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Abstract

The problem of extracting a “signal” xn generated by a dynamical system

from a times series yn = xn + en, where en is an observational error, is con-

sidered. It is shown that consistent signal extraction is impossible when the

errors are distributed according to a density with unbounded support and the

underlying dynamical system admits homoclinic pairs. It is also shown that

consistent signal extraction is possible when the errors are uniformly bounded

by a suitable constant and when the underlying dynamical system has the “weak

orbit separation property”. Simple algorithms for signal recovery are described

in the latter case.

1 Introduction

Is it possible to consistently recover a “signal” {xn}n∈Z generated by a chaotic dy-
namical system from a time series of the form

yn = xn + en (1)

where en is observational noise? This is the noise removal, or signal separation prob-
lem, and has been discussed in a number of papers, including [4, 5, 8, 2, 1]. Various
sophisticated methods for noise removal have been proposed, nearly all requiring a
degree of smoothness in the underlying dynamical system, and some requiring rather
detailed a priori knowledge of the dynamics. The issue of convergence seems not to
have been broached, until now. The purpose of this paper is to state some general
results concerning the theoretical possibility of consistent filtering, and to propose
some fairly simple general-purpose filters for use in high signal/noise ratio problems.

In many circumstances, scalar measurements will be made on a dynamical system
at equally spaced times to produce the series xn, which is then observed with error.
We shall assume here, however, that xn is the actual state vector of the system at time
n. This assumption is probably harmless, in view of the “Embedding Theorem” [9].
Moreover, we shall assume throughout that the noise en consists of i.i.d. mean zero
random vectors that are independent of the state vectors xn. Although we shall make
only weak assumptions about the dynamics, we shall limit our attention to dynamical
systems with compact invariant sets. Compactness is essential in Theorems 2 and 3
below.
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Definition 1. A dynamical system is a homeomorphism F : Λ → Λ of a compact
subset Λ of a Euclidean space R

d. For any point x ∈ Λ, the orbit of x is the doubly
infinite sequence {xn = Fn(x)}n∈Z, where Fn denotes the n−fold composition of F .

Definition 2. A filter x̂ is a collection of functions

x̂n(y0, y1, y2, . . . , ym) = x̂(m)
n (y0, y1, y2, . . . , ym).

A filter x̂ is weakly consistent if for every orbit {xn}n∈Z and every ε > 0,

1

m

m
∑

n=1

|x̂n − xn|
P
−→ 0. (2)

Informally, a filter is weakly consistent if, for large m, most of the fitted values
x̂n are close to the corresponding state vectors xn. Other notions of consistency
are undoubtedly worthy of consideration. The stipulation that the convergence in (2)
hold for every orbit may be seen as overly restrictive – perhaps in some circumstances
one would be happy with filters which achieve (2) only for “most” orbits. See section
6 below for further discussion of this point. On the other hand, in certain situations
one might regard the requirement in (2) that only “most” points on the orbit be well
approximated as too weak. For a stronger notion of consistency, see [6], Theorem 2.

2 Homoclinic Pairs

A common and important dynamical feature of many chaotic systems is the occur-
rence (or even abundance) of homoclinic pairs. Two distinct points x, x′ are said to
be homoclinic if their orbits {xn}n∈Z and {x′

n}n∈Z satisfy

lim
n→±∞

|xn − x′
n| = 0. (3)

In smooth systems, it is commonly (but not always) the case that if the convergence
(3) occurs then it is exponentially fast. Say that two homoclinic points x, x′ are
strongly homoclinic if their orbits satisfy

∞
∑

n=−∞

|xn − x′
n| < ∞. (4)

In uniformly hyperbolic systems, most points are members of strongly homoclinic
pairs: If the stable and unstable manifolds through x intersect at x′, then (x, x′) is a
strongly homoclinic pair. In systems admitting “symbolic dynamics” (that is, systems
conjugate [or nearly conjugate] to subshifts of finite type), all points will be members
of homoclinic pairs. This class includes all mixing Axiom A diffeomorphisms — see
[6].

The occurrence of strongly homoclinic pairs is a fundamental obstruction to the
existence of consistent filters. For any error density φ on R

d, say that φ is in the class
Φ if it it strictly positive, has mean zero, and satisfies

lim sup
y→0

1

|y|

∫

∣

∣

∣

∣

log
φ(x + y)

φ(x)

∣

∣

∣

∣

φ(x) dx < ∞. (5)

Note that all mean zero Gaussian densities are of class Φ.
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Theorem 1. If the noise density is of class Φ and the dynamical system ad-
mits strongly homoclinic pairs, then there is no sequence of (measurable) functions
ξn(y−n, y−n+1, . . . , yn) such that, for all orbits xn = Fn(x),

ξn(x−n + e−n, x−n+1 + e−n+1, . . . , xn + en)
P
−→ x (6)

Proof Sketch. The argument is essentially the same as in the Axiom A case —
see [6]. Let x, x′ be a strongly homoclinic pair, with orbits {xn}n∈Z and {x′

n}n∈Z,
respectively. Define probability measures Q, Q′ on the sequence space (Rd)Z to be
the distributions of the doubly infinite sequence {yn}n∈Z when yn is defined by

yn = xn + en (Q), (7)

yn = x′
n + en (Q′), (8)

with the random vectors en i.i.d. from a density φ in class Φ. Then the measures
Q,Q′ are mutually absolutely continuous, because (4) and the assumption that φ ∈ Φ
guarantees the almost sure convergence of the infinite product

dQ

dQ′
=

∞
∏

n=−∞

φ(yn − xn)

φ(yn − x′
n)

(9)

to a strictly positive limit. But if Q and Q′ are mutually a.c., then there can be no
sequence of functions ξm(y−m, . . . , ym) such that as m → ∞,

ξm(y−m, . . . , ym)
Q
−→ x and ξm(y−m, . . . , ym)

Q′

−→ x′. (10)

Although Theorem 1 does not by itself preclude the existence of weakly consistent
filters, it indicates that consistent orbit identification is impossible when there are
homoclinic pairs. Moreover, if homoclinic pairs are sufficiently common, then there
may not be weakly consistent filters:

Corollary 1. Supose that there exist an ergodic, F−invariant probability measure µ
on Λ and a probability measure ν on Λ × Λ such that if the Λ × Λ− valued random
vector (X, X ′) has distribution ν, then

(a) the marginal distributions of X and X ′ are both µ;
(b) X and X ′ are either equal or strongly homoclinic, with probability one; and
(c) with positive probability, X and X ′ are strongly homoclinic.

If the noise density is of class Φ, then there is no weakly consistent filter.

The proof is essentially the same as in the case of an Axiom A diffeomorphism
— see [6].

3 Sensitive Dependence on Initial Conditions

Definition 3. The dynamical system F : Λ → Λ has sensitive dependence on

initial conditions if there exists a constant ∆ > 0, called a separation threshold,
such that for any two distinct points x, x′ ∈ Λ, there exists n ∈ Z such that

|Fn(x) − Fn(x′)| > ∆. (11)
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Dynamical systems with sensitive dependence on initial conditions often have
homoclinic pairs: for instance, topologically mixing Axiom A diffeomorphisms have
both sensitive dependence and homoclinic pairs. For systems with sensitive depen-
dence on initial conditions, consistent noise removal is possible if the noise level is
sufficiently low. Consistent filters are easily described and implemented.

Smoothing Algorithm D: The algorithm takes as input a finite sequence
{yn}0≤n≤m and produces as output a sequence {x̂n}0≤n≤m of the same length that
will approximate the unobservable signal {xn}0≤n≤m. Let κm be an increasing se-
quence of integers such that

lim
m→∞

κm = ∞ and lim
m→∞

κm

log m
= 0; (12)

e.g., κm = log m/ log log m. For each integer 1 ≤ n ≤ m, define An to be the set of
indices ν ∈ {0, 1, . . . ,m} such that

max
|j|≤κm

|yν+j − yn+j | < 3δ, (13)

with the convention that |yj − yi| = ∞ if either of i or j is not in the range [0,m].
Observe that n ∈ An, so An is nonempty; and for n ≤ κm or n ≥ m − κm, the set
An is the singleton {n}. In rough terms, An consists of the indices of those points in
the time series whose orbits “shadow” the orbit of xn for κm time units. Now define

x̂n =
1

|An|

∑

ν∈An

yν . (14)

Theorem 2. Suppose that the dynamical system f : Λ → Λ has sensitive dependence
on initial conditions, with separation threshold ∆. If the errors en have mean zero
and are uniformly bounded in absolute value by δ, where δ < ∆/5, then Smoothing
Algorithm D is weakly consistent.

This is a generalization of Theorem 1 of [6], which applies only to smooth, uni-
formly hyperbolic systems, where sensitive dependence on initial conditions can be
“quantified”. Theorem 2 requires no smoothness of the underlying dynamical sys-
tem at all. Furthermore, the hypotheses may be relaxed in several ways: (A) It is
not necessary that the errors en be identically distributed. If, for instance, the dis-
tribution of en is allowed to depend on the state vector xn, then weak consistency
of Smoothing Algorithm D will still hold provided that the errors are conditionally
independent, given the orbit {xn}n∈Z, that they are uniformly bounded by δ, and
that E(en | {xn}n∈Z) = 0. (B) It is not necessary even that the errors be mutually
independent. If {en} is a mean zero, stationary sequence satisfying suitable mixing
requirements, then the conclusion of Theorem 2 remains valid.

Explanation of Theorem 2. A complete proof will be given in [7]; here we shall
give only a brief indication of the argument. Observe that the average (14) may be
rewritten as

x̂n =
1

|An|

∑

ν∈An

xν +
1

|An|

∑

ν∈An

eν . (15)

Thus, to establish weak consistency, it suffices to show that for most of the indices
n ∈ [1,m], (a) the cardinality of An is large, and (b) if ν ∈ An then |xn − xν | is
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small. Property (b) will guarantee that the first average in (15) is close to xn, while
property (a), together with the law of large numbers, will imply (with some work!)
that with high probability the second average is near zero.

Property (b) follows easily from sensitive dependence on initial conditions. This
implies that if x, x′ are any two points whose orbits remain within distance 5δ for all
times −κ < n < κ, then |x − x′| must be small, provided κ is large. Since the errors
en are of magnitude less than δ, if ν ∈ An then, by the triangle inequality, the orbits
of xn and xν must remain within distance 5δ for all j ∈ [−κm, κm]. Thus, ν ∈ An

implies that |xn − xν | is small.
Property (a) follows from the assumption that κm = o(log m). Let H be a finite

subset of Λ that is δ−dense in Λ, and denote by H∗ the set of all H−valued sequences
of length 2κm + 1. For every F−orbit segment of length 2κm + 1, there is at least
one sequence in H∗ that δ−shadows it. Since κm = o(log m), the cardinality of H∗

is o(m). Thus, by the pigeonhole principle, for most indices n ∈ [1,m] there will be
many indices ν such that

max
|j|≤κm

|xn+j − xν+j | < 2δ. (16)

All such indices ν must be included in An.

Note that this is not a complete proof, because the sets An are random, not fixed,
and so the use of the Law of Large Numbers is problematic.

4 Example: The Henon Mapping

Smoothing Algorithm D is easily implemented, and simple variations of the algorithm
can be made to run in O(m log m) steps. In practical terms this means that, for simple
low-dimensional systems, with m = 105, the procedure can be run in “real time” (e.g.,
10 to 20 seconds on a 200 MHz Power Macintosh). This implies that experimentation
with the parameters κm and δ may be done in real time. In simple examples, choosing
δ to be one-fifth to one-tenth the apparent diameter of the attractor has been effective;
and, for m ≈ 105, choosing κm so that most bins An have 20 to 50 points has provided
the best results.

The following sequence of figures illustrate the results of using the filter for a
noise-corrupted orbit of length 105 generated by the Henon mapping. The figures
show (a) 105 points on the orbit of a randomly chosen point in the basin of attraction
of the attractor Λ; (b) the orbit corrupted by noise; and (c) the reconstructed orbit.
The author is indebted to Jason Stover for coding the algorithm. Similar figures
for a noise-corrupted orbit of Smale’s solenoid mapping may be found on the author’s
web page http://galton.uchicago.edu/∼lalley.



Chaos Out of Noise 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

100,000 iterations of the Henon map

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

Orbit Plus Noise, Noise Uniform B(.1)



Chaos Out of Noise 7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5

Reconstructed Henon Orbit, Kappa = 4

5 The Weak Orbit Separation Property

Although sensitive dependence on initial conditions is sometimes taken to be a nec-
essary condition for chaos (see, e.g., [3], section 1.8), there are important systems
for which sensitive dependence does not hold, which nonetheless share many of the
dynamical features of chaotic systems. Noteworthy among these are the time-1 map-
pings induced by smooth hyperbolic flows. If φt : Λ → Λ is a smooth flow, and if
F = φ1, then sensitive dependence cannot hold, for an obvious and trivial reason: if
two points x, x′ are on the same flow line (that is, if x′ = φs(x) for some s 6= 0) then
their orbits (under F ) remain on the same flow line, at (roughly) the same distance,
forever. However, if the flow φt is hyperbolic (see [10] for the definition) then the
orbits of all neighboring points not on a common flow line will eventually separate.
Such systems satisfy a weak orbit separation property, defined as follows.

Definition 4. For any pair of points x, x′ ∈ Λ and any ∆ > 0, define

τ∆
+ (x, x′) = min{n ≥ 0 : |Fn(x) − Fn(x′)| > ∆}, (17)

τ∆
− (x, x′) = max{n ≤ 0 : |Fn(x) − Fn(x′)| > ∆}, (18)

with the convention that τ∆
+ = ∞ and/or τ∆

− = −∞ if there are no such integers
n. The dynamical system F : Λ → Λ has the weak orbit separation property if
there exist constants ∆ > 0 (a separation threshold) and α > 0 such that for any two
distinct points x, x′ ∈ Λ, the inequality

|Fn(x) − Fn(x′)| > α|x − x′| (19)
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holds for all integers n satisfying

0 ≤n ≤ τ∆
+ (x, x′) if τ∆

+ (x, x′) < ∞; (20)

0 ≥n ≥ τ∆
− (x, x′) if τ∆

− (x, x′) > −∞; and (21)

−∞ <n < ∞ if τ∆
+ (x, x′) = −τ∆

− (x, x′) = ∞. (22)

Perhaps the simplest nontrivial dynamical systems satisfying the weak orbit sep-
aration property are the rotations Rα of the unit circle. It is trivial to verify that the
w.o.s.p. holds, because

|Rn
αx − Rn

αy| = |x − y| ∀n ∈ Z and ∀x, y. (23)

The weak orbit separation property holds not only for highly rigid, non-chaotic sys-
tems such as rotations, but also for highly chaotic systems, such as topologically
mixing, Axiom A diffeomorphisms restricted to their nonwandering sets. This is not
difficult to check. There are other examples that arise naturally, for instance, when
an Axiom A system is weakly coupled with an almost periodic system. In particular,
the product

S × R : X × T
d −→ X × T

d

of an Axiom A diffeomorphism S : X → X restricted to its nonwandering set X
with a system R : T

d → T
d that is bi-Lipshitz conjugate to an ergodic rotation

of the d−torus T
d satisfies the weak orbit separation property. Finally, the most

important dynamical systems satisfying the weak orbit separation property are the
time-1 mappings of smooth flows with compact, hyperbolic invariant sets Λ.

Consistent noise removal is possible for dynamical systems satisfying the weak or-
bit separation property, provided the noise level is sufficiently low. A consistent filter
is easily described, although it is not so easily implemented as Smoothing Algorithm
D above.

Smoothing Algorithm W: The filter is defined by averaging, as in Smoothing
Algorithm D, but the selection of indices over which to average is now done differently.
Let κm be a sequence of integers satisfying the conditions (12), and, for each 1 ≤ n ≤
m, let An again be the set of indices ν ∈ {0, 1, . . . ,m} for which inequality (13) is
satisfied. Define Bn to be the subset of An consisting of those ⌈|An|/ log |An|⌉ indices
ν for which the residual sums of squares

SS(ν, n;m) =
∑

|j|≤κm

|yn+j − yν+j |
2 (24)

are the smallest. Now define

x̂n =
1

|Bn|

∑

ν∈Bn

yν . (25)

Theorem 3. Suppose that the dynamical system F : Λ → Λ satisfies the weak orbit
separation property, with separation threshold ∆. If the errors en have mean zero and
are uniformly bounded by δ < ∆/5, then Smoothing Algorithm W is weakly consistent.

Explanation of Theorem 3. A complete proof is given in [7]; what follows is the
skeleton of the argument. For dynamical systems that satisfy the weak orbit sepa-
ration property, orbits of nearby points need not diverge to a fixed distance ∆, and
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so neighboring points cannot be identified in the same simple manner as in the case
of dynamical systems with sensitive dependence on initial conditions. In particular,
it is no longer necessarily the case that ν ∈ An (that is, |yn+j − yν+j | < 3δ for all
|j| < κm) will guarantee that |xn −xν | is small, even for large m. However, the weak
orbit separation property does imply that if two orbits fail to diverge in time κm

(either forwards in time or backwards in time), and if κm is sufficiently large, then

|xn+j − xν+j | > α|xn − xν | (26)

either for all 0 ≤ j ≤ κm, or for all −κm ≤ j ≤ 0, or for all −κm ≤ j ≤ κm.
Now consider SS(n, ν;m): since the random vectors en have mean zero, with

high probability,

SS(n, ν;m) =
∑

|j|≤κm

|yn+j − yν+j |
2

≈
∑

|j|≤κm

|xn+j − xν+j |
2 +

∑

|j|≤κm

|en+j − eν+j |
2

≈
∑

|j|≤κm

|xn+j − xν+j |
2 + 4κmE|e0|

2. (27)

Thus, by (26), SS(ν, n;m) is, with high probability, considerably smaller for those
indices ν such that |xn − xν | is small. Selection of indices according to the values
of SS(ν, n;m), will, therefore, tend to identify those ν such that xν is near xn.
Averaging over these indices will, with high probability, yield an estimate close to xn,
by an argument like that used in the proof of Theorem 2.

6 Concluding Remarks

(1) Much of the published work on the signal separation problem (and, indeed, most
work on statistical inference for chaotic dynamical systems) makes no distinction
between discrete-time systems and continuous-time systems. However, the results
above suggest that there may, in fact, be a significant difference, at least for the
signal separation problem. This is certainly the case for hyperbolic systems: discrete-
time hyperbolic systems have the sensitive dependence property, but continuous-time
systems do not — they satisfy only the weak orbit separation property.

(2) The case of hyperbolic flows deserves further attention. It may be shown
that certain large classes of hyperbolic flows — including (a) mixing geodesic flows
on compact, negatively curved manifolds, and (b) ergodic suspensions of hyperbolic
toral automorphisms — admit homoclinic pairs. However, it may also be shown
that for such flows homoclinic pairs are rare, in the sense that the set of points x
that belong to such pairs has SRB-measure 0. Thus, it may be possible to construct
weakly consistent filters, or filters which, although not weakly consistent in the sense
of Definition 2, neverthless satisfy the consistency relation (2) for almost every orbit.

(3) Practical aspects of the signal separation problem have not been system-
atically studied. Various authors have investigated the efficacy of various filtering
schemes for one or two low-dimensional systems, but no comparative studies have
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been made of the relative merits of these schemes. Perhaps somewhere an enterpris-
ing graduate student will find this to be a worthwhile project.
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