λ−
λk), with qk the strength of the sensor qk = Qk(λk), then Eq. (1) reduces to the
simpler form

ρk = E(λk)S(λk)qk . (2)

Now suppose lighting can be approximated by Planck’s law.

E(λ, T ) = I c1λ
−5

(
e

c2
T λ − 1

)−1
(3)

Constants c1 and c2 equal 3.74183× 10−16 Wm2 and 1.4388× 10−2 mK, respec-
tively. The variable I controls the intensity of the incident light. For illuminants
in the temperature range 2500K to 10000K (reddish through whitish to bluish)
the term e

c2
T λ >> 1 and Wien’s approximation can be used:

E(λ, T ) � I c1λ
−5e− c2

T λ . (4)

Both the above equations generate functions which are very smooth func-
tions of wavelengths. In contrast, daylights have many high frequency compo-
nents. The approximations set forth above make sense only because we integrate
over all wavelengths to form RGB. From the point of view of most cameras day-
light spectra are effectively smooth (because camera sensitivities cannot see high
frequency spectral components).

Returning to the narrow-band sensor response equation, RGB colour ρk, k =
1 . . . 3 is simply given by

ρk = Ic1λ
−5
k e

− c2
T λk S(λk)qk . (5)
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Now suppose we first form band-ratio chromaticities from colour values ρ
given by eq. (1):

rk = ρk/ρp (6)

where p is one of the channels and k indexes over the remaining responses. In our
experiments p = 2 (i.e. we divide by green) and so we calculated R/G and B/G.
As in all chromaticity operations, we effectively remove intensity information.
The intensity variable I is absent from the chromaticity coordinates. To isolate
the temperature term (so we might later remove it) in (4) we take the log of (6).

r′
k ≡ log(rk) = log(sk/sp) + (ek − ep)/T , (7)

where we define sk = c1λ
−5
k S(λk)qk and ek = −c2/λk. As temperature changes,

2-vectors r′
k, k = R,B, will form a straight line in 2-d colour space. Equation (7)

is the vector equation for a line. Calibration then amounts to determining the
2-vector direction (ek −ep) in the space of logs of ratios. We discuss the practical
aspects of this calibration in more detail in Section 4.

The invariant image is that formed by projecting 2-d colours into the direction
e⊥ orthogonal to the vector (ek − ep). The result of this projection is a single
scalar which we then code as a grey-scale value. Here, and henceforth, the grey-
scale invariant is defined as:

gs = c1r
′
R − c2r

′
B (8)

Where c1 and c2 are constants such that the vector [c1 c2] is in the direction
[eB − eR] (it is orthogonal to the lighting direction). The grey-scale invariant
image is denoted gs(x, y).

Experiments have shown that images of the same scene containing objects
of different colours illuminated by any complex lighting field (including lights
of different colours and intensities) will map to the same invariant image. Most
importantly for this paper, shadows which occur when there is a change in light
but not surface will disappear in the invariant image.

Of course by definition we expect the illuminant invariance properties. We
have carefully shown by considering the physics of image formation how light
intensity and temperature are cancelled out. But, we draw the reader’s attention
to a possible problem. Specifically, the invariant is designed to work for Planckian
lights. Additive combinations of Planckians (which might result indoors when
there is mixed light from a Tungsten source and outdoor illumination through
a window) is non-Planckian. However, because the Planckian locus is a very
shallow crescent shape, additive combinations of light tend to fall close to the
locus. Experimentally, the invariant image factors out the light even for additive
combinations of Planckian illuminants[1].

3 Method for Shadow Removal

Our method for shadow removal has its roots in methods of lightness recovery.
Lightness is a term usually used to mean that part of a photometric signal that
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depends only on reflectance. An RGB image is input and two intrinsic images
are output: one based on reflectance (the lightness intrinsic image) and the other
based on illumination. Lightness computation proceeds by making assumptions
about the world. In particular, it is usually assumed that illumination varies
slowly across an image. In contrast changes in reflectance are rapid. It follows
then that by thresholding a derivative image to remove small derivatives, slow
changes (due to, by assumption, illumination) can be removed. Integrating the
thresholded derivative image results in the lightness intrinsic image. Clearly, we
wish to adopt a similar strategy here. However, our assumptions must at the
outset be different. Shadows are evidence of a sharp change in illumination and
this will lead us to a different kind of thresholding operation.

Let us begin by recapitulating the standard lightness recovery algorithm. The
algorithm works by finding the intrinsic image in each of the separate R-, G-
and B-channels separately. Let us use the notation ρ(x, y) to represent one of
the three channel images. We are going to use thresholded derivatives to remove
the effect of illumination. We observe in Equation (2) that sensor response is
a multiplication of light and surface. The gradient differential operator takes
differences of adjacent image pixels. Assuming locally constant illumination, the
difference between log colour responses removes the effect of the illumination.
Denoting the log channel response as ρ′(x, y) we write the gradient (the vector
of the x and y derivatives as:

gradient of channel response ‖∇ρ′(x, y)‖ (9)

Given the log-image edge map ∇ρ′(x, y) we can define a threshold operator T
to remove effects due to illumination. In the original lightness formulation[11],
T thresholds out gradients of small magnitude:

T (∇ρ′(x, y)) =
{
0 if ‖∇ρ′(x, y)‖ < threshold
∇ρ′(x, y) otherwise

(10)

Here our goal is not to remove illumination per se (we are not solving for colour
constancy) but rather we wish only to remove shadows. In fact we actually want
to keep the illuminant field and re-render the scene as if it were captured under
the same single non-shadow illuminant. To do this we must factor out changes
in the gradient at shadow edges. Let us denote

gradient of greyscale invariant image ‖∇gs(x, y)‖ (11)

Since the invariant image is a function of reflectance, shadow edges must disap-
pear. Thus, we can remove shadows in the gradient of the log response image
using the following threshold function S():

S(∇ρ′(x, y), gs(x, y))=
{
0 if ‖∇ρ′(x, y)‖ > thresh1 and ‖∇gs(x, y)‖ < thresh2
∇ρ′(x, y) otherwise

(12)
That is if the magnitude of the gradient in the invariant image is close to zero
where the gradient of the log response is larger than zero then this is evidence
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of a shadow edge. At such places the gradient of the log response image is set
to zero indicating that there is no change at this point (which is true for the
underlying reflectance). We point out that a similar ’rule-based’ approach to
determining the semantics of edges (e.g. highlight edges vs material edges) has
been proposed by Gevers and Stockman[12]. Though, that approach fails to
account for shadows.

After thresholding we should now have a gradient image where sharp changes
are indicative only of material changes: there are no sharp changes due to illu-
mination and so shadows have been removed. We now wish to integrate the
gradient in order to recover a log response image which does not have shadows.
To do this we must solve a Poisson equation of the form:

∇2q′(x, y) = ∇ · S(∇ρ′(x, y), gs(x, y)) (13)

On the left hand-side of Equation (13) we have the Laplacian ( d2ρ′

dx 2 +
d2ρ′

dy2 ) of
the image we wish to recover. On the right-hand side we have the Laplacian of the
input image where the Laplacian is computed in two steps. First the thresholded
(shadow free) gradient is calculated (12). Second, the Laplacian is calculated
from the gradient. However, the Laplacian by itself is not sufficient to allow the
Poisson equation to be solved (the Laplacian is not defined at the boundaries
of an image). Rather we must make some assumption about what is happening
at the image boundary. Here we assume Neumann boundary conditions: the
derivative at the boundary is zero. Subject to this constraint we can recover
q(x, y) uniquely up to an unknown additive constant. Exponentiating q′, we
arrive at the reconstructed greyscale image (up to an unknown multiplicative
constant). Solving (13) for each of the three colour bands results in a full colour
image where the shadows are removed.

However, to obtain “realistic” image colours we must deal with the unknown
multiplicative constants. To fix these constants, we consider the top 1-percentile
of pixels in the recovered image in each band. We use the average of these pixels
as a measure of the maximum response in the images. Mapping the maximum
value of the RGB image to (1 1 1) effectively removes the unknown constants.
Moreover, adjusting the white-point of an image in this way is a simple way of
discounting the colour of the (in this case non-shadow) illuminant.

Note that reasonably accurate shadow edges are required for the method to
work well. Obtaining them depends on how we define the thresholding operator
S. We have experimented with a variety of methods for defining S and what
works best depends to some extent on image content. The method outlined
here then is not necessarily optimal and the results should thus be treated as a
convincing proof in principle.

The difficulty in defining S is illustrated by the images in Figs. 3(a,b).
Fig. 3(a) shows the edge map for the intensity image (13 (R+G+B)) of Fig. 1(a)
while that in Fig. 3(b) is the edge map for the corresponding illuminant-invariant
image. The edges in these images are calculated thus:

(‖ρ ! {−1, 0, 1}t‖2 + ‖ρ ! {−1, 0, 1}t‖2)1/2
(14)
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where ρ represents the relevant image and ! denotes convolution. Simple edge
operators of this kind produce non-zero values at more locations than those at
which there are true edges. In the examples in Fig. 3 the edges of the road
and (in the case of the intensity image) the shadow are clear, but so too are
many edges due to the texture of the imaged surfaces and also noise in the
images. Obtaining the edges in which we are interested from these edge maps is
non-trivial as evidenced by the large literature on edge detection (see [13] for a
review).

Fig. 3. (a): Edges in the intensity image. (b): Edges in the invariant image. (c): Final
recovered shadow edge.

One simple approach to determining the true edges is to threshold the edge
maps such that weak edges are set to zero. We found however that this still does
not produce edge maps which are clean enough for our purposes. Instead we have
employed more sophisticated edge detection algorithms such as that proposed by
Canny [14] and the SUSAN algorithm proposed in [15]. We have achieved some
success with both these methods; the results obtained here use the SUSAN edge
detector. In this algorithm the image to be edge detected is first smoothed by
convolution with a kernel function. Next there is an edge detection step after
which the resulting edges are thresholded to produce strong edges.

Employing this approach we find shadow edges by looking for edges which are
in the log red-, green- or blue- response image but are not in the invariant image.
As a final step we employ a morphological operation (specifically an opening) on
the binary edge map to “thicken” the shadow edges. This thickening of the edges
was found to be necessary to ensure that the shadows are properly removed
in the re-integration step. The resulting shadow edge (shown in Fig. 3(c)) is
used to guide the operator S in the thresholding step of the recovery algorithm
outlined above. Even after this processing the definition of the shadow edge is
imperfect — there are a number of spurious edges not removed. However, this
map is sufficiently accurate to allow recovery of the shadow-free image shown in
Fig 1(f).

Even after outlining the difficulties presented above, we have found that
a very simple workflow produces good results for most images that have pro-
nounced shadow edges. Moreover, the worst case performance for our algorithm
is when shadow edges are not recovered. In this case the reintegration returns im-
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ages which are closer than we would like to the original image (i.e. with shadows
still present).

4 Uncalibrated Cameras

In order for the method outlined above to succeed, the invariant log lighting di-
rection ek −ep must be known. Obtaining this knowledge amounts to performing
a calibration of the camera. Camera calibration is simple if its sensor sensitivity
functions are known[1]. The calibration is more difficult when the camera sensors
are unknown.

Here we investigate how it is possible to calibrate a camera given only a set
of images of the same scene taken at different times of the day. We adopt the
following reasoning: over the course of the day, the height of the sun, and general
weather conditions change and so the effective illumination must change too. It
follows then that the plotted log-chromaticities for a single pixel must lie on a
line. Moreover, as discussed earlier the orientation of the lines discovered for all
pixels will be the same. The orientation that best describes all lines defines the
illuminant direction.

To test whether this reasoning is sufficient to obtain an accurate calibration
of the camera we captured 14 images of the scene shown in Fig. 4(a) at different
times throughout the day. Fig. 4(b) shows the chromaticities of the 24 colour
patches of the Macbeth Color Checker which was placed in the scene. The change
of log-chromaticity with time (and hence with a change of daylight illumination)
is approximately linear. We used this data to derive the invariant direction for the
camera and the results are illustrated in Fig. 4(c). Also shown in this figure are
the recovered vectors for a calibration based on knowledge of the camera sensors
(solid line) and that based on the sequence of daylight images (dashed line). It is
clear that the directions are very close — the angle between the two lines is 2.4o.
Figs. 4(d) and (e) shows the invariant images derived using the two different
calibrations. The resulting invariant images are very similar for identification
of edge content, and, importantly, the shadows are greatly attenuated in both
cases.

This simple experiment suggests that an accurate camera calibration can
be obtained without knowledge of the camera’s sensors, thus broadening the
potential application of both the method reported here and the original method
set out in [1]. A final step to generalise (and automate) the calibration procedure
would be to derive the invariant based on the whole images rather than just the
patches from the test chart as was done here. To do this, however, it is necessary
for the images to be registered — such a set of images was unavailable at this
time. However, given that registered images are available, and that the scene
contains a range of different colours, good calibration should be possible.

Finally, an experimental calibration has two main advantages over a cali-
bration based on known spectral sensitivities. First, RGBs in camera are often
gamma corrected (R, G and B are raised to some power γ) prior to storage. In-
deed most images viewed on a computer monitor are (roughly) the square root of



Removing Shadows from Images 833

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

log(R/G)

lo
g(

B
/G

)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

log(R/G)

lo
g(

B
/G

)

Fig. 4. (a): The scene used for the camera calibration. (b): Chromaticities of the 24
colour patches for the set of 14 images. (c): Invariant directions recovered using camera
sensors (solid line) and the image sequence (dashed line). (d): Image taken with the
same camera. (e): Invariant image based on a calibration using camera sensors. (f):
Invariant image based on a calibration using the image sequence.

the linear signal. This is because monitors have a squared transfer function and
so the squaring of the monitor cancels the square root of the camera resulting
in the required linear signal. However, for the calibration set forth above, the
gamma is simply an unknown multiplier in the recovered parameter and does
not change the direction of the lighting direction.

For consider the effect of a gamma correction on the invariant image calcu-
lation:

ρk → γ (ρk)
r′
k → γ log(sk/sp) + γ (ek − ep)/T .

(15)

Clearly, we simply deduce a different vector ek − ep than that we would have
calculated using linear signals; but the effect on images is the same: e⊥ produces
an invariant image.

The second advantage of an experimental calibration is that the camera sensi-
tivity may change as a function of time and temperature. A continuous adaptive
calibration would support shadow removal even if the current state of the camera
differed from manufacturer specifications.

5 Results

Fig. 5 shows some further results of the shadow removal method set out here.
In all cases the shadows are removed quite effectively. There are, however, a
number of artifacts introduced into the images. These artifacts are due to the
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fact that the determination of the shadow-edge is imperfect, resulting in edge
pixels being set to zero when they shouldn’t be. Pragmatically then the results
of this paper do not deliver photo-quality images. However, the technique might
usefully subserve tasks such as tracking[16,17] or object recognition[18,19] where
shadows are known to cause problems.

Fig. 5. Some example images. Each row shows results for a different image. The first
column shows the original image, with shadow. The second column is the shadow-free
illuminant-invariant greyscale image. The final column shows the recovered 3-band
colour images which are shadow-free.

6 Conclusions

In this paper we have presented a method for finding and removing shadows from
images. Our method builds on two strands of prior research: lightness algorithms
and a recently developed light colour and light intensity invariant intrinsic im-
age. Lightness algorithms attempt to disambiguate light from surface using the
assumption that illumination varies slowly over an image. relative to this as-
sumption, small gradients in images are due to illumination and large gradients
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due to reflectance changes. Thresholding out small changes in gradient images
and re-integrating the result yields an illumination-free intrinsic reflectance im-
age. Of course this method fails when shadows are present because shadow edges
have large gradients.

In this paper we modified the threshold function using the light intensity
invariant image. As the name suggests this image depends only on reflectance.
More specifically, it was shown that under the assumption of Planckian lights
there exists a single scalar function of R, G and B that factors out illumination.
By direct implication, shadows vanish in this image. It follows then that edges
in an input image which do not appear in the invariant image are evidence of
the presence of a shadow edge. Thresholding out image gradients that are due
to shadows and re-integrating delivers full colour shadow free images.

Several examples of the method operating on real images are included in
the paper. Shadows are always removed or very strongly attenuated. The paper
includes a full disclosure on the necessary (but simple) steps required to calibrate
a camera to support shadow removal.
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