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Abstract
The present study examined the impact of engaging frontal-mediated, working memory processes
on implicit and explicit category learning. Two stimulus dimensions were relevant to
categorization, but in some conditions a third irrelevant dimension was also presented. Results
indicated that, in both implicit and explicit conditions, the inclusion of the irrelevant dimension
impaired performance by increasing the reliance on sub-optimal unidimensional strategies. With
three-dimension stimuli a striking dissociation was observed between implicit and explicit
category learning when participants performed the sequential working memory task. With explicit
category learning, performance was impaired further and there was an increased use of sub-
optimal unidimensional strategies. However, with implicit category learning, the performance
impairment decreased and there was an increased use of optimal strategies. These findings
demonstrate the paradoxical situation in which learning can be improved under sequential-task
conditions and have important implications for training, decision making, and understanding
interactive memory systems.

Humans are remarkably accurate at making highly complex decisions using processes that
are outside conscious thought. For example, expert radiologists accurately determine
whether x-rays are normal or abnormal, but often cannot describe their decision process
verbally. In contrast, other decisions require a great deal of verbal thought and often require
working memory (WM) and executive attention. For example, when investing in stocks, an
expert broker will analyze a company's previous earnings and potential for future growth.
When making complex decisions using either approach, extraneous information in the
decision process (e.g., movement artifacts in x-rays or anomalies in corporate earnings)
often harms performance. Identifying methods for mitigating the impact of extraneous
information would have broad implications for learning, training, and decision-making.

It is well established that performance of a secondary, extraneous task often leads to
performance decrements on a primary task (Pashler & Johnston, 1998), which is often
explained as capacity limitations within WM (Navon & Miller, 2002; Tombu & Jolicoeur,
2005). Recent work demonstrates that primary tasks with greater WM requirements are
more vulnerable to secondary-task interference (Beilock & Carr, 2001). For example,
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Maddox and colleagues (Maddox, Ashby, Ing, & Pickering, 2004; see also Waldron &
Ashby, 2001; Zeithamova & Maddox, 2006 , 2007) found that the inclusion of a sequential
WM task performed 500ms after the presentation of corrective feedback impacted rule-
based (RB) category learning, but did not impact information-integration (II) category
learning. This supports the hypothesis that RB category learning relies to a greater extent on
WM because the corrective feedback must be linked with the response that was made. In
contrast, WM is not required when learning II categories because the response is linked
automatically with the feedback. This finding is consistent with multiple-systems theories of
category learning (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Erickson & Kruschke,
1998; Smith, Patalano, & Jonides, 1998). For example, the COmpetition between Verbal and
Implicit Systems theory (COVIS; Ashby et al., 1998), proposes two distinct systems: an
explicit hypothesis-testing system that mediates RB category learning (see Figure 1A) and
relies on WM and attention, and an implicit procedural-based system that mediates II
category learning (see Figure 1B) and relies on reinforcement-based learning processes.
These systems are thought to have different neuroanatomical bases, with the hypothesis-
testing system mediated to a greater extent in frontal cortices, and the procedural-based
system relying more on posterior regions of the striatum (Ashby et al., 1998; Filoteo et al.,
2005; Nomura et al., 2007; Seger & Cincotta, 2002).

COVIS assumes that the two systems compete during learning, with one system eventually
winning control of the response. Importantly, COVIS assumes that there is an initial bias
toward the hypothesis-testing system and unidimensional rules (Bruner, Goodnow, &
Austin, 1956; Shepard, Hovland, & Jenkins, 1961). Thus, regardless of the nature of the
optimal categorization rule (RB or II) people will start by testing verbal rules that are based
on a single dimension. One implication of this architecture is that any manipulation that
increases the number of possible rules could increase the WM requirements of the task
(Ellenbogen & Meiran, 2008; Kruschke, 1992), and thus, should increase the amount of time
spent testing verbal rules. To our knowledge, this prediction has not been tested previously.
We test this prediction by examining conjunctive (CJ) RB and II category learning of three-
dimensional stimuli that consisted of single lines (see Figure 2) that varied along two
relevant dimensions-- length and orientation, and a single irrelevant dimension-- horizontal
spatial position (i.e., where it appeared on the computer screen). Participants had to learn
either CJ or II categories (Figures 1A and 1B, respectively) when the irrelevant dimension
was either fixed (2D conditions) or varied (3D conditions) across trials. We predicted that
the inclusion of a third, irrelevant dimension would result in poorer performance in the
CJ-3D condition relative to the CJ-2D condition, and poorer performance in the II-3D
condition relative to the II-2D condition because participants would spend more time testing
unidimensional rules before transitioning to CJ rules or II rules. To anticipate, this prediction
was supported in the data.

This architecture also makes an additional, counterintuitive prediction with respect to II
learning and secondary task effects. If a secondary sequential task engages WM processes
during processing of the feedback, participants should be less inclined to use rules and
would be better able to disengage from the hypothesis-testing system thereby allowing the
procedural-based system to learn the II task (i.e., in the II-3D-WM condition vs. the II-3D
condition). This would lead to the paradoxical effect of enhanced II learning under
secondary sequential task conditions. In essence, the addition of the secondary task would
behaviorally limit the contribution of the frontal lobes by overly engaging WM processes
during the processing of the corrective feedback, thus allowing the procedural-based system
to operate without competition. On the other hand, a secondary WM task that behaviorally
removes the contributions of the frontal lobes should further tax the hypothesis-testing
system leading to an even greater performance decrement for CJ learning (i.e., in the CJ-3D-
WM condition relative to the CJ-3D condition).
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Methods
Participants

A total of 205 undergraduates from the University of Texas, Austin, participated. All
participants had normal or corrected to normal vision. Participants were tested in one of the
six conditions and each received course credit for the study. To ensure that participants
achieved a minimal level of learning, individuals who did not achieve at least 50% accuracy
in the final block of trials were not included in the analyses. For the II conditions, this
process resulted in 21 (0 dropped) participants in the II-2D condition, 33 (3 dropped)
participants in the II-3D condition, and 37 (2 dropped) participants in the II -3D-WM
condition. For the CJ conditions, this resulted in 20 (3 dropped) participants in the CJ-2D
condition, 40 (4 dropped) participants in the CJ-3D condition, and 41 (1 dropped)
participants in the CJ-3D-WM condition.

Stimuli and Stimulus Generation
Stimuli consisted of single lines that varied in length and orientation on a trial-by-trial basis
in the 2D conditions, and in length, orientation, and spatial location in the 3D conditions. In
all cases, the length and orientation were the relevant dimensions. The stimuli and stimulus
generation algorithm are detailed in Figure 1. The parameter values for the categories in the
CJ and II conditions are shown in Table 1.

Procedure
Category Learning Task—Each of the six conditions consisted of 6, 100-trial blocks.
Participants were told that they would see a single line that would appear somewhere on the
computer screen and that they had to categorize the stimulus into either Categories A or B.
They were informed that each category was equally likely and that high levels of accuracy
could be achieved. On each trial, a stimulus appeared and remained on the screen until the
participant generated a response by pressing one of two keys that were labeled "A" or "B".
For the conditions that did not include the sequential WM task (i.e., the CJ-2D, CJ-3D,
II-2D, and II-3D conditions), corrective feedback was provided for 500 ms following a
response and the next trial was initiated following a 2-s ITI. For the conditions that included
the sequential WM task, corrective feedback was also provided for 500 ms following a
response, but instead of the 2-s ITI, WM trials followed the feedback (see below).

Secondary WM Task—Participants were administered the same WM task as that used by
Maddox and colleagues (Maddox et al., 2004). On each trial, four digits (between 0 – 9)
were sampled randomly (without replacement) and were displayed in 48-point type in a
horizontal array for 500ms. A blank screen was then presented for 1000-msec followed by a
single probe digit. The participant was asked to indicate with a key press whether it was one
of the four numbers displayed in the array. The secondary, WM task was embedded within
the category learning task for the CJ-3D-WM and II-3D-WM conditions using the sequence
and timing depicted in Figure 2. For the WM task, the participant was informed that high
levels of performance were possible and that they should respond as quickly and accurately
as possible. If performance in the memory scanning task was below 90% accuracy at the end
of any trial, the observers were told to increase their memory scanning accuracy. These
notifications stopped once memory scanning accuracy was above 90%. Importantly,
performance on the WM task was high in both the II-3D-WM (98.2%) and CJ-3D-WM
(97.8%) conditions, suggesting that category learning differences across conditions were not
due to differential attention to the WM task.
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Model-Based Analyses
A strength of these tasks is that computational models have been developed to determine the
type of strategy that the participant uses in learning the task. Four types of models were
applied to the final block of data separately for each participant (the details of these models
can be found in Maddox, 1999; Maddox & Ashby, 1993). One type of model assumes that
the participant used a CJ rule. A second type of model assumes that the participant used a
unidimensional rule (UD) based on one of the three stimulus dimensions (i.e., length,
orientation, and in the 3D condition, spatial location). A third type of model assumes that the
participant used a procedural-based approach (II) by performing an implicit integration of
the length and orientation of the line, or an implicit integration of the length, orientation, and
spatial location of the line (in the 3D condition). A fourth type of model assumes that the
participant responded randomly (RR). Akaike's (Akaike, 1974) information criterion (AIC)
was used to determine the model that provided the best account of the data. We then used
binomial tests to contrast the proportions of participants whose data were best fit by each
model in the various conditions.

Results
Irrelevant Dimension Effects on Category Learning Performance

Percent correct for the three CJ and three II conditions are displayed in Figure 3. To examine
the impact of the third, irrelevant dimension on category learning, we conducted a 2
(Condition: 2D vs. 3D) × 2 (Category Type: CJ vs. II) × 6 (Blocks 1–6) mixed ANOVA that
revealed a significant interaction between Condition and Block, F(1,110)=9.2, p<.01, prep=.
98, η2 = 0.08, and main effects of Block, F(1,110)=129.5, p<.001, prep>.99, η2 = 0.54, and
Condition, F(1,110)=17.7, p<.001, prep>.99, η2 = 0.14. The interaction between Condition
and Block was due to the learning slopes (block 6 accuracy - block 1 accuracy) being greater
in the 2D condition as compared to the 3D condition (averaged across Category Type), p<.
002, prep>.99. The main effect of block was due to the increase in learning across all
conditions. Importantly, the significant main effect of Condition (averaged across Category
Type) was due to greater accuracy in the 2D condition relative to the 3D condition, p<.001,
prep>.99, indicating that the addition of the irrelevant dimension impeded performance. The
lack of a significant Condition by Category Type interaction indicated that the effect of the
third, irrelevant dimension was similar in the CJ and II conditions.

Table 2 displays the proportion of participants in the six conditions whose data were best
accounted for by a CJ, UD, II or RR model. This table also includes the percentage correct
for those participants whose data were best fit by the various models. The results were clear.
For the CJ-2D condition, the majority of participants (.70) used a CJ approach when
performing the task, but this proportion declined in the CJ-3D condition (.45), p<.001, prep>.
99, and this appeared to be due to an increase in the use of UD rules in the CJ-3D condition
(.23) relative to the CJ-2D condition (.10), p<.05, prep=.96. For the II-2D condition, most
participants (.81) used an II approach but this proportion decreased in the II–3D condition (.
52), p<.001, prep>.99, and there was a shift from there being no UD users in the II-2D
condition to a larger proportion (.24) using a UD approach in the II-3D condition, p<.05,
prep=.95.

WM Effects on Category Learning Performance
To determine the impact of the secondary WM task, we conducted a 2 (Condition: 3D vs.
3DWM) × 2 (Category Type: CJ vs. II) × 6 (Blocks 1–6) repeated measures ANOVA that
revealed a significant interaction between Condition and Category Type, F (1,147)=7.0, p<.
01, prep=.97, η2 = 0.05, and a significant main effect of block, F(1,147) = 90.8, p < 0.001,
prep>.99, η2 = 0.38; the latter indicating improved accuracy across blocks. The significant
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Condition by Category Type interaction was characterized by improved performance in the
II-3D-WM condition relative to the II-3D condition, p<.01, prep=.97, and no performance
difference between the CJ-3D-WM and CJ-3D conditions (although there was a slight
decline in performance in the CJ conditions when the WM task was added). This interaction
was also highlighted by the fact that the II-3D and CJ-3D conditions did not differ
significantly, p=.55, prep=.66, but accuracy in the II-3D-WM condition was significantly
greater than in the CJ-3D-WM condition, p<.002, prep>.99.

The model-based analyses were also highly informative. The addition of the WM task in the
CJ conditions resulted in a decline in the proportion of participants who used a CJ approach
(.45 in the CJ-3D condition vs. .27 in the CJ-3D-WM condition), p<.05, prep=.94, with the
shift in approach being distributed equally across UD and II approaches. In the II condition,
there was an increase in the proportion of participants who used an II approach with the
addition of the WM task (.52 in the II-3D vs. .65 in the II-3D-WM condition), but this
difference was not significant, p=.16, prep=.84. However, there was a significant drop in the
proportion of UD users in the II-3D-WM condition (.08) as compared to the II-3D condition
(.24), p<.05, prep=.94.

Discussion
It is often the case that performing a secondary task negatively impacts performance on a
primary task (Pashler & Johnston, 1998). This is especially so when both the primary and
secondary task rely to a large extent on WM, and might even be particularly the case in the
presence of additional distraction. But is it possible to demonstrate the opposite pattern--
enhanced performance on one task while performing a secondary task? Such a finding
would have important implications for theories of learning and decisionmaking, as well as
approaches to training. This line of research also has important ecological implications since
we often make complex decisions in the face of distracting information.

The present study demonstrated that the inclusion of a third, irrelevant dimension had a
negative impact on CJ and II category learning, and the model-based analysis indicated that
this was due to a decrease in the proportion of participants using II or CJ approaches in the
respective conditions, and an increase in the proportion of participants using a UD approach.
Thus, the addition of the irrelevant dimension impacted both CJ and II learning. However,
the presence of a sequential WM task improved II category learning. The model-based
analyses indicated that the II improvement was due to a decrease in the proportion of
participants using a UD approach in the II task when the sequential WM task was present
(and to a smaller extent, an increase in the proportion of participants using an II approach).
Therefore, in some manner, including the sequential task behaviorally removed the frontal
lobes by engaging WM processes so that the procedural-based system could control
performance in the task. On the other hand, the presence of a sequential WM task had no
effect on accuracy in the CJ conditions, although it did impair performance in the CJ-3D-
WM condition relative to the II-3D-WM condition. The model-based analyses indicated that
there was an even further decrease in the proportion of participants who used a CJ approach
in the category learning task in the sequential WM condition. Thus, there was a crossover
effect between condition (3D vs. 3D-WM) and category structure (CJ vs. II).

These results provide important insights into how category learning systems interact. As
predicted by COVIS (Ashby et al., 1998), when learning II categories, participants appear to
initially use verbalizable rules, and once they have exhausted the potential rules, they
abandon a hypothesis-testing system and attempt to use more of a procedural-based
approach. This transition will take place much earlier in the learning process (1) if the
number of potential rules is minimized, such as in the II-2D condition, or (2) if the feedback
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processing component of the hypothesis-testing system is taxed to a great extent making it
more difficult to use verbalizable rules, such as in the II-3D-WM condition. In contrast, II
learning will be hindered if the number of verbalizable rules is increased and the hypothesis-
testing system is not overly engaged, such as in the II-3D condition. This pattern of results is
highly consistent with recent work demonstrating that participants will make use of
procedural-based learning processes (as opposed to explicit processes) under secondary-task
conditions when having to learn probabilistic sequences (Fu & Anderson, 2008), and other
work demonstrating that individuals with greater WM capacity perform more poorly on II
category learning tasks (Decaro, Thomas, & Beilock, 2008). In regard to this latter
observation, it could be that individuals with greater WM capacity will inherently rely more
on the use of rules when learning II tasks and will be less likely to abandon such an
approach to use the procedural-based system.

Although this is one of the first studies to demonstrate improved II category learning with
the performance of a sequential secondary task, it should be mentioned that other
manipulations have also resulted in better II learning. Markman and colleagues (Markman,
Maddox, & Worthy, 2006) demonstrated significantly improved II category learning when
participants were under high social pressure as compared to a low pressure condition. In
contrast, the opposite pattern was displayed when participants were asked to learn RB
categories. This pattern of results was due to the increase in pressure overly engaging WM,
thereby allowing participants to more quickly engage the procedural-based learning system
when learning II categories.

Other studies have also demonstrated improved performance on a primary task as a result of
performing a secondary task, particularly within the visuomotor domain (Laufer, 2008;
Roche et al., 2007; Wulf, McNevin, & Shea, 2001). In addition, other studies have shown
that procedural memory processes can be impaired on the serial reaction time task when
explicit instructions are provided informing the participant to look for the sequence (Howard
& Howard, 2001). These studies also provide evidence for multiple learning systems. An
important distinction between many of those studies and the present study, however, is the
underlying explanation for why such improvement occurs. Previous explanations of such
effects have focused primarily on attentional processes (Pellecchia, 2005; Roche et al.,
2007). For example, Roche and colleagues (Roche et al., 2007) argued that improvement in
visuomotor learning during secondary task performance was due to the secondary task
increasing the amount of attentional resources directed toward the stimulus in the primary
task, thereby enhancing learning. In contrast, we argue that the sequential-task
improvements we observed in II category learning had to do with the inherent competition
between the hypothesis-testing system and the procedural-based system, with the sequential
WM task engaging the hypothesis-testing system's processing of the feedback so that the
procedural-based system could learn the categories.

Although we argue that the engagement of the hypothesis-testing system was mediated via
WM, we also acknowledge that other executive function processes might have been enlisted
(e.g., shifting of attention) that could have engaged the hypothesis-testing system during
feedback processing. However, given the nature of the sequential secondary task, we feel
that the mechanism by which the procedural-based system was allowed to dominate task
performance in the II-3D-WM condition was through the engagement of the WM processes
necessary for the hypothesis-testing system to process corrective feedback. This point also
highlights another important distinction-- that between the use of a sequential secondary task
and the use of a concurrent secondary task. Previous studies have demonstrated using either
a sequential working memory task (such as the one in this study; Maddox et al., 2004) or a
concurrent secondary task (that is performed simultaneously during the categorization
judgment; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006) can differentially
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interfere with RB category learning as compared to II category learning. However, the
processes that are disrupted in RB category learning by the sequential and concurrent tasks
are likely different. As we have suggested, sequential secondary tasks likely interfere with
the processing of corrective feedback. In contrast, concurrent tasks likely interfere with
other processes, such as selective attention or the actual categorization judgment.

An important distinction between our study and many previous secondary-task studies is
methodological. Specifically, we demonstrated improved II category learning when we
increased the number of potential verbalizable rules by adding an irrelevant dimension to the
primary task, thereby requiring an increase in WM resources. Most other studies have
manipulated the secondary task (e.g., Roche et al., 2007) in an attempt to determine at what
stage of cognitive processing (e.g., attentional, perceptual, motor selection) the two tasks
interfere. One potential reason that previous studies have not demonstrated improved
performance under secondary-task conditions is that the resource limitations were not taxed
to a large enough extent in the primary task, a possibility that has been considered in other
studies (Ellenbogen & Meiran, 2008). Future work should consider the need to manipulate
the primary task to observe dual-task improvement.

Finally, it is important to underscore that our findings could have important implications for
training related issues, particularly when learning those tasks that likely rely on the
procedural-based learning system. For example, based on our findings, it may be possible to
enhance the training of radiologists by having them perform a secondary task while learning
to read x-rays. Our results further suggest that such an improved training approach could be
due to trainees quickly abandoning less-efficient verbal approaches to reading the scans so
as to engage a more appropriate learning system.
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Figure 1.
Category structures used in the conjunctive, rule-based (A) and information-integration
conditions (B). Solid lines denote the optimal decision bounds, and the open squares
represent stimuli from category A, and the closed triangles represent stimuli from category
B. Each "cluster" of stimuli was associated with a specific category. Each stimulus was
created by converting the x value into a line length (measured in pixels), and the y value
(after applying a scaling factor of π/500) into line orientation. The scaling factor π/500 was
chosen to approximately equate the salience of line length and line orientation.
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Figure 2.
Sequence of events for each trial in the rule-based and information-integration conditions
with the working memory task (CJ-3D-WM and II-3D-WM conditions).
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Figure 3.
Accuracy (percent correct) for each block of trials (in 100 trial blocks) for the conjunctive
condition (A) and the information-integration condition (B) under two-dimension (2D),
three-dimension (3D), and three-dimension working memory (3D-WM) conditions. Average
accuracy for the two conjunctive and information-integration conditions averaged across all
600 trials (C). Error bars are standard errors of the mean.

Filoteo et al. Page 11

Psychol Sci. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Filoteo et al. Page 12

Ta
bl

e 
1

C
at

eg
or

y-
di

st
rib

ut
io

n 
pa

ra
m

et
er

s f
or

 th
e 

le
ng

th
 a

nd
 o

rie
nt

at
io

n 
di

m
en

si
on

s i
n 

th
e 

co
nj

un
ct

iv
e 

ru
le

-b
as

ed
 a

nd
 in

fo
rm

at
io

n-
in

te
gr

at
io

n 
co

nd
iti

on
s. 

N
ot

e,
 fo

r
th

e 
w

or
ki

ng
 m

em
or

y 
co

nd
iti

on
s (

C
J-

3D
-W

M
 a

nd
 II

-3
D

-W
M

), 
th

e 
irr

el
ev

an
t d

im
en

si
on

 (h
or

iz
on

ta
l s

pa
tia

l l
oc

at
io

n)
 h

ad
 a

 m
ea

n 
of

 1
50

 a
nd

 a
 st

an
da

rd
de

vi
at

io
n 

of
 6

0. C
O

N
JU

N
C

T
IV

E
 R

U
L

E
-B

A
SE

D

C
at

eg
or

y
μ l

μ o
σ l

σ l
op

tim
al

 a
cc

ur
ac

y

A
10

0
20

0
30

30
95

%

B
10

0
10

0
30

30
95

%

B
20

0
10

0
30

30
95

%

B
20

0
20

0
30

30
95

%

IN
FO

R
M

A
TI

O
N

-I
N

TE
G

R
A

TI
O

N

C
at

eg
or

y
μ l

μ o
σ l

σ l
op

tim
al

 a
cc

ur
ac

y

A
80

15
0

30
30

95
%

A
15

0
22

0
30

30
95

%

B
15

0
80

30
30

95
%

B
22

0
15

0
30

30
95

%

Psychol Sci. Author manuscript; available in PMC 2010 April 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Filoteo et al. Page 13

Ta
bl

e 
2

Pr
op

or
tio

n 
of

 p
ar

tic
ip

an
ts

 a
nd

 c
or

re
sp

on
di

ng
 a

cc
ur

ac
y 

le
ve

ls
 (p

er
ce

nt
 c

or
re

ct
) f

or
 in

di
vi

du
al

s w
ho

se
 d

at
a 

w
er

e 
be

st
 fi

t b
y 

a 
co

nj
un

ct
iv

e 
m

od
el

 (C
J)

,
un

id
im

en
si

on
al

 m
od

el
 (U

D
), 

in
fo

rm
at

io
n-

in
te

gr
at

io
n 

m
od

el
 (I

I)
, o

r a
 ra

nd
om

 re
sp

on
di

ng
 m

od
el

.

C
on

ju
nc

tiv
e

In
fo

rm
at

io
n-

In
te

gr
at

io
n

C
on

di
tio

n
C

on
di

tio
n

M
od

el
2D

3D
3D

-W
M

2D
3D

3D
-W

M

C
J

pr
op

. o
f p

ar
tic

ip
an

ts
.7

0
.4

5
.2

7
.1

9
.2

1
.2

7

ac
cu

ra
cy

88
%

89
%

88
%

83
%

75
%

80
%

U
D

pr
op

. o
f p

ar
tic

ip
an

ts
.1

0
.2

3
.2

4
.0

0
.2

4
.0

8

ac
cu

ra
cy

73
%

67
%

65
%

--
-

64
%

65
%

II
pr

op
. o

f p
ar

tic
ip

an
ts

.2
0

.3
0

.3
9

.8
1

.5
2

.6
5

ac
cu

ra
cy

80
%

76
%

81
%

88
%

83
%

85
%

R
R

pr
op

. o
f p

ar
tic

ip
an

ts
.0

0
.0

3
.1

0
.0

0
.0

3
.0

0

ac
cu

ra
cy

--
-

52
%

49
%

--
-

.5
3

--
-

Psychol Sci. Author manuscript; available in PMC 2010 April 30.


