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Abstract

The ability to measure gene expression on a genome-wide scale is one of the most promis-

ing accomplishments in molecular biology. Microarrays, the technology that first permitted

this, were riddled with problems due to unwanted sources of variability. Many of these prob-

lems are now mitigated, after a decade’s worth of statistical methodology development. The

recently developed RNA sequencing (RNA-seq) technology has generated much excitement

in part due to claims of reduced variability in comparison to microarrays. However, we show

RNA-seq data demonstrates unwanted and obscuring variability similar to what was first ob-

served in microarrays. In particular, we find GC-content has a strong sample specific effect on

gene expression measurements that, if left uncorrected, leads to false positives in downstream

results. We also report on commonly observed data distortions that demonstrate the need for

data normalization. Here we describe statistical methodology that improves precision by 42%

without loss of accuracy. Our resulting conditional quantile normalization (CQN) algorithm

combines robust generalized regression to remove systematic bias introduced by deterministic

features such as GC-content, and quantile normalization to correct for global distortions.

1 Introduction

High-throughput sequencing technology is currently being used to quantify gene expression levels

on a genome-wide scale. This is done by first converting RNA transcripts into cDNA fragments,

and then sequencing these fragments to produces millions of sequences of length 35-150 bases

∗To whom correspondence should be addressed. Email: zhijin_wu@brown.edu
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(bps), referred to as reads. Gene expression is quantified by counting the number of these reads

that map back to each gene. The conventional wisdom is that this approach is an improvement

over microarrays as it is a direct measurement of RNA levels and does not rely on hybridization, a

process known for its lack of specificity (Wu and others, 2004; Zhang and others, 2003; Naef and

Magnasco, 2003). Early studies, based on a small number of samples in highly controlled con-

ditions, found that RNA-seq has excellent technical reproducibility (Mortazavi and others, 2008;

Marioni and others, 2008; Bullard and others, 2010). Furthermore, in a review article Wang and

others (2009) claimed that analysis of RNA-seq data does not require “sophisticated normaliza-

tion”. However, as more data became available, problems such as sequence-specific biases were

reported (Hansen and others, 2010; Li and others, 2010; Pickrell and others, 2010). Here, we

make use of three large, publicly available, RNA-seq data sets to demonstrate that sample specific

systematic biases, along with distortions that affect the overall distribution of count data, introduce

unwanted variation in RNA-seq data that obscures the underlying biological signal.

RNA-seq technology permits applications not previously possible with microarrays. For exam-

ple, it is possible to discover new alternative transcription, unannotated transcription or measure

transcription for non-coding regions (Sultan and others, 2008; Trapnell and others, 2010; Wilhelm

and others, 2010; Perkins and others, 2009). Although most RNA-seq publications have focused

on discovering new transcripts, determining whether the expression level of a genomic unit (such

as a gene, exon, or junction) differs across experimental conditions continues to be an important

question in functional genomics. Therefore, to demonstrate the importance of normalization in

RNA-seq data we focus on the application of differential expression detection (Bottomly and oth-

ers, 2011; Wu and others, 2010; Lefebvre and others, 2011; Anders and Huber, 2010; Robinson

and others, 2010; Eveland and others, 2010).

We start by counting the number of reads in predetermined genomic regions for each sample to

form gene expression matrices with rows representing genes and columns representing samples as

with microarray data. Although our approach is agnostic to the choice of regions, here we used

regions selected to correspond to the canonical definitions of genes as defined by the Ensembl

database (Flicek and others, 2011). Because most tests developed for differential expression test-

ing in microarray data depend on assumptions not necessarily applicable to the count data produced

by RNA-seq, alternative statistical methodologies have been proposed (Anders and Huber, 2010;

Robinson and others, 2010; Robinson and Smyth, 2007, 2008). Similarly, alternative normaliza-

tion approaches have been proposed. The first normalization approach described in the literature

was to simply correct each sample for the number of mapped reads produced for each sample, re-

ferred to as sequencing depth, and each gene for its length (Mortazavi and others, 2008). Because

variability in sequencing depth was observed in technical replicates, it was assumed to be a tech-

nical artifact and because longer genes are expected to have higher counts, Mortazavi and others

(2008) defined the widely used “reads per kilobase per million” (RPKM) measure as the number

of reads mapped to a gene in a sample divided by the product of the length of the gene in kilobases

and the total number of reads mapped in the sample, in millions. Various authors then showed

that sequencing depth is not a stable scaling factor and a number of more robust alternatives were
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suggested (Bullard and others, 2010; Robinson and Oshlack, 2010; Anders and Huber, 2010), with

Langmead and others (2010) suggesting that there might be a gene-specific linear effect of the

sample-specific scaling factor. However, in Section 3 we demonstrate that, even with improved

scaling, the use of the RPKM measure is not a general solution to the unwanted variability prob-

lem. In Section 2 we describe the datasets used throughout the paper and Section 3 motivates the

problem and our solution. In Section 4 we present a useful statistical model and use it to motivate

a normalization algorithm. In Section 5 we present results illustrating the improvements made

possible by our approach. Finally, in Section 6 we discuss future directions and connections to

existing methodology for differential expression detection.

2 Data Description

We examined the three currently available RNA-seq datasets with the largest number of samples

(Pickrell and others, 2010; Montgomery and others, 2010; Cheung and others, 2010). In all three

studies, the samples are lymphoblastoid cell lines from unrelated individuals in the HapMap project

(International HapMap Consortium, 2003). Montgomery and others (2010) sequenced 60 individ-

uals from the CEPH (Utah residents with ancestry from northern and western Europe) population

(CEU). Cheung and others (2010) sequenced 41 individuals also from the CEU population with

29 in common with Montgomery and others (2010). Pickrell and others (2010) sequenced 69 in-

dividuals from Yoruba in Ibadan, Nigeria. All three studies, hereafter referred to as Montgomery,

Pickrell and Cheung, were designed to study the effect of genetics on gene expression and subjects

were considered interchangeable. We therefore used these data to assess improvements in preci-

sion. The samples that were done in replicate across two studies were particularly useful for this

purpose.

To assess accuracy we used samples from Bullard and others (2010), in which two samples from

the microarray quality control study (MAQC Consortium, 2006) were sequenced. These two sam-

ples are Stratagene’s universal human reference RNA (UHR) which is a commercial pool of RNA

from 15 different cell lines, and Ambion’s human brain reference RNA. The same samples have

been assayed extensively on microarrays, and we used data from the MAQC Consortium (2006) in

which each of the two samples was hybridized to five different Affymetrix U133 Plus 2.0 arrays.

The microarrays served as an independent measurement that permitted an assessment of accuracy.

This dataset has no biological replicates, and the technical replicates are based on commercially

available RNA, making the technical noise smaller than what would be expected from tissue sam-

ples.
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2.1 Data Processing

For all datasets the original reads were downloaded, mapped, and the gene expression count ma-

trix created as follows. Reads were aligned to the human reference genome sequence (version

hg19) using Bowtie (Langmead and others, 2009), allowing up to two mismatches. All reads were

trimmed from the 3’ end to be 35bp long, and for the Montgomery data we used the first read of

the paired-end reads. To assign reads to genes we followed essentially the same procedure used by

(Bullard and others, 2010), except for (a) we determined overlap between a read and a genomic

region based on the center base of the trimmed read and not the 5’ end and (b) we used union

gene representations instead of union-intersection gene representation as discussed in Bullard and

others (2010). Sequencing depth was determined as the number of reads mapped to the genome.

3 Motivation

The need for a normalization technique more complex than scaling is first motivated by simply

noting that the distribution of counts across different samples differs (Figure 1(a)). Since the raw

counts are affected by sequencing depth, we also compared the distribution of reads per million

(RPM), in each sample to account for differences in sequencing depth (not shown). The locations

of the peaks of the RPM densities of these replicates became closer, but both the shape and scale

of the distributions still vary between these replicates. Clearly a scaling normalization, that is, a

shift in log scale expression, is not sufficient to normalize counts between samples.

Contrary to an early expectation of RNA-seq technology, the number of reads from a given gene

is not simply determined by the gene expression level. Rather, certain fragments are preferentially

detected in the RNA-seq data acquisition process, leading to nonuniform detection of expression

between genes. We refer to this bias in measurement as counting efficiency. The best documented

example is the effect of the percent of C or G nucleotides in a gene: the so-called GC-content

effect. GC-content has been shown to influence a number of DNA-related measurements. Exam-

ples include gene expression microarrays (Wu and others, 2004; Zhang and others, 2003; Naef

and Magnasco, 2003), copy number arrays (Nannya and others, 2005; Carvalho and others, 2007),

sequencing coverage (Dohm and others, 2008) and RNA-seq (Pickrell and others, 2010). The

difference in counting efficiency between genes means that expression levels cannot be compared

between genes directly. A more subtle and detrimental problem is that these systematic biases

affect different samples differently, thus even within gene comparison between two samples be-

comes problematic. In fact Pickrell and others (2010) demonstrated that the GC-content effect can

change from sample to sample. Here we demonstrate that this appears to be a general problem.

In Figure 1(b) we show the distribution of log
2
-RPKM for various strata of gene GC-content for

two biological replicates from the Montgomery study. For illustration purposes we selected one

sample in which a higher GC-content leads to increased counting efficiency, and another in which

4

http://biostats.bepress.com/jhubiostat/paper227



there is little impact. This problem has downstream consequences since observed fold changes are

obscured by the variability introduced by GC-content effects (Figure 1(c,d)).

Some work has been done to develop methods to address these effects. Pickrell and others (2010),

the first to notice the sample specific GC-content effect, proposed a sample specific adjustment.

They suggested stratifying predefined genomic regions by GC-content and then for each stratum,

divide the sample counts by the sum of the counts across all samples. This fraction is considered

an enrichment factor for that GC-content stratum, which is then smoothed by GC-content for each

sample separately. Counts are then adjusted by the smoothed enrichment factor. Finally, they pro-

posed doing this on the exon level, adding adjusted counts across all exons from a gene in order to

obtain gene level adjusted counts. We found two problems with this approach that we decided to

improve. First, the enrichment scores are computed for each sample relative to all samples in an

experiment, thus this adjustment does not remove the GC-content effect but rather equalizes the ef-

fect across samples. As a consequence, adjustments vary depending on what samples are processed

together. Second, the GC-content effect is estimated based on the direct summation of counts on

different genes in different samples, ignoring the fact that genes with higher expected counts also

have greater variance. As a result GC-content effects are not entirely removed (Figure 1(e)). In ad-

dition, Roberts and others (2011) addresses bias removal within the Cufflinks transcript assembly

framework (Trapnell and others, 2010) and show improvements in comparisons between sequenc-

ing technologies, but does not address variation between biological replicates.

4 Methods

We present a normalization algorithm motivated by a statistical model that accounts for both the

need to correct systematic biases and the need to adjust for distributional distortions. We denote

the log gene expression level for gene g at sample i with θg,i, which we consider a random variable.

For most g, θg,i are independent and identically distributed across i. We assume that the marginal

distribution of the θg,i is the same for all samples i, and denote it by G. Note that this variability

accounts for the difference in gene expression across different genes. The p covariates thought to

cause systematic errors are denoted with Xg = (Xg,1, . . . , Xg,p)
′. Examples of covariates consid-

ered here are GC-content, gene length, and gene mappability defined as the percentage of uniquely

mapping subreads of a gene. To model the observed counts Yg,i for gene g in sample i we write:

Yg,i |µg,i ∼ Poisson(µg,i)

with

µg,i = exp

{

hi(θg,i) +

p
∑

j=1

fi,j(Xg,j)

}

with fi,j(X̄.j) = 0 ∀ j for identifiability. Here, the his are non-decreasing functions that account for

the fact that count distributions are distorted in non-linear ways across the different samples (Fig-

ure 2(a)). The fi,js account for sample dependent systematic biases. Data exploration suggested
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that these are smooth functions, so for tractability we model these as (parametric) natural cubic

splines with known degrees of freedom and knot locations. If there is no technical variability, hi is

the identity function and
∑p

j=1
fi,j(Xg,j) = 0, then the distribution of Ygi for a given i reduces to

a G-Poisson mixture.

With the model in place, obtaining normalized counts is equivalent to estimating θg,i. To do this

we needed to estimate the non-parametric hi functions along with the linear parameters that define

the splines. Note that the distribution of the θg,i in a sample is determined by the biological system,

which varies greatly between species, tissue types and developmental stages. Thus it is unrealistic

to restrict it to a particular parametric family of distributions. This makes estimation requiring full

likelihood, including maximum likelihood estimation (MLE) and Bayesian approaches unsuitable.

In addition, outliers can arise because of either biological activity or technical artifacts. Since both

h and f represent the global impact of systematic effects on all genes in general, it is crucial to

define estimation procedures that are robust to outliers. We take advantage of the large amount

of data for each sample and our parsimonious model to define a stable algorithm which we now

motivate and describe.

For any given i, the distribution of hi(θg,i) is unspecified and Figure 2(b) shows that values can

range from −∞ to 8. First we observe that when µg,i is large, log(Yg,i) |µg,i is approximately

normal with mean log(µg,i) and variance 1/µg,i. The small variance implies that for large µg,i

log(Yg,i) |µg,i ≈ log(µg,i) = hi(θg,i) +

p
∑

j=1

fi,j(Xg,j),

showing that for a fixed i and large µg,i, the distribution of log(Yg,i) is equal to hi(θg,i) except for

a location shift given by
∑p

j=1
fi,j(Xg,j). Even though the shape of hi(G) is left unspecified, the

quantiles of log(Yg,i) shift by
∑p

j=1
fi,j(Xg,j). We therefore use quantile regression to estimate the

fi,js. To assure the large µg,i assumption is satisfied, instead of fixing the quantile choice, we use

median regression on a subset of genes with average counts beyond a lower bound.

To estimate the his we take advantage of the fact that

E

{

log(Yg,i)−

p
∑

j=1

fi,j(Xg,j)

}

= hi(θg,i)

and that the distribution of θg,i does not depend on i, to use subset quantile normalization (Wu and

Aryee, 2010).

The specifics of our algorithm are as follows:

1. Select a subset of genes with Ȳg,. > 50. Then for each i, use median regression on log(Yg,i)

to estimate the parameters that define the splines fi,j and determine f̂i,j .
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2. For each i, apply quantile normalization to log(Yg,i)−
∑p

j=1
f̂i,j(Xg,j) to obtain ĥ−1

i .

3. For each gene g on each sample i, define a normalization offset as exp[log(Yg,i)−ĥ−1{log(Yg,i)−

f̂i,j(Xg,j)}].

The algorithm returns an offset rather than normalized data for two reasons. First, for interpretabil-

ity we want to preserve the data as counts, i.e. integer numbers. Due to the large sampling error,

small counts should be treated with caution thus users of the algorithm benefit from access to

these original counts. Second, the most widely used methodology for identifying differentially

expressed genes from RNA-seq data model the counts in a way that sampling error from counting

process (such as Poisson) and variation in gene expression (θ) are taken into account (Robinson

and others, 2010; Anders and Huber, 2010). Providing an offset allows direct application of these

existing methods which take counts as input and can be easily adapted to adjust for offsets.

While the algorithm allows one to correct for a variety of systematic biases, we have consistently

used GC content and gene length. An R package cqn implementing the method is being submitted

to Bioconductor.

5 Results

Because experimentally controlling for the amount of RNA extracted from a sample is difficult, the

total number of counts varies across samples and manifests itself as between sample differences in

the locations of the log read-count distributions (Figure 1(a)). This unwanted technical variability

is further augmented by the differences in cDNA amplification efficiency (Aird and others, 2011)

and other technical artifacts and differences in distribution shapes and scales persist after library

size is taken into account. Scaling normalization based on more robust estimates of the shift in

location (Bullard and others, 2010; Robinson and Oshlack, 2010; Anders and Huber, 2010) can

provide further improvement, although improvement is limited in the samples we have analyzed (as

an example, results for trimmed median of M-values, TMM, from (Robinson and Oshlack, 2010)

are shown below). In contrast, our normalization approach (CQN) results in sample distributions

with comparable scales and shapes, as discussed below.

To demonstrate the down-stream advantages of our algorithm we first considered comparisons

between two samples. For illustrative purposes we selected two samples with very different sys-

tematic bias patterns (fi,js). For the assessment, we focused on fold-change as it is considered the

basic unit for differential expression analysis. We computed log-fold-change for each gene after

both RPKM normalization and CQN and a substantial improvement was observed (Figure 1(e,f)).

Specifically, while the RPKM showed a strong dependence between fold-change and GC-content,

CQN eliminated it.
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The resulting estimates of f̂i,j provided a useful quality assessment since plotting these demon-

strated a wide range of GC-content and gene length effects (Figure 3(c) and (d)). In the data sets

we analyzed, length effects were more consistent between samples than GC-effects. For many

samples the length effect is close to linear with a constant slope for genes shorter than 5000 bp.

This result implies that dividing by gene length, as done by the RPKM approach, is suitable in

most circumstances. However, we observed that for genes shorter than 1000bp the length effect

appears to be stronger, while for genes beyond 5000bp the length effect plateaus. This suggests

that dividing by gene length may not always be appropriate. A sample-specific gene length effect

may capture sample specific fragmentation bias as well as differences in size selection.

We have illustrated the potential downstream consequences of not normalizing with a comparison

of two samples (Figure 1). To demonstrate the advantages of CQN in a study with replicates, we

performed a five versus five comparison of biological replicates, between which we expect little

difference. Systematic bias was observed in the average log fold changes with a strong dependence

on GC content, using standard RPKM (Figure 3(e)). These problems were removed by CQN

(Figure 3(f)). The log-fold-variation was noticeably reduced by CQN (Figure 4(a)).

To perform a global assessment of precision, we compared the 29 Hapmap samples processed by

both the Cheung and the Montgomery studies. For each gene we computed the mean squared

difference between the expression measures from the two technical replicates. Our approach im-

proved precision greatly as shown in Figure 4(b): the median mean squared difference was reduced

by 42% after normalization. Note that this shows improvements in across study comparisons.

Finally, to assure that the gains in precision were not achieved by simply reducing overall dynamic

range, we assessed accuracy by comparing RNA-seq counts to measurements from an indepen-

dent technology: microarrays. Specifically, we computed log-fold-change values between UHR

and brain and averaged these across all replicates. We did this for both microarrays and sequenc-

ing counts and then compared the agreement with microarrays to sequencing counts after RPKM

normalization or CQN. We found similar accuracy (Figure 4(c)): between technology correlations

were 0.84 using CQN normalization compared to 0.85 using standard RPKM. Indeed, using stan-

dard RPKM instead of CQN normalization produced a plot very similar to Figure 4(c) (not shown).

6 Discussion

Unlike previous reports based on small samples, by examining large datasets processed from four

different studies, we found RNA-seq data to be greatly affected by bias and systematic errors. Just

as with microarrays, we found that lack of normalization can lead to false positives in a differential

expression analysis. Particularly, sample specific GC-content effects led to confounding of GC-

content and observed log-fold-change values. Apart from correcting for biases such as GC-content,

we also found a need to quantile normalize the data to correct for sample-specific distortion. To
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remove these unwanted sources of variation we developed a normalization procedure for RNA-seq

data that greatly improves precision without affecting accuracy. We demonstrated the improve-

ments with comparisons of two biological samples and a five versus five example. Although in a

comparison with many biological replicates the observed sample specific biases may cancel out,

large studies are not the norm due to the cost and current optimistic view of the technology’s pre-

cision (Hansen and others, 2011). More importantly, we show a great increase in precision across

studies using CQN.

The datasets used for evaluating our method consists of the largest number of biological replicates

in the literature. Unlike the situation for microarrays, there is no reference dataset with biological

replicates available, in which the expression changes are known for a subset of genes. Thus we

were limited to using different datasets for evaluating precision and accuracy.

Normalization methods developed earlier, including the RPKM measure and the various forms of

modified scaling normalization (Bullard and others, 2010; Robinson and Oshlack, 2010; Anders

and Huber, 2010), considered the sample effect as common for all genes, and thus only one scaling

factor is estimated in a sample. Although RPKM takes gene length into account, the effect of this

length covariate is considered static and constant for all samples. By studying four different RNA-

seq datasets we found that these assumptions do not always hold. In practice, the GC-content effect

may vary substantially between samples and the same is true to a lesser degree for gene length.

In general, our approach to quantifying systematic biases was useful for quality assessment as it

identified specific particularly problematic samples (Figures 3(c,d)).

Instead of returning a normalized version of the data, our procedure returns a gene specific nor-

malization offset. This allows direct adaptation of existing methodology with a generalized linear

model structure. For example, Robinson and others (2010) use an offset that is sample specific but

common to all genes in a sample, a value similar to library size but estimated from the data. This

offset essentially makes the mean M value in the MA plot equal to zero. We have demonstrated

that this approach does not remove GC-content effects. However, by incorporating our offset into

their method, this problem is easily solved. Anders and Huber (2010) model counts with a nega-

tive binomial distribution in which the mean of a gene is similarly proportional to a sample specific

offset that represents sequencing depth. This model can also be easily adapted by replacing this

size factor by the offset estimated by CQN.

Quantile normalization has been widely applied to microarray data and shown to have excellent

performance compared with competing nonlinear normalization methods (Bolstad and others,

2003). We found that when there are known and measurable confounders, as in the RNA-seq

example, estimating and removing their effects before quantile normalization provides further ad-

vantage. For the results presented here, we considered only two covariates, GC-content and gene

length, but our model permits the inclusion of others: for example, mappability or more elaborate

sequence effects. Although the biochemical and technical mechanisms for the inconsistent sys-

tematic biases between samples are not fully explained, these biases can be estimated and adjusted
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for because of the high throughput nature of RNA-seq technology. Even in situations in which

direct quantile normalization has been considered useful, we suggest using exploratory plots (Fig-

ures 3(c,d)) before applying quantile normalization.
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Figure 1. Exploratory plots. (a) The points show the frequency of counts in the bins shown on

the x-axis. The three colors represent three samples (NA12812, NA12874, NA11993) from the

Montgomery data. (b) log
2

RPKM values are stratified by GC-content for two biological

replicates from the Montgomery data (NA11918, NA12761) and are summarized by boxplots.

The two samples are distinguished by the two colors. Genes with average (across all 60 samples)

log
2

RPKM values below 2 are not shown. (c) Log-fold changes between RPKM values from the

two samples and the same genes shown in (b) were computed and are plotted against GC-content.

Red is used to show the genes with the 10% highest GC-content and blue is used to show the

genes with the 10% lowest GC-content. (d) RPKM log-fold-changes are plotted against average

log
2

counts for the samples and genes shown in (b), with the same color coding as in (c). (e) As

(d) but from values corrected using the method proposed by Pickrell and others (2010). (f) As (d)

but for values normalized using our approach (see Methods).

14

http://biostats.bepress.com/jhubiostat/paper227



-4 -2 0 2 4

(a)

Residuals

d
e
n
s
it
y

0
.0

5
0
.2

5

(b)

Number of reads

0

10

100

1,000

10,000

0 1

1
0

1
0
0

1
,0

0
0

1
0
,0

0
0

Figure 2. Empirical distributions. (a) Empirical density estimates of log(Yg,i)− f̂i,j(Xg,j) are

shown for six samples from the Montgomery data. (b) A histogram of counts in a single sample

for genes with a GC content of 45% ± 1% and with a length between 500bp and 2,000bp is

shown.
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Figure 3. Results from normalizing 60 samples. In these plots we only show genes with a length

greater than 100bp and an average (across all 60 samples) standard log
2
-RPKM of 2 or greater.

(a) Empirical density estimates of log
2
-RPKM for five different biological replicates from the

Montgomery data are shown. (b) As (a) but CQN normalized expression values on the log
2
-scale

are shown. (c) The estimated GC-content effect are shown as curves for all 60 biological

replicates in the Montgomery study. We created a five versus five comparison using the samples

highlighted in blue (group 1) and red (group 2). (d) as (c) but curves are shown for the gene

length effect instead of GC-content. (e) Average log-fold-change is plotted against GC-content.

Here we used RPKM values and compared group 2 to group 1. (f) Average log-fold-change is

plotted against GC-content using CQN normalized expression measures.
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Figure 4. Improved precision provided by CQN on comparisons across studies. (a) We show

boxplots of the estimated log fold change between the two groups of five samples (the same two

groups as in Figure 3) from the Montgomery data using standard RPKM, expression values

normalized by TMM (trimmed median of M-values, the method proposed in Robinson and

Oshlack (2010)), the method proposed in Pickrell and others (2010), and CQN. We show genes

with length greater than 100bp and average (across all samples) log
2

RPKM greater or equal to

two. (b) We normalized the 29 samples assayed in both Montgomery and Cheung. For each gene

we computed the mean squared difference between the expression measure based on the

Montgomery and the Cheung data. The boxplots show the distribution of these precision

measures for the highly expressed genes, for each of the four choices of normalization: standard

RPKM , TMM, the method proposed in Pickrell and others (2010) and CQN. We show genes

with length greater than 100bp and average (across all samples) log
2

RPKM greater or equal to

two. (c) For the MAQC data we obtained fold change estimates between UHR and brain based on

RNA-Seq and microarrays. For RNA-seq we used two samples. For the microarrays we used a

five versus five comparison. The microarray data was normalized using RMA and the RNA-seq

data was normalized by CQN.
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