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Abstract: Cancers are a frequent cause of morbidity and mortality. There are many risk factors for
tumours, including advanced age, personal or family history of cancer, some types of viral infections,
exposure to radiation and some chemicals, smoking and alcohol consumption, as well as obesity.
Increasing evidence suggest the role of obesity in the initiation and progression of various cancers,
including renal cell carcinoma. Since tumours require energy for their uncontrollable growth, it
appears plausible that their initiation and development is associated with the dysregulation of cells
metabolism. Thus, any state characterised by an intake of excessive energy and nutrients may favour
the development of various cancers. There are many factors that promote the development of renal
cell carcinoma, including hypoxia, inflammation, insulin resistance, excessive adipose tissue and
adipokines and others. There are also many obesity-related alterations in genes expression, including
DNA methylation, single nucleotide polymorphisms, histone modification and miRNAs that can
promote renal carcinogenesis. This review focuses on the impact of obesity on the risk of renal cancers
development, their aggressiveness and patients’ survival.
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1. Introduction

Cancers are the leading cause of mortality. The global prevalence of cancer, as well as
cancer-related mortality rates, has been hastily increasing as a result of rising population
size, ageing, and higher exposure to cancer risk factors [1,2]. According to estimations
of the WHO (World Health Organization), approximately 35 million people are suffering
from cancer [3]. Apart from other risk factors for cancers, such as advanced age, personal
or family history of cancer, some types of viral infections, such as human papillomavirus
(HPV), exposure to radiation (e.g., ultraviolet radiation from the sun) and some chemicals,
smoking and alcohol consumption and also obesity have been found to be associated
with the incidence of some types of cancer [4,5]. The percentage of obese individuals
is increasing every year worldwide. For example, in the USA, 67.9% of the population
have excessive weight [6]. The high prevalence of obesity is related to the consumption
of unhealthy food in excessive amounts and the lack of physical activity, both of which
results in an excessive accumulation of lipids in adipocytes and an excessive build-up of
adipose tissue [7].

Large quantities of calories exceeding total energy expenditure result in the excessive
accumulation of adipose tissue and triglyceride accumulation in adipocytes, especially in
visceral fat tissue, leading, in consequence, to cellular hypertrophy and the promotion of
inflammatory cytokine production [8,9]. Furthermore, high levels of free fatty acids (FFAs)
derived from hypertrophic adipocytes can be transported to insulin-responsive organs,
including the liver, pancreas, and skeletal muscle, which results in diminished insulin
sensitivity [10,11]. Excessive accumulation of adipose tissue increases the susceptibility
to many metabolic disorders, such as type 2 diabetes mellitus, cardiovascular diseases,
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and cancer. There are numerous studies confirming the role of excessive adipose tissue
accumulation in the development of various disorders and diseases. The estimated life
expectancy of obese patients is up to 7 years shorter compared to normal-weight individ-
uals [12]. According to estimations, a general population-attributable fraction is 11.9%
in men and 13.1% in women for all obesity-related cancers [13]. However, in the case of
some cancers, the impact of obesity on the incidence of cancers is much more pronounced,
e.g., oesophageal adenocarcinoma (men 29%, women 37%), gallbladder (men 11%, women
42%) and endometrium (36%) [14]. The loss of body weight appears to reduce the inci-
dence of cancers [15,16]. It appears that renal cell carcinoma can be induced by metabolic
changes resulting from numerous mutations within genes which products are involved
in the regulation of metabolism, including mutations in the hypoxia pathway as well as
the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of ra-
pamycin (mTOR) pathway [17,18]. Lipidomic data indicate the enhanced accumulation of
cholesterol and triglycerides in RCC cells. The results of some studies have indicated higher
levels of cholesterol, cholesterol esters, and triglycerides in clear cell renal cell carcinoma
(ccRCC) cells compared to normal tissues [19].

This review will focus on the impact of obesity on the risk of renal cancers development,
their aggressiveness and patients’ survival.

2. Renal Cell Cancer

Renal cell cancer (RCC) represents a group of chemoresistant cancers (including
clear cell RCC, papillary RCC, chromophobe RCC and renal oncocytoma) originating
from the renal parenchyma, which has distinguishable histopathological subtypes, diverse
molecular profiles, various clinical outcomes and treatment responses [20,21]. According
to estimations, approximately 400,000 cases of new renal cell carcinomas are diagnosed
every year, and the annual RCC-related mortality reaches 175,000 deaths annually [2].
RCC accounts for 85% of all kidney cancers [22]. It is considered to be the most lethal
tumour of the urinary system [20]. Among various RCC tumours, ccRCC appears to be the
most frequent and aggressive subtype [23]. Despite the fact that more and more cases are
diagnosed at an early stage owing to the development of imaging techniques, nearly 30% of
patients have locally advanced stage or distant metastasis at the time of diagnosis [24]. Most
cases of RCC are sporadic; however, sometimes familial clustering is observed, especially
in patients with early age of onset, with the presence of multiple and/or bilateral lesions
and several malignant and benign masses within the kidneys [25,26]. RCC tumorigenesis
is associated with the presence of genetic alterations, for example, the von Hippel-Lindau
gene mutation; loss of the short arm of chromosome 3 (3p) (in most ccRCC cases); promoter
hypermethylation or deletion [27,28]. Over 40% of RCC seem to be associated with obesity
assessed on the basis of body mass index (BMI) but also with hypertension and cigarette
smoking. Early evidence (based on quantitative analysis that included 14 studies on men
and women) concerning the association between obesity and tumour risk showed that
the relative risk for men and women together was 1.07 (95% CI: 1.05–1.09) per one unit
of increase in BMI (corresponding to 3.1 kg for a man of an average height of 1.77 m and
2.7 kg for a woman of an average height of 1.64 m) [29]. In turn, the results of meta-analysis
have demonstrated that each 5 kg/m2 increase in BMI may be associated with a higher risk
of RCC (raised by 24% in men and 34% in women) [30].

Currently, the therapy for metastatic RCC involves molecular-targeted drugs (so-
rafenib, axitinib, everolimus, pazopanib) or immune checkpoint inhibitors; however, such
treatment is not always effective as a result of strong side effects of these drugs as well
as the individualized sensitivity of patients to the treatment [31]. Since immune-based
combinations appear not to be more toxic than the use of sunitinib monotherapy, the
treatment with nivolumab combined with ipilimumab, pembrolizumab plus axitinib, as
well as avelumab used jointly with axitinib appears to be the new standard for the ther-
apy of metastatic RCC [32]. The combination of ipilimumab and nivolumab was found
to be well-tolerated and to increase overall survival (OS) in intermediate- and poor-risk
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patients (assessed on the basis of the International Metastatic RCC Database Consortium
(IMRD) risk score) [32]. One of the meta-analyses demonstrated the reduction of mortality
risk by 26%, associated with the use of immune-based combinations [33]. Such therapy
also resulted in higher progression-free survival (PFS), complete response (CR) as well as
tumour objective response rate (ORR) [33]. However, according to estimations, approxi-
mately 20–40% of patients with localized kidney cancer experience disease recurrence after
curative therapy [34]. In the case of patients with distant metastasis, the 5-year survival
rate is low—only 11.7% [35].

3. Impact of Obesity on Renal Cancers

Tumours are characterised by the uncontrollable growth of abnormal cells that possess
the potential to invade or spread to the other parts of the body [3,36]. The initiation and
development of cancer involve the dysregulation of cells metabolism since it requires the
appropriate amount of energy as well as biosynthetic building blocks in order to maintain
malignant cell proliferation [36]. Therefore, it seems that any state characterised by an
intake of excessive energy and nutrients may favour the development of various cancers.
Based on the review of the evidence, the World Cancer Research Fund (WCRF) provided
recommendations concerning diet, nutrition, and physical activity that can significantly
reduce the risk of some cancers and positively affect survival after a diagnosis [37].

The survival of cancer cells depends on the surrounding non-malignant tumour stroma
cells; the presence of adipose tissue within the tumour stroma, which provides the neces-
sary energetic reservoir, together with signalling molecules secreted by this tissue (such as
adipokines, proinflammatory and proangiogenic factors), facilitates tumour progression
and metastasis [38,39]. Therefore, the accumulation of excess adipose tissue and its dys-
function appear to form the optimal microenvironment for the initiation and progression
of the tumour. It has been suggested that altered hormonal milieu, chronic tissue hypoxia
and increased inflammatory response, cellular energetics, angiogenesis, epithelial to mes-
enchymal transition (EMT) and genomic instability may link the presence of obesity with
the higher prevalence and onset of kidney cancers [36,40–42]. Increased risk of various
cancers onset in obese patients may be partly associated with the enhanced secretion of
endogenous hormones and steroids (e.g., sex hormones and insulin) and the subsequent
disturbed balance between cell proliferation, differentiation and apoptosis [43,44]. Obesity
can trigger intracellular lipid accumulation in adipocytes, insulin resistance (IR) as well as
mitochondrial and endoplasmic reticulum stress [45]. The results of a large, prospective
US cohort revealed that weight gain in early (18–35 years of age) and mid- (35–50 years of
age) adulthood strongly correlated with the incidence of RCC, whereas weight gain after
midlife (age 50 years to baseline) was not so strongly related to RCC [46]. The Metabolic
Syndrome and Cancer Project (Me-Can), involving 560,388 men and women in cohorts from
Norway, Austria, and Sweden, found that increased levels of BMI, blood pressure, glucose
and triglycerides were associated with increased risk of RCC among men, while high BMI
was most crucial in women [47]. Numerous studies have suggested that adiposity is the
second most common risk factor for the initiation of cancers, including thyroid, oesophagus,
liver, breast, kidney, prostate, colon and rectum [48–50]. White adipose tissue (WAT) is
the main site of excess energy storage in the form of triacylglycerol [49]. This tissue can
be transformed into metabolically active organs via cells that are contained within, such
as adipocytes, immune cells (T and B lymphocytes), a stromal–vascular fraction (adipose
precursor cells, endothelial cells, pericytes) as well as mast cells, macrophages, neutrophils
and dendritic cells [51]. Since all these cells release numerous active biomolecules, WAT is
involved in the regulation of various biological functions, both at the local and systemic
levels [49]. The results of studies have indicated that adipokines, regulators of fatty acid
metabolism, hormones and pro-inflammatory cytokines may stimulate the initiation and
progression of obesity-related cancers [52,53].

The amount of visceral fat can also affect the aggressiveness of a tumour. According
to Zhu et al. [54], a greater percentage of visceral adipose tissue is considerably correlated
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with a higher Fuhrman grade and could be an independent predictor of high-grade RCC
in patients with stage T1a RCC. The accrual of adipose tissue is quite a well-known risk
factor increasing cancer morbidity; however, the exact mechanisms responsible for this
phenomenon remain elusive [55].

Apart from the increased risk of RCC, obese patients have also worse outcomes, in-
cluding poorer response to traditional chemotherapy, surgery and radiation therapy [56].
However, some studies have demonstrated a positive relationship between obesity in
RCC patients and considerably higher OS, cancer-specific survival (CSS) and recurrence-
free survival (RFS) [57,58]. Obesity increases the risk for RCC development, but at the
same time, it may decrease the risk of recurrence and increase the overall survival [59].
Parker et al. [59] revealed that overweight (BMI 25–30 kg/m2) and obese (BMI ≥ 30 kg/m2)
patients more frequently had less-aggressive cancers compared with normal-weight pa-
tients (BMI < 25 kg/m2). Additionally, the 5-year cancer-specific survival rate was higher
in overweight and obese patients (76.9%, and 81.7%, respectively) than in normal-weight
individuals (62.3%). The first two groups also experienced a lower risk of RCC death. A
strong relation between BMI and cancer-specific death was maintained even after the adjust-
ment for tumour stage, size, grade, symptoms, and baseline weight loss CSS (hazard ratio
(HR) = 0.47; 95% CI = 0.29–0.77) [57]. Moreover, the meta-analysis of 14 studies reported
the relationship between greater BMI and markedly prolonged CSS (pooled HR = 0.59, 95%
CI = 0.48–0.74) [57]. Steffens et al. [60] suggested that visceral adipose tissue may play
a protective role in more advanced RCC in patients treated with sorafenib and sunitinib
since patients with a larger visceral fat area (VFA) had longer progression-free survival
time and OS. Moreover, a review of the records of patients who underwent nephrec-
tomy for localized renal cell carcinoma demonstrated that overweight and obese patients
with this cancer had a more favourable prognosis compared with patients with a normal
BMI [61]. The results of a large clinical study of US patients with clear cell RCC treated
with surgery indicated that incidence of advanced stage and advanced grade cancers in
obese and overweight patients was lower compared to normal-weight patients (odds ratios
of 0.61 and 0.73, respectively) [22]. This phenomenon is called the “obesity paradox”.
Markedly longer survival of overweight and obese patients with kidney cancer compared
with normal-weight patients is mostly observed in patients on dialysis, those with hemo-
dynamic and metabolic disorders, including chronic kidney disease (CKD), heart failure
(HF) and cardiovascular disease (CVD) [22,57,62,63]. Waalkes et al. [64] observed that in
patients with organ-confined but not advanced RCC, excessive weight was associated with
better survival. Additionally, another study of RCC patients reported markedly prolonged
cancer-specific survival time (but not overall survival time) in those with BMI exceeding
30 kg/m2 who underwent radical nephrectomy. The reason why obesity increases RCC
risk but, on the other hand, also improves prognosis is not yet well understood. One ex-
planation is that obesity delays the development of sarcopenia and cachexia [45]. Another
study demonstrated the presence of protective factors, including lower brain natriuretic
peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NTproBNP) levels as well as
diminished activation of the renin-angiotensin (RAA) and sympathetic nervous system in
obese patients [62]. Moreover, it has been suggested that adipocytes of obese individuals
are capable of counteracting the negative effects of the catabolic state, thus enhancing their
prognosis. In turn, Sanchez et al. [65] revealed that in contrast to what they expected,
obese patients did not have an enhanced inflammatory state within their primary tumours.
Greater inflammation and hypoxia were found in the peritumoral fat area. Based on their
findings, the authors suggested that the alterations of the tumour microenvironment may
be responsible for the survival advantage observed in obese RCC patients compared to
normal weight ones [65]. Moreover, they demonstrated higher angiogenesis scores in obese
patients. Hakimi et al. [66] indicated a better response to sunitinib in those with higher
angiogenesis scores as compared to pazopanib. It has been hypothesized that despite the
fact that obesity enables the formation of an environment favouring ccRCC growth via
angiogenesis, it also facilitates the local delivery of TKIs (also due to enhanced angiogen-
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esis). Another study suggested that obese RCC individuals are more likely to have the
clear cell A (ccA) molecular subtype (determined on the basis of ClearCode34), which,
in comparison to the clear cell B (ccB) subtype, is associated with superior OS, CSS, and
RFS [67]. However, some researchers argue that the presence of the obesity paradox is the
result of a bias in the study design (e.g., reverse causation bias and selection bias) and is
not a real relation [49,68]. Since an increasing number of new studies have confirmed the
presence of the obesity paradox, we believe that such a phenomenon exists and could be
associated with the aforementioned mechanisms. Nevertheless, further studies should be
performed to confirm the underlying mechanisms.

4. Mechanisms Linking Obesity with Cancers
4.1. Hypoxia

The involvement of hypoxia in RCC carcinogenesis has already been confirmed. Hy-
perplasia and hypertrophy of adipocytes are characteristic alterations found in obesity [45].
Unbalanced expansion of adipose tissue stimulates hypoxia, which, in turn, triggers com-
pensatory angiogenic mechanisms in order to cope with limited supplies of oxygen and
nutrients [69]. Lawler et al. [70] reported that in obese patients, adipose tissue oxygenation
is lower compared to lean individuals (39.3 ± 1.5 vs. 53 ± 1.9 mmHg). Uncontrolled
hypoxia has been demonstrated to facilitate tumour cell survival and propagation [71].
The hypoxic obese adipose microenvironment induces hypoxia-inducible factor 1α (HIF-
1α)-related pathways and upregulates the levels of extracellular matrix (ECM) proteins
(metalloproteinases; MMPs), tissue inhibitors of metalloproteinases (TIMPs) and collagens)
as well as proinflammatory cytokines (e.g., tumour necrosis factor α (TNF-α), interleukin-6
(IL-6) and C-C motif chemokine ligand 2 (CCL2)). Modifications triggered by the presence
of hypoxia affects the tumour itself as well as the tumour microenvironment [72]. Secreted
cytokines: TNF-α, IL-6, IL-8, IL-10, and macrophage inflammatory protein 1 (MIP-1)) are
involved in the promotion of angiogenesis and IR [45]. Such behaviour provides a niche
for transformed infiltrating tumour cells [73,74]. Indeed, the results of studies have con-
firmed the involvement of proinflammatory and profibrotic factors in tumour initiation and
growth in obese patients. The presence of hypoxic conditions and the flux of lipids are also
associated with the intensification of immune cells infiltration and the enhanced release of
inflammatory adipokines, which all lead to local and distant inflammation [75]. In obese
patients, immune cells were found to change their phenotype and to promote not only
inflammation but also fibrosis [76]. Such inflammatory signals promote the recruitment of
myeloid cells, which are the main source of reactive oxygen species (ROS) within adipose
tissue, thus aggravating the inflammatory state and leading eventually to DNA damage, ge-
nomic instability and the initiation of cancer development [77]. Obesity-associated hypoxia
is a vital factor engaged in the development of insulin resistance and chronic inflammation;
it also dysregulates the production of adipocytokines [78,79]. Hypoxia in adipose tissue
of obese mice impairs the expression of adipocytokines, enhances adiponectin mRNA
instability and upregulates the expression of CCAAT/enhancer-binding protein (C/EBP)
homologous protein, which results in the reduction of adiponectin promoter activity [78].

The available data indicate the presence of hypoxia induces and stabilizes two hypoxia-
inducible factors (HIFs): HIF-1α and HIF-2α, with different activities that serve as vital
mediators of the cellular adaptation [71,80]. The activation of HIFs is associated with
the reprogramming of cellular oxidative metabolic mechanisms, leading to bioenergetic
adaptation and to decreased oxygen availability and alleviating the effects of toxic reactive
oxygen species (ROS) [81]. HIF-1α was suggested to inhibit the aggressive behaviour of
the tumour, while HIF-2α appeared to be the main pro-tumourigenic factor in ccRCCs.
Hypoxia-inducible factor-1α (HIF-1α), which controls glycolysis and pyruvate metabolism,
triggers the expression of diverse genes regulating metabolic pathways, angiogenesis, DNA
replication, the synthesis of proteins, tumour metastatic potential as well as resistance to
therapy [71]. HIF-1α promotes cell survival since it stimulates the expression of growth
factors and hampers pro-apoptotic pathways [82]. Moreover, its actions via vascular en-
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dothelial growth factor (VEGF), VEGF receptors, cyclooxygenase-2 (COX-2), inducible
nitric oxide synthase (iNOS) are associated with tumour neovascularization [83,84]. Fur-
thermore, it was found to control cell detachment (through the downregulation of adhesion
molecules) as well as to stimulate cell migration and invasion (via the actions of matrix-
degrading enzymes) [71]. HIF-1α was found to stimulate tumour development via its
impact on the cell cycle and apoptosis [45]. HIF-1α overexpression in RCC augmented in-
tratumor microvessel density in xenografts [85]. Moreover, the higher expression of HIF-1α
appears to be associated with a markedly worse prognosis of RCC patients compared with
those with low expression [86,87]. According to studies, overexpression of HIFs in RCC is
associated with the inactivation of the von-Hippel-Lindau (VHL) gene. The absence of pVHL,
resulting from the inactivation of VHL (somatic mutations, hypermethylation), mimics
the hypoxia state, which provokes a constitutive up-regulation of HIF-1α and subsequent
overexpression of VEGF, platelet-derived growth factor-β (PDGF-β) and transforming
growth factor β (TGF-β), which are involved in carcinogenesis and angiogenesis [88].

In turn, hypoxia related to HIF-2α has been suggested to trigger SLC1A5 overex-
pression and subsequent cancer metabolic reprogramming [89]. HIF-2α regulates fatty
acid metabolism [71]. The results of studies have demonstrated that renal cell cancers
expressing solely HIF-2α displayed enhanced proliferation in rats compared to those with a
co-expression of HIF-1α and HIF-2α [80,90]. According to some studies, in RCC expressing
both factors, HIF-2α is required for the formation of ccRCC xenografts, while a HIF-1α
knockdown boosts this process [91,92]. Such findings underlined the thesis that HIF-1α
acts as a tumour suppressor, while HIF-2α is an oncogene. However, the results of the
aforementioned studies seem to contradict this assumption. It is plausible that both factors
may play various roles at different stages of tumour development. Their activity could
also be affected by the presence of numerous mutations occurring in patients with ccRCC.
Apart from mutations, epigenetic factors, as well as the mutual effects on each other, may
also alter the presence/function of HIF-1α and HIF-2α. The results of studies analysing
expression profiles support the thesis that HIF-1α may promote ccRCC at its early but
also late stages of development and progression [92,93]. Gudas et al. [94] observed the
correlation between greater HIF-1α expression levels and worse patient survival. However,
the cumulative effect of HIF-1α and HIF-2α was not found since the co-expression of both
factors did not translate into a more aggressive ccRCC phenotype [95]. However, in the
mice model, the deletion of either of the factors hampered the formation of cysts and tu-
mours triggered the presence of Vhl/Trp53 double mutation [96]. This finding confirms the
pro-tumourigenic properties of both factors. The summary of hypoxia-related mechanisms
involved in tumour initiation, progression and metastases is presented on Figure 1.
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Figure 1. The summary of hypoxia-related mechanisms involved in tumour initiation, progression
and metastases.

4.2. Inflammation

In lean individuals, white adipose tissue containing invariant natural killer T-cells,
alternatively activated macrophages, regulatory T-cells, eosinophils and T-helper type
2 cells, together with adipose cells, controls energy balance and exerts anti-inflammatory
activity [97]. However, the increase in BMI is associated with adipocyte death due to
hypertrophy, which results in the conversion into inflamed-WAT rich in pro-inflammatory
cytokines, such as TNF-α, which subsequently affect systemic homeostasis. Such transfor-
mation favours cancer onset and progression via the TNF-α-induced release of cytokines
and angiogenic factors as well as anti-apoptotic factors such as (B-cell CLL/lymphoma 2
(BCL-2)) and cyclin D1 and cyclin E in cancer cells [52,98,99]. Chronic inflammation is one of
the hallmarks of tumorigenesis [100]. Chronic overload of lipids and nutrients, which is ob-
served in obese individuals, can result in the development of an inflammatory state within
adipose tissue, leading to many pathologies, including diabetes mellitus and metabolic
syndrome [101,102]. However, the development of these conditions is preceded by the
impairment of immunity and immune responses, which, in the long-term perspective, may
favour the initiation and progression of tumours [103]. Adipose tissue is a rich source of
immune cells, especially macrophages, which can, under favourable conditions, contribute
to the development of cancer [76]. Adipose tissue of lean individuals is capable of releasing
a variety of anti-inflammatory cells, such as T helper type 2 (Th2) T cells, alternatively
activated (M2) macrophages, and regulatory T-cells [104]. However, in obese patients, the
increase in the amount and dimensions of adipocytes is associated with the secretion of
inflammatory factors, adipokines and cytokines (leptin, monocyte chemoattractant protein
1 (MCP-1), TNF-α, IL-6). Moreover, the activation of T helper type 1 (Th1) cells is observed.
Th1 and cluster of differentiation 81 (CD81) T-cells were demonstrated to release high
amounts of interferon γ (IFN-γ), leading to the worsening of inflammation within adipose
tissue. Apart from the aforementioned changes, obesity also activates and upregulates
intracellular pathways (signal transducer and activator of transcription 3 (STAT3), nuclear
factor kappa-light-chain-enhancer of activated B-cells (NF-κB), COX-2) that are responsible
for the aggravation of inflammation and cellular proliferation but also for blocking the
apoptosis [105,106]. The presence of elevated concentrations of serum C-reactive protein
(CRP), IL-6, TNF-α, leukocyte and higher neutrophil count in obesity-induced chronic
inflammation results in the accumulation of macrophages in the adipose tissue of obese
individuals [107–109]. The proliferation of macrophages leads to macrophage accumulation
in the course of obesity development and is followed by greater migration and aggravated
accumulation of macrophages in adipose tissue (mediated by the CCL2/IL-1β/C-X-C motif
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chemokine ligand 12 (CXCL12) signalling pathway) [110,111]. Furthermore, obesity stim-
ulates the retention of macrophages in adipose tissue [112]. Both macrophages recruited
via MCP-1, TNF-α and the increase in IFN-γ concentrations in adipose tissue contribute to
the switch from the M2 pro-repair state into the activated/inflammatory (M1) macrophage
phenotype associated with the enhanced expression of major histocompatibility complex
(MHC) class II and pro-inflammatory cytokines [113]. The cJun NH2-terminal kinase,
which is necessary for such polarization, also plays an important role in obesity-related
inflammation and insulin resistance [114]. The results of studies have revealed that in
obese patients, ECM displays a greater capability to polarize macrophages to the M2-like
phenotype compared to ECM from lean patients [115]. According to Springer et al. [87],
obesity-associated interstitial fibrosis, which stimulates a macrophage phenotype switch
into macrophages similar to tumour-associated macrophages (TAM), may partly explain
the link between obesity and cancers. Activated macrophages released large amounts of
inflammatory cytokines, e.g., COX-2, TNF-α, IL-6 and plasminogen activator inhibitor-1
(PAI-1), aggravating the state of chronic inflammation and enhancing insulin resistance
and the risk of cancer initiation [116]. Moreover, they were found to stimulate both stromal
vascularisation and angiogenesis, which contribute to tumour progression [117]. TAMs
that have an M2-like phenotype will promote tumour growth and hinder antitumor im-
mune cells [118,119]. The release of cytokines by macrophages is associated with enhanced
tumour growth, malignancy, ECM remodelling as well as angiogenesis. Through the re-
lease of matrix metalloproteinases and cathepsins degrading extracellular matrix proteins,
TAMs also favour tumour progression and invasion [119]. The production of vascular
endothelial growth factor and TGF-β by TAMs enables the angiogenesis necessary for
tumour progression [120]. Not only macrophages but also adipocytes release inflammatory
cytokines affecting cancer cell inflammation. Inflammation facilitates the EMT, which, in
turn, enhances both the metastatic potential of tumour cells and genomic instability [105];
it was demonstrated not only to stimulate cancer cell survival and progression but also to
limit adaptive immunity. Cardillo et al. [121] demonstrated that levels of interleukin-10
protein were higher in more advanced TNM stage (pT3) tumours. Moreover, they sug-
gested that IL-6 and IL-10 and heat shock protein 90 (HSP-90) may be useful markers of
the development and progression of renal-cell carcinomas. In turn, TNF-α was found not
only to stimulate the proliferation and metastasis of RCC cells but also to be involved in
the glycogen synthase kinase 3 beta (GSK3β)-mediated epithelial–mesenchymal transition
in RCC [122]. In obesity, the enhanced formation of ROS, together with pro-inflammatory
cytokines and inflammatory state mediators (NF-κB and COX-2), favours cell apoptosis,
proliferation, and invasion. Cyclooxygenase-3 has been reported to be overexpressed in
multiple cancers, including RCC [123]. Moreover, COX-2 and insulin-like growth factor
type 1 receptor (IGF-1R) may act synergistically, enhancing the oncogenesis and progres-
sion of RCC [124]. In obese individuals, the leukocytes present within adipose tissue can
also promote the process of oncogenesis through the release of numerous cytokines. The
results of some studies have suggested that adipose-derived stem cells (ASCs) may act as a
potential tumour promoter for different cancer cell types [125]. They can promote tumour
progression and invasiveness via the activation of several intracellular signals as well as
elective tumour homing capacity. Figure 2. Presents inflammation-related mechanisms
involved in tumour initiation, progression and metastases.
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4.3. Insulin Resistance

Excess caloric intake accompanied by adipocyte hypertrophic growth results in dis-
turbed insulin sensitivity and cellular stress. The rise in glucose levels in obese individuals
facilitates the formation of the pro-tumour microenvironment [106]. Insulin resistance,
observed frequently in obese individuals, is associated with an early rise in insulin-like
growth factor 1 (IGF-1) levels and IGF-1 receptors in WAT and other tissues [126]. Dimin-
ished synthesis of adiponectin in obese individuals is associated with the development
of insulin resistance, which then results in hyperinsulinemia [127,128]. Insulin, IGF1 and
TNF-α have been demonstrated to negatively affect the production of sex-hormone-binding
globulin (SHBG), which is the crucial carrier of testosterone and oestradiol in the plasma,
thus contributing to the rise in sex steroid bioavailability and the potential increase in the
risk of tumours [129,130]. Prolonged and chronic hyperinsulinemia decreases the release of
insulin-like growth factor (IGF)-binding protein-1 and 2 (IGFBP1 and 2), thus contributing
to the increase in the levels of bioavailable IGF1, which, in consequence, induces cell prolif-
eration and inhibits apoptosis, favouring the formation of tumours [43,131]. Another study
demonstrated that despite being capable of stimulating cancer growth, insulin, which is
one of the vital anabolic hormones, is not carcinogenic [132].

According to studies, elevated serum insulin levels prevent autophagocytosis, pro-
teasome activity and apoptosis. Therefore, it may exert anti-apoptotic and mitogenic
effects [133–135]. In healthy kidney cells, insulin exerts a suppressing inhibitory effect
on renal gluconeogenesis (it inhibits the expression and activity of gluconeogenic en-
zymes) [136]. However, the situation changes in RCC cells. It was also found that the
expression of IR on RCC cells was inversely associated with the cancer stage as well as the
occurrence of distant metastases. In healthy persons, the expression of IR can be found in
absorptive cells along the renal tubule [135]. Takahashi et al. [137] demonstrated an inverse
correlation between IR expression in RCC tumours and disease progression. According
to the authors, IR expression is decreased in patients with tumour stage pT2 to pT4 and
those with metastatic disease. However, another study indicated that the absence of IR on
RCC cells lines is not associated with the inhibition of insulin activity on RCC cells since
these cells remain susceptible to insulin stimulation due to the presence of IGF-1R [135].
Moreover, Sciacca et al. [132] pointed out that IGF1 appears to be a more potent stimulator
of cancer cell proliferation than insulin. Solarek et al. [135] demonstrated that IGFs and
insulin may promote RCC cell viability and proliferation. IGF-1 stimulates the survival
and proliferation of cancer cells through GSK3β-mediated NF-κB activation and via the
blockade of cancer cells apoptosis through Rat sarcoma virus (Ras)/mitogen-activated
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protein kinase (MAPK) /Akt pathway-mediated inactivation of the Bcl-2 antagonist of cell
death (BAD), thus preventing Bcl-2 suppression [138]. IGF-1 can promote angiogenesis
not only via the HIF-1α and VEGF-C pathway but also by direct impact on vascular and
lymphatic endothelial cells [49]. The expression of both IGF1 and IGF-1R within the same
cancer confirms the existence of an autocrine–paracrine signalling loop of RCC cell stim-
ulation [139]. Insulin resistance-induced alterations in the composition of the IGF family
(comprising IGF-1, IGF-2, their receptors, IGF-1R and IGF-2R, and six types of IGF binding
proteins (IGFBPs), IGFBP-1 to 6, have been demonstrated to be of key importance in the for-
mation and progression of tumours. Solarek et al. [135] provided evidence that in RCC, IGF
signalling is mostly associated with circulating ligand proteins—IGF1 and IGF2, obtained
from sources other than RCC cells themselves. They suggested that tumour-associated
endothelial cells expressing IGF may constitute a good source.

Intracellular signalling pathways associated with the stimulation of IR and IGFR1 are
different. IGFR1 signalling is related to the regulation of genes participating in proliferation
and subsequent mitogenic activity and the control of cancer cell motility, adhesion and
angiogenesis [139,140]. The evidence for the importance of IGF1 signalling in cancers was
obtained in a study showing that IGF-1 binding to IGF-1R and the downregulation of
this receptor are similarly efficient in the inhibition of RCC cell lines’ growth [141,142].
Rasmuson et al. [143] demonstrated that high serum IGF-1 levels at diagnosis correlated
with better prognosis in RCC. Other studies revealed that IGF-1 that is bound to IGF-1R
may stimulate mitosis and cell migration, prevent apoptosis (via the activation of MAPK
and PI3K signalling pathways) as well as enhance tumour angiogenesis via raising vascular
endothelial growth factor levels [144,145]. The activity of IGF-1 can be modulated by the
competitive binding of IGFBP-3. Microarray analysis showed increased IGFBP-3 mRNA in
63% of clear cell renal cell carcinomas and the higher IGFBP-3 staining intensity in high
grade (Fuhrman grades 3 and 4) clear cell renal cell carcinomas [146]. The Cremona study
at the 15th year of follow-up revealed that patients in the group with the highest quintile of
serum insulin had a 62% higher risk of cancer mortality [147].

4.4. Adipokines and Adipose Tissue

Adipose tissue is not only a storage place for lipids, but it also acts as active en-
docrine tissue, secreting numerous adipokines, including adiponectin, leptin, resistin,
PAI 1, TNF-α, VEGF, and IL-6 [127,128,148]. The results of studies point to adipocytes as
strong candidates facilitating the carcinogenesis process and also modulating the tumour
microenvironment [149]. The crosstalk between adipocytes and cancer cells have been
found to induce morphological and functional alterations, including the delipidation of
adipocytes, enhanced release of proinflammatory molecules (PAI-1, IL-6 and IL-8) and re-
duction in adipocyte terminal differentiation markers; therefore, cancer-related adipocytes
gain a fibroblast-resembling and cancer-promoting phenotypes [150,151]. Zhang et al. [152]
observed in an animal model of obesity and cancer a 6-fold increase of adipose stromal
cells in the systemic circulation, which contributed to an increase in tumour vascularisation
and the enhanced proliferation of neighbouring cancerous cells. Adipose stromal cells were
also found to stimulate tumour metastasis.

4.4.1. Leptin

Leptin is an adipocyte-specific protein synthesized primarily by white adipose tissue;
it regulates satiety and body weight [153]. Abnormal levels and/or the dysfunction of
leptin are associated with excessive weight and uncontrolled energy intake. The analysis of
leptin concentration in obese and normal-weight individuals revealed 5- to 10-fold greater
levels in the first group [154]. Moreover, the relationship between higher leptin and the
risk of metabolic diseases, including cancer, has been revealed. The results of studies have
suggested that leptin could be the link between obesity and cancer. Leptin signalling via the
leptin receptor (LEPR) was found to be associated with RCC invasion [155–157]. Leptin, as a
multifunctional hormone, is involved in the regulation of energy expenditure, the inhibition
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of apoptosis and the stimulation of proliferation and angiogenesis [158–160]. The results of
studies have indicated the association between increased serum leptin concentrations and
the overexpression of leptin receptors and RCC invasion and progression [158–160]. The
levels of leptin have been reported to correlate with greater adiposity in humans, as well
as with a higher prevalence of cancers in obese individuals. This molecule enhances pro-
inflammatory signalling within the cell, stimulates mitogenic effects, promotes angiogenesis
and induces EMT, thus contributing to tumour progression [161,162]. Leptin was found to
activate MAPK, Jak/Stat, and PI3K/AKT pathways, thus promoting oncogenic signalling,
angiogenesis, and immunomodulation, leading to the enhanced proliferation and survival
of cancer cells [49]. It was suggested that the activation of the extracellular signal-regulated
kinases (ERK1/2) and Janus kinase/signal transducer and activator of transcription 3
(JAK/STAT3) signalling pathways were involved in the leptin-mediated proliferation
of RCC in Caki-2 cells [155,163]. Leptin-boosted carcinogenesis is associated with the
stimulation of cell proliferation, inhibition of apoptosis, and the upregulation of VEGF via
HIF-1α and NF-κB [159]. In obese patients, higher leptin levels were found to promote the
proliferation of cancer cells and metastasis [164].

4.4.2. Adiponectin

Adiponectin, which exerts insulin-sensitizing, anti-inflammatory and anti-apoptotic
properties, regulates many crucial processes such as glucose and lipid metabolism [165].
Adiponectin, mainly secreted by white adipose tissue, is a regulator of glucose and
lipid metabolism and energy homeostasis. Obesity has been found to decrease serum
adiponectin, while weight loss may raise serum adiponectin levels [166]. Serum adiponectin
was found to be adversely related to RCC [167]. Adiponectin seems to have antitumor
properties since it hampers angiogenesis and reduces macrophage infiltration via the
suppressing of mTOR and Stat3 pathways and the stimulation of 5’AMP-activated pro-
tein kinase (AMPK) and caspase activity [39,168]. It hampers tumour cell growth and
proliferation via the impairment of intracellular mediators of, e.g., PI3K-AKT, ERK1 and
ERK2, STAT3 and WNT-β-catenin signalling, leading to greater cell cycle arrest and apop-
tosis [169]. Thus, it appears to protect against carcinogenesis [170]. This suggestion was
confirmed in an animal study in which mice with hypoadiponectinemia suffered from
accelerated tumour formation in the liver [171]. In another study, low blood adiponectin
levels were significantly correlated with tumour size and metastasis of RCC [172]. Con-
siderably lower serum levels of total and high molecular weight (HMW) adiponectin
were reported in RCC patients with metastasis compared to non-metastatic RCC [173].
Moreover, de Martino et al. [174] observed that lower preoperative serum adiponectin is
associated with features of biologically aggressive RCC, metastasis, and survival. How-
ever, Horiguchi et al. [157] found an inverse correlation between serum total adiponectin
level and BMI as well as between high concentrations of total adiponectin levels and RCC
aggressiveness and poor survival. Kelesidis et al. [175] found that adiponectin signalling
could be partially enhanced by T-cadherin, which also strongly binds HMW adiponectin.
Several studies confirmed the role of T-cadherin in the regulation of the progression of
several types of cancers via the impact on tumour cell proliferation and migration and
intratumoral angiogenesis [176]. Ito et al. [177] suggested that while adiponectin released
from perinephric adipose tissue may impact RCC aggressiveness via the alteration of the tu-
mour microenvironment, the levels of adiponectin in perinephric fat-conditioned medium
seem not to be considerably related to RCC aggressiveness [177]. Moreover, exogenous
adiponectin was shown to boost cancer cell proliferation in vitro in a mechanism associated
with the inhibition of apoptosis and modulated by protein kinase and apoptosis-related
protein activity. The discrepancies in the results of studies are not clear; however, they
could be explained by the fact that the presence, for example, of diabetes, hypertension, and
cardiovascular disease, but also racial background and circadian rhythmicity, may affect
the concentrations of circulating adiponectins [178,179]. Moreover, Grossmann et al. [180]
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suggested that the levels of adiponectin and leptin and also the balance between them
appear to be critical factors in obesity-related carcinogenesis.

4.5. Fatty Acids

There are many reports concerning an enhanced efflux of fatty acids in obese individu-
als. Tumour aggressiveness relies on the increase in lipid usage within cancer cells, and this
is obtained via the synthesis of fatty acids (FA) de novo [181]. Fatty acids enable cells to
raise energetic yields, while fatty acids derivatives are considered to be key components of
tumour cell structure [182]. While endogenous lipogenesis becomes insufficient in rapidly
growing, aggressive cancers, they increase the uptake of fatty acids from the outside [183].
At that time, cancer-associated adipocytes launch the hydrolysis of triglycerides to release
FA. Fatty acid-binding protein 4 (FABP4) was found to facilitate the transfer of adipocyte-
derived FAs between cancer-associated adipocytes and cancer cells, while CD36 facilitates
FA uptake, thus providing tumours with sufficient energy to grow and progress [184,185].

The analysis of a database of more than 2000 ccRCC patients who underwent renal
mass surgery revealed considerably upregulated fatty acid synthase (FASN) in the group
with normal BMI, which was downregulated in obese patients [22]. Moreover, higher FASN
expression was correlated with the presence of more aggressive disease and poor prognosis
in several cancer types, including RCC [186–188]. Overexpression of FASN was suggested
to decrease cancer-specific survival [186]. FASN was found to be associated with poor
prognosis in RCC and other cancers [186]. Furthermore, an in vitro study demonstrated that
the pharmacological inhibition of FASN hampered RCC tumour growth [189]. However,
Albiges et al. [58] observed marked downregulation of FASN gene expression in obese RCC
patients compared to individuals with normal BMI (p = 0.034). Obese patients with high
FASN-expression had significantly longer OS (36.8 months–median), while patients with
normal BMI had a mean survival of only about 15 months (median) (p = 0.002).

Apart from differences in FASN expression, Hakimi et al. [22] observed distinct expres-
sion of the immediate upstream enzyme acetyl-CoA carboxylase (ACACA) gene and the
level of the encoded protein—acetyl-CoA carboxylase (ACC) between patients with normal
weight and obese ones. Both FASN and ACC are rate-limiting enzymes participating in the
regulation of the biosynthesis and metabolism of fatty acids. This process was found to be
essential for tumour growth [190]. Figure 3 presents insulin-resistance- and adipose-tissue-
related mechanisms involved in tumour initiation, progression and metastases.
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4.6. Peroxisome Proliferator-Activated Receptors (PPARs)

The PPARs superfamily (PPARα, PPARβ, and PPARγ) of ligand-activated transcrip-
tional factors belonging to nuclear hormone receptors exerts diverse physiological func-
tions. They have been suggested to play a role in both adipocyte differentiation and
tumorigenesis [45]. Only a few studies have reported the pro-carcinogenic effects of PPARα.
Yaghoubizadeh et al. [191] demonstrated that the overexpression of PPARα in the tumour
microenvironment (TME) was associated with a worse prognosis. In turn, PPARγ was
found to regulate adipocyte differentiation, improve IR and be involved in the develop-
ment of inflammation, autoimmune diseases, and cancers. High expression of PPARγ was
observed in RCC tissue, while PPARγ agonists (pioglitazone and troglitazone) and the
endogenous ligand (15-deoxy-Delta12,14-prostaglandin J(2) (15dPGJ(2)) inhibited human
RCC cell proliferation via the stimulation of apoptosis and G0/G1cell cycle arrest [192,193].
Apart from activation of apoptosis, 15-deoxy-delta12,14-prostaglandin J2 was found to
exert cytotoxic effects on RCC cells through the stimulation of c-Jun N terminal kinase
(JNK)/MAPK and Akt pathways [194]. Deguchi et al. [195] found that overexpression
of PPARβ/δ was associated with the higher activation of β-catenin as well as connexin
43, eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), platelet-derived growth
factor receptor beta (PDGFRβ), Akt1 and cyclin-dependent kinase 1 (CDK1), which stimu-
lated tumour (colorectal) progression. Apart from these factors, PPARβ/δ also triggered
IL-6/STAT3-mediated inflammation and promoted the expression of several pro-metastatic
genes [196,197]. However, another study indicated that PPARγ-mediated upregulation of
phosphatase and tensin homolog (PTEN) resulted in the inhibition of PI3K signalling, thus
reducing the self-renewal and aggressiveness of cancer stem cells [191,198,199]. PPARγ
was also revealed to exert pro-apoptotic and anti-inflammatory properties as well as to
decrease ECM remodelling and EMT, thus limiting tumour metastasis [200–202]. The afore-
mentioned data show that there is no consensus concerning the role of PPARs in cancer
development due to their dual role in this process.

4.7. DNA Hypermethylation, miRNAs and Single Nucleotide Polymorphisms (SNPs)

According to studies, in cancers, there are many mechanisms affecting obesity-related
gene expression, including DNA methylation, SNPs, histone modification and miRNAs [203].
The analysis of the impact of hypermethylation of 20 genes related to obesity on renal car-
cinogenesis and prognosis revealed that genes of neuropeptide Y, leptin, and leptin receptor
were considerably more hypermethylated compared to normal adjacent parenchyma tissue
(p < 0.0001) [203]. The hypermethylation of the leptin receptor gene was demonstrated
to decrease the expression of the encoded protein, and some researchers have suggested
that this can enhance the risk of disease recurrence. The reduction in receptor levels may
translate into a decreased ability to exert antimetastatic effects mediated by the activation
of matrix metalloproteinase enzymes. In turn, the examination of the promoter methylation
status of 10 biologically significant tumour suppressor and cancer genes (VHL, p16(INK4a),
p14(ARF), APC, MGMT, GSTP1, RARbeta2, RASSF1A, E-cadherin, and Timp-3) in 100 kidney
tumours demonstrated the occurrence of hypermethylation in all of the histological cell
types and grades and stages [204]. This process is common in cancers and may occur rela-
tively early in their development, potentially disrupting critical pathways and favouring
kidney tumorigenesis. The profile of hypermethylation can be used to diagnose the type of
kidney cancer and predict the patient’s clinical outcome [204]. High-resolution epigenomic
and genomic maps of RCC tumours have demonstrated that RCCs are characterized by a
considerably higher number of hypermethylated loci and that most of the differentially
methylated regions were localized in the enhancer regions of the kidney genome [205].
Despite the identification of numerous hypermethylated loci in RCC, there are hardly any
reports describing their association with clinical outcomes and disease-free survival in
RCC [203]. In the longer perspective, the determination of aberrations in DNA methylation
may help to clearly distinguish RCC from normal tissues.
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Apart from the methylation, the presence of Gln223Arg (A/G) rs1137101 SNP was
also found to affect the risk of RCC and patients’ survival [206]. The GG genotype is
associated with more aggressive tumour behaviour and shorter survival compared with
GA and AA genotypes. Other studies have suggested the relationship between RCC risk
and polymorphisms in obesity-related genes, such as FTO and ADIPOQ, and genes in the
mTOR signalling pathways [207–209]. Brennan et al. [209] observed that the FTO A allele,
which is associated with increased BMI, is also correlated with a weak increased risk of
kidney cancer, which is more apparent before the age of 50 (OR = 1.44, CI 1.09–1.90). In turn,
Zhang et al. [208] found significantly higher ccRCC risk in carriers of the rs182052 variant
A allele of the adiponectin gene (adjusted OR, 1.36 and 95% CI, 1.07–1.74 for AA vs. GG,
p = 0.013; adjusted OR, 1.27 and 95% CI, 1.04–1.56 for AA vs. GG+AG, p = 0.019), and
this positive relationship was more evident in overweight subjects. Both ccRCC pa-
tients and healthy control subjects possessing A alleles of rs182052 had lower fasting
serum adiponectin.

The analysis of genes with expressions that correlated with both ccRCC and obesity re-
vealed five candidates: immunoglobulin heavy constant alpha 1 (IGHA1) and immunoglob-
ulin κ constant (IGKC), which act as oncogenes, as well as monoamine oxidase A (MAOA),
mucin-20 (MUC20) and transient receptor potential melastatin 3 (TRPM3), being tumour
suppressor genes. In turn, a multiphase study of three independent genome-wide scans (of
3530 cases and 5714 controls) assessing genetic variations in obesity-related genes and RCC
risk identified five RCC susceptibility loci: IL1RAPL2 (rs10521506-G), PLIN2 (rs2229536-A),
SMAD3 (rs4601989-A), MED13L (rs10850596-A) and TSC1 (rs3761840-G) [210]. IL1RAPL2
belongs to the interleukin-1 receptor (IL-1R) family, PLIN2 encodes perilipin 2 (also called
adipophilin or adipose differentiation-related protein), SMAD3 plays an important role in
regulating glucose energy homeostasis, and TSC1 is a critical tumour suppressor in mTOR
pathway. Urinary perilipin 2 has been suggested as an early screening biomarker for RCC,
which enables the differentiation between cancer patients and healthy controls, benign
kidney tumours, noncancerous kidney diseases, and other cancers, including bladder
and prostate cancers [211,212]. Comprehensive pathway analysis identified new ccRCC
pathogenic factors: aryl-hydrocarbon receptor (AHR), grainyhead-like-2 (GRHL2), and
KIAA0101 [213]. The expression of GRHL2 was associated with a higher risk of disease
relapse and remained statistically significant following the adjustment for grade and stage
(hazard ratio (HR), 3.47, p = 0.012). In turn, patients with KIAA0101-positive expression
had worse disease-free survival (HR, 3.64, p < 0.001). Moreover, the authors observed that
the silencing of KIAA0101 was associated with a reduction in kidney cancer cell migration
and invasion in vitro [213]. Many articles show a significant relationship between LEPR
expression level and tumour aggressiveness, invasion, metastasis and clinical outcome in
RCC [214,215]. Reduced LEPR levels were suggested to be associated with more aggressive
tumours [216,217]. It seems that the downregulation of LEPR expression in RCC tumours
may be related to the methylation in the promoter-associated CpG sites of LEPR [218].

Some studies have underlined the importance of selected miRNA related to obesity for
the modulation of carcinogenesis [219]. For example, miR-143 overexpression was demon-
strated to prevent tumour growth via inhibition of Bcl2, extracellular signal-regulated
kinase-5 (ERK5) activities and KRAS (Kirsten rat sarcoma virus) oncogene [220–222]. The
expression of oncogenic miR-221 was positively correlated with BMI (especially in women),
but it was also found to regulate the pool of cancer stem cells and stimulate epithelial-to-
mesenchymal transition, thus facilitating cancer tumorigenicity [164,223,224]. According to
studies, miR-204-5p and miR-139-5p are important factors involved in the pathogenesis of
ccRCC [213]. miR-204-5p was found to modulate ccRCC tumorigenesis and recurrence and
to inversely correlate with 13 obesity-related genes [225]. Patients with a low expression
of miR-204, accompanied by increased levels of miR-21, were found to have the worst
prognosis compared with other groups [226]. Decreased levels of miR-204-5p were found
in patients with RCC patients who progressed to metastatic disease compared with those
without progression; therefore, it has been suggested that this miRNA may act as a tumour
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suppressor [225]. This thesis was supported by evidence obtained from in vitro studies
demonstrating that the overexpression of miR-204-5p significantly limited cell migration
and invasion in different cell lines [227–229]. In mesenchymal stem cell lines, enhanced
expression of miR-204-5p stimulated adipocyte differentiation and boosted lipid droplet
accumulation [3,230]. Since miR-204-5p expression was found to be positively correlated
with BMI, it seems plausible that this miRNA may contribute to ccRCC recurrence via its
link with obesity [225]. Other studies have reported that the tumour suppressive function
of miR-139-5p is related to recurrence or metastasis. Diminished expression of miR-139-5p
was observed in nephrectomised ccRCC patients with recurrence [231]. Some studies have
reported that miR-139-5p levels were correlated with the survival of ccRCC patients [232].

4.8. Conclusions

The aforementioned data indicate the plausible association between obesity and the
development of cancers. Various mechanisms can be involved in this interplay. However,
at the same time, obesity appears to prolong overall survival as a result of a phenomenon
called the “obesity paradox”. Therefore, it seems that this field warrants further extensive
investigation. Currently, the choice of therapy in metastatic RCC patients is not based on
obesity or non-obesity status since there are no unequivocal data confirming the utility of
obesity or other clinical features, such as age, gender, and ethnicity, as predictive biomark-
ers of response to treatment. Researchers are working on the development of therapies
targeting adipocytes, adipose stromal cells, and adipose endothelium; however, due to the
fact that such treatments are still not tested well, especially in clinical trials, their usefulness
in the treatment of RCC patients cannot be predicted. Despite the advancement in our
knowledge on mechanisms involved in RCC initiation and development, there are still
numerous gaps that need to be filled. We still do not fully understand the causes and patho-
genesis of various tumours. Additionally, it is very important to recognise the heterogeneity
of cancer cells and the consequences of their interplay. First of all, efforts should be made to
establish biomarkers that would enable early detection, as well as predictive markers and
those determining the response to the given treatment. Moreover, vast studies aiming at the
identification of early lesions in order to improve risk stratification, cancer prognosis and
control should be performed. The lack of screening tests is associated with the diagnosis of
cancers in their advanced stages, which is associated with limited therapeutical options and
significantly decreased chances of patients’ survival. Further studies should improve our
understanding of the molecular mechanisms involved in the earliest stages of cancers and
the cellular and physical properties of the tumour microenvironment that could promote
the shift from premalignant to invasive disease state [233]. The unravelling of mechanisms
involved in cancer progression and metastasis would enable the development of better
therapies as well as solutions on how to overcome the problem of drug resistance. Finally,
since studies sometimes provide conflicting results, the future challenge would involve the
development of reproducible systems, allowing for the obtaining of sound evidence.
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